Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of PIL 2-Hydroxyethyl Dimethyl Ammonium Lactate [N11H(2OH)][LAC]
2.3. [N11H(2OH)][LAC]-Mediated Biomass Fractionation
2.4. Delignification and Lignin Recovery
2.5. Scanning Electron Microscopy
2.6. Characterization of Recovered Lignin
2.6.1. ATR FT-IR
2.6.2. Thermogravimetric Analysis
2.6.3. Gel Permeation Chromatography
2.6.4. NMR
3. Results and Discussion
3.1. Optimization of PWB Fractionation Using [N11H(2OH)][LAC]
3.2. Scanning Electron Microscopy of [N11H(2OH)][LAC]-Delignified Pulp
3.3. Characterization
3.3.1. ATR FT-IR
3.3.2. Thermogravimetric Analysis
3.3.3. Molecular Weight Distribution of [N11H(2OH)][LAC]-Extracted Lignin
3.3.4. HSQC and 31P NMR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liguori, F.; Moreno-Marrodan, C.; Barbaro, P. Biomass-derived chemical substitutes for bisphenol A: Recent advancements in catalytic synthesis. Chem. Soc. Rev. 2020, 49, 6329–6363. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.U.; Qaisar, K.; Nawaz, A.; Akram, F.; Mukhtar, H.; Xu, Y.; Mumtaz, M.W.; Rashid, U.; Ghani, W.A.W.A.K.; Choong, T.S.Y. Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts 2021, 11, 309. [Google Scholar] [CrossRef]
- Vanholme, R.; de Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Peng, C.; Chen, H.; Chen, Q.; Zhao, Z.K.; Zheng, Q.; Xie, H. Opportunities of ionic liquids for lignin utilization from biorefinery. ChemistrySelect 2018, 3, 7945–7962. [Google Scholar] [CrossRef]
- Bajwa, D.; Pourhashem, G.; Ullah, A.H.; Bajwa, S. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Torres, L.A.Z.; Woiciechowski, A.L.; de Andrade Tanobe, V.O.; Karp, S.G.; Lorenci, L.C.G.; Faulds, C.; Soccol, C.R. Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 2020, 263, 121499. [Google Scholar] [CrossRef]
- Da Silva, V.G. Laccases and ionic liquids as an alternative method for lignin depolymerization: A review. Bioresour. Technol. Rep. 2021, 16, 100824. [Google Scholar] [CrossRef]
- Ejaz, U.; Sohail, M. Ionic liquids: Green solvent for biomass pretreatment. In Nanotechnology-Based Industrial Applications of Ionic Liquids; Springer: Berlin/Heidelberg, Germany, 2020; pp. 27–36. [Google Scholar]
- Naz, S.; Uroos, M. Ionic Liquids: Designer Solvents for Cleaner Technologies. Lett. Org. Chem. 2022, 19, 811–813. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Cai, C. Acid hydrotropic fractionation of lignocelluloses for sustainable biorefinery: Advantages, opportunities, and research needs. ChemSusChem 2021, 14, 3031–3046. [Google Scholar] [CrossRef]
- Szalaty, T.J.; Klapiszewski, Ł.; Kurc, B.; Skrzypczak, A.; Jesionowski, T. A comparison of protic and aprotic ionic liquids as effective activating agents of kraft lignin. Developing functional MnO2/lignin hybrid materials. J. Mol. Liq. 2018, 261, 456–467. [Google Scholar] [CrossRef]
- Gschwend, F.J.; Chambon, C.L.; Biedka, M.; Brandt-Talbot, A.; Fennell, P.S.; Hallett, J.P. Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids. Green Chem. 2019, 3, 692–703. [Google Scholar] [CrossRef]
- Hasanov, I.; Shanmugam, S.; Kikas, T. Extraction and isolation of lignin from ash tree (Fraxinus exselsior) with protic ionic liquids (PILs). Chemosphere 2022, 290, 133297. [Google Scholar] [CrossRef]
- Gschwend, F.J.; Brandt, A.; Chambon, C.L.; Tu, W.-C.; Weigand, L.; Hallett, J.P. Pretreatment of lignocellulosic biomass with low-cost ionic liquids. JoVE (J. Vis. Exp.) 2016, 114, e54246. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, S.; Hari, A.; Ulaganathan, P.; Yang, F.; Krishnaswamy, S.; Wu, Y.-R. Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. Int. J. Hydrogen Energy 2018, 43, 3618–3628. [Google Scholar] [CrossRef]
- Nakasu, P.; Pin, T.; Hallett, J.; Rabelo, S.; Costa, A. In-depth process parameter investigation into a protic ionic liquid pretreatment for 2G ethanol production. Renew. Energy 2021, 172, 816–828. [Google Scholar] [CrossRef]
