Implications of the Circular Economy in the Context of Plastic Recycling: The Case Study of Opaque PET
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Scenarios
- (a)
- Similarity of Specific elastic modulus (Esp) values: Ratio between elastic modulus (E) and material density (ρ) which is a mechanical parameter used in structural design.
- (b)
- Similarity in the fluidity of the melt under normal processing conditions. In the case of the parts made from virgin PP, the proximity between MFI was used as a criterion. In the case of PA66, as this parameter is not available, this comparison is meaningless. However, the conditions for the processing of both blends (similar to a PP) offer fewer drawbacks than those used for processing a typical PA66: there is no need for drying, there is no need to use screws with anti-return and anti-drip valves, and the temperature profile is more venébolo (230 °C, for PP vs. 290 °C for PA66).
2.2. Blends Preparation at Pilot Plant Scale
- (a)
- Before each processing stage, PET must be dried to minimize its high tendency to hydrolytic thermos-degradation. In this case, drying was carried out in dried during 4 h at 120 °C in a PIOVAN hopper-dryer (DSN506HE, Venice, Italy) with a dew point of −40 °C, a common industrial device in PET processing. This procedure was carried out both for the homogenization of the r-O-PET flakes and for the preparation of the proposed blends.
- (b)
- Due to the cooling conditions used during the flake homogenization stage, the r-O-PET obtained is in an amorphous state. In order to carry out its drying under the usual conditions (see point (a) above), a recrystallization process is required in order to avoid agglomeration of the pellets. Recrystallization was performed by heating the pellets in a Dry Big 2,003,740 convection oven (JP Selecta, Barcelona, Spain) at 90 °C for 4 h, taking care every 30 min to remove the pellets to avoid agglomeration in this step.
- (c)
- To further minimize the inevitable hydrolytic thermodegradation of the PET phase during flake homogenization, an N2 blanket was introduced into the feeding zone.
2.3. LCA Methodology
2.3.1. Functional Unit and System Boundaries
2.3.2. Life Cycle Inventory
2.3.3. Input Data and Assumptions
2.3.4. Environmental Impact Assessment
3. Results
3.1. Life Cycle Inventory and Environmental Performance of Recycling Scenarios
3.2. Comparison of Blends with Raw Virgin Materials
4. Discussion: The Circular Economy Barriers and Challenges
- –
- The r-O-PET homogenization stage: this first extrusion can be eliminated since the industrial devices allow the feeding of flakes without clogging problems, which in this study was necessary given the dimensions. This would make subsequent recrystallization (prior to the preparation of the mixtures) not required.
- –
- On an industrial scale, the energy efficiency of the production per kg of material and consequently the electrical consumption would be much lower.
- –
- The recycled material would come from nearby areas, which would reduce the impact on transportation.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tayeh, B.A.; Almesha, I.; Magbool, H.M.; Alabduljabbar, H.; Alyousef, R. Performance of sustainable concrete containing different types of recycled plastic. J. Clean. Prod. 2021, 328, 129517. [Google Scholar] [CrossRef]
- European Comission. Document 52011DC0571- Roadmap to a Resource Efficient Europe. 2011. Available online: https://eurlex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A52011DC0571 (accessed on 10 May 2022).
- European Comission. Environment: Higher Recycling Targets to Drive Transition to a Circular Economy with New Jobs and Sustainable Growth. 2014. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_14_763 (accessed on 10 May 2022).
- Plastics Europe. Plastics 2030—PlasticsEurope’s Voluntary Commitment to Increasing Circularity and Resource Efficiency. 2018. Available online: https://www.plasticseurope.org/application/files/7215/1715/2556/20180116121358-PlasticsEurope_Voluntary_Commitment_16012018_1.pdf (accessed on 10 May 2022).
- Korhonen, J.; Nuur, C.; Feldmann, A.; Eshetu, S. Circular economy as an essentially contested concept. J. Clean. Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Laubscher, M.; Marinelli, T. Integration of Circular Economy in Business. In Proceedings of the Going Green—Care Innovation 2014, Vienna, Austria, 17–20 November 2014. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. The New Plastics Economy: Catalysing Action. 2017. Available online: https://ellenmacarthurfoundation.org/the-new-plastics-economy-catalysing-action (accessed on 10 May 2022).
- Nyika, J.; Dinka, M. Recycling plastic waste materials for building and construction Materials: A minireview. Mater. Today Proc. 2022, 62, 3257–3262. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Khoo, H. LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Conserv. Recyl. 2019, 145, 67–77. [Google Scholar] [CrossRef]
- Utracki, L.A. Role of polymer blends’ technology in polymer recycling. In Polymer Blends Handbook; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2003; pp. 1117–1165. [Google Scholar]
- Chauvot, M. Les Emballages Ménagers, une Illustration des Dérives du Système. Les Echos. 2016. Available online: https://www.lesechos.fr/2016/11/les-emballages-menagers-une-illustration-des-derives-du-systeme-228559 (accessed on 10 May 2022).
- Eco-Emballages. PET Opaque: Le Programme D’actions d’Eco-Emballages pour 2017 [WWW Document]. 2017. Available online: http://www.ecoemballages.fr/sites/default/files/20170201-cp-eco-emballages-petopaque.pdf (accessed on 10 May 2022).
- Kaynap, H.K.; Sarioglu, E. PET bottle recycling for sustainable textiles. In Polyester—Production, Characterization and Innovative Applications; Camblible, N.O., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, A.; Cakmak, M. The suppression of strain induced crystallization in PET through sub micron TiO2 particle incorporation. Polymer 2004, 45, 6647–6654. [Google Scholar] [CrossRef]
- European Commission. Document: 52018DC0028 A European Strategy for Plastics in a Circular Economy. COM(2018)28 Final. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:28:FIN (accessed on 10 May 2022).
- Loaeza, D.; Cailloux, J.; Pérez, O.S.; Sánchez-Soto, M.; Maspoch, M. Impact of Titanium Dioxide in the Mechanical Recycling of Post-Consumer Polyethylene Terephthalate Bottle Waste: Tensile and Fracture Behavior. Polymers 2021, 13, 310. [Google Scholar] [CrossRef] [PubMed]
- Loaeza, D.; Cailloux, J.; Pérez, O.S.; Sánchez-Soto, M.; Maspoch, M.L. Extruded-Calendered Sheets of Fully Recycled PP/Opaque PET Blends: Mechanical and Fracture Behaviour. Polymers 2021, 13, 2360. [Google Scholar] [CrossRef] [PubMed]
- Matxinandiarena, E.; Múgica, A.; Zubitur, M.; Yus, C.; Sebastián, V.; Irusta, S.; Loaeza, A.D.; Santana, O.; Maspoch, M.L.; Puig, C.; et al. The Effect of Titanium Dioxide Surface Modification on the Dispersion, Morphology, and Mechanical Properties of Recycled PP/PET/TiO2 PBNANOs. Polymers 2019, 11, 1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IEA World Energy Balances, 2018. Total Primary Energy Supply (TPES) by Source—France. Available online: https://www.iea.org/statistics/?country=FRANCE&year=2016&category=Energysupply&indicator=TPESbySource&mode=chart&dataTable=BALANCES (accessed on 10 May 2022).
- Ligthart, T.N.; Ansems, T.A.M.M. Modelling of Recycling in LCA. In Post-Consumer Waste Recycling and Optimal Production; IntechOpen: London, UK, 2012; pp. 186–210. [Google Scholar] [CrossRef] [Green Version]
- ICV des MPR. 2017. Available online: http://www.srp-recyclage-plastiques.org/index.php/