- Pin, T.C.; Brenelli, L.B.; Nascimento, V.M.; Costa, A.C.; Pu, Y.; Ragauskas, A.J.; Rabelo, S.C. Influence of chain length in protic ionic liquids on physicochemical and structural features of lignins from sugarcane bagasse. Ind. Crops Prod. 2021, 159, 113080. [Google Scholar] [CrossRef]
- Wang, L.; Tan, L.; Hu, L.; Wang, X.; Koppolu, R.; Tirri, T.; van Bochove, B.; Ihalainen, P.; Seleenmary Sobhanadhas, L.S.; Seppälä, J.V. On laccase-catalyzed polymerization of biorefinery lignin fractions and alignment of lignin nanoparticles on the nanocellulose surface via one-pot water-phase synthesis. ACS Sustain. Chem. Eng. 2021, 9, 8770–8782. [Google Scholar] [CrossRef]
- Brandt, A.; Chen, L.; van Dongen, B.E.; Welton, T.; Hallett, J.P. Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chem. 2015, 17, 5019–5034. [Google Scholar] [CrossRef] [Green Version]
- Chambon, C.L.; Mkhize, T.Y.; Reddy, P.; Brandt-Talbot, A.; Deenadayalu, N.; Fennell, P.S.; Hallett, J.P. Pretreatment of South African sugarcane bagasse using a low-cost protic ionic liquid: A comparison of whole, depithed, fibrous and pith bagasse fractions. Biotechnol. Biofuels 2018, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Muazzam, R.; Asim, A.M.; Uroos, M.; Muhammad, N.; Hallett, J.P. Evaluating the potential of a novel hardwood biomass using a superbase ionic liquid. RSC Adv. 2021, 11, 19095–19105. [Google Scholar] [CrossRef]
- Bagh, F.S.G.; Ray, S.; Seth, R. Characteristics of acetate and lactate protic ionic liquids and their suitability to extract lignin from black liquor. J. Ion. Liq. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Cruz, A.G.; Scullin, C.; Mu, C.; Cheng, G.; Stavila, V.; Varanasi, P.; Xu, D.; Mentel, J.; Chuang, Y.-D.; Simmons, B.A. Impact of high biomass loading on ionic liquid pretreatment. Biotechnol. Biofuels 2013, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khongchamnan, P.; Wanmolee, W.; Laosiripojana, N.; Champreda, V.; Suriyachai, N.; Kreetachat, T.; Sakulthaew, C.; Chokejaroenrat, C.; Imman, S. Solvothermal-based lignin fractionation from corn stover: Process optimization and product characteristics. Front. Chem. 2021, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Asim, A.M.; Uroos, M.; Muhammad, N. Extraction of lignin and quantitative sugar release from biomass using efficient and cost-effective pyridinium protic ionic liquids. RSC Adv. 2020, 10, 4400–44014. [Google Scholar] [CrossRef]
- Haykir, N.I.; Soysal, K.; Yaglikci, S.; Gokce, Y. Assessing the effect of protic ionic liquid pretreatment of Pinus radiata from different perspectives including solvent-water ratio. J. Wood Chem. Technol. 2021, 41, 236–248. [Google Scholar]
- Pin, T.C.; Rabelo, S.C.; Pu, Y.; Ragauskas, A.J.; Costa, A.C. Effect of protic ionic liquids in sugar cane bagasse pretreatment for lignin valorization and ethanol production. ACS Sustain. Chem. Eng. 2021, 9, 16965–16976. [Google Scholar] [CrossRef]
- Haykir, N.I.; Bahcegul, E.; Bicak, N.; Bakir, U. Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Ind. Crops Prod. 2013, 41, 430–436. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, R.; Gao, W.; Yao, X. Investigation of [Emim][OAc] as a mild pretreatment solvent for enhancing the sulfonation efficiency of alkali lignin. RSC Adv. 2017, 7, 31009–31017. [Google Scholar] [CrossRef] [Green Version]
- Rashid, T.; Gnanasundaram, N.; Appusamy, A.; Kait, C.F.; Thanabalan, M. Enhanced lignin extraction from different species of oil palm biomass: Kinetics and optimization of extraction conditions. Ind. Crops Prod. 2018, 116, 122–136. [Google Scholar] [CrossRef]
- Amit, T.A.; Roy, R.; Raynie, D.E. Thermal and structural characterization of two commercially available technical lignins for potential depolymerization via hydrothermal liquefaction. Curr. Res. Green Sustain. Chem. 2021, 4, 100106. [Google Scholar]
- Ovejero-Pérez, A.; Rigual, V.; Domínguez, J.C.; Alonso, M.V.; Oliet, M.; Rodriguez, F. Acidic depolymerization vs ionic liquid solubilization in lignin extraction from eucalyptus wood using the protic ionic liquid 1-methylimidazolium chloride. Int. J. Biol. Macromol. 2020, 157, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Tolesa, L.D.; Gupta, B.S.; Lee, M.-J. Treatment of coffee husk with ammonium-based ionic liquids: Lignin extraction, degradation, and characterization. ACS Omega 2018, 3, 10866–10876. [Google Scholar] [CrossRef]
- Saha, K.; Dasgupta, J.; Chakraborty, S.; Antunes, F.A.F.; Sikder, J.; Curcio, S.; dos Santos, J.C.; Arafat, H.A.; da Silva, S.S. Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 2017, 24, 3191–3207. [Google Scholar] [CrossRef]
- Achinivu, E.C. Protic ionic liquids for lignin extraction—A lignin characterization study. Int. J. Mol. Sci. 2018, 19, 428. [Google Scholar] [CrossRef] [Green Version]
- Balakshin, M.Y.; Capanema, E.A.; Chen, C.-L.; Gracz, H.S. Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique. J. Agric. Food Chem. 2003, 51, 6116–6127. [Google Scholar] [CrossRef]
- Obst, J.R. Frequency and alkali resistance of wood lignin-carbohydrate bonds in wood. Tappi 1982, 65, 109–112. [Google Scholar]
- Meng, X.; Crestini, C.; Ben, H.; Hao, N.; Pu, Y.; Ragauskas, A.J.; Argyropoulos, D.S. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 2019, 14, 2627–2647. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wang, Y.-Y.; Bhagia, S.; Sethuraman, V.; Yang, Z.; Meng, X.; Bryant, N.; Petridis, L.; Smith, J.C.; Pingali, S.V. Chemical and Morphological Structure of Transgenic Switchgrass Organosolv Lignin Extracted by Ethanol, Tetrahydrofuran, and γ-Valerolactone Pretreatments. ACS Sustain. Chem. Eng. 2022, 10, 9041–9052. [Google Scholar] [CrossRef]
- De Gregorio, G.F.; Prado, R.; Vriamont, C.; Erdocia, X.; Labidi, J.; Hallett, J.P.; Welton, T. Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustain. Chem. Eng. 2016, 4, 6031–6036. [Google Scholar] [CrossRef]
- Garlapati, V.K.; Chandel, A.K.; Kumar, S.J.; Sharma, S.; Sevda, S.; Ingle, A.P.; Pant, D. Circular economy aspects oflignin: Towards a lignocellulose biorefinery. Renew. Sustain. Energy Rev. 2020, 130, 109977. [Google Scholar] [CrossRef]
Sample | Mn (g mol−1) | Mw (g mol−1) | PDI |
---|---|---|---|
Kraft lignin | 601 | 4585 | 7.63 |
[N11H(2OH)][LAC]-extracted pine wood lignin | 674 | 2208 | 3.28 |
Properties | Lignin Backbone Composition | ||||
---|---|---|---|---|---|
Hydroxyl Content a | Aliphatic (mmol g−1) | Phenolic OH (mmol g−1) | Total OH (mmol g−1) | ||
C5 substituted | Guaicyl | Total Phenolics | |||
1.73 | 1.04 | 1.64 | 2.68 | 4.71 | |
Interunit linkages b (Abundance/100 aromatic units) | Phenylcoumaran (β-5′) | Pinoresinol α (β-β′) | Pinoresinol γ (β-β′) | ||
2.48 | 0.04 | 0.10 | |||
Aryl-vinyl moieties b (Abundance/100 aromatic units) | Stilbene β (β-5′) | Stilbene α (β-1′) | |||
0.79 | 0.50 | ||||
Lignin end groups b (Abundance/100 aromatic units) | Dihydrocinnamyl alcohol γ | Aryl-glycerol γ | |||
1.11 | 0.25 | ||||
Lignin polysaccharide complex linkage b (Abundance/100 aromatic units) | Benzyl ether α | ||||
0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Rauber, D.; Shanmugam, S.; Kay, C.W.M.; Konist, A.; Kikas, T. Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin. Polymers 2022, 14, 4637. https://doi.org/10.3390/polym14214637
Khan S, Rauber D, Shanmugam S, Kay CWM, Konist A, Kikas T. Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin. Polymers. 2022; 14(21):4637. https://doi.org/10.3390/polym14214637
Chicago/Turabian StyleKhan, Sharib, Daniel Rauber, Sabarathinam Shanmugam, Christopher W. M. Kay, Alar Konist, and Timo Kikas. 2022. "Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin" Polymers 14, no. 21: 4637. https://doi.org/10.3390/polym14214637
APA StyleKhan, S., Rauber, D., Shanmugam, S., Kay, C. W. M., Konist, A., & Kikas, T. (2022). Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin. Polymers, 14(21), 4637. https://doi.org/10.3390/polym14214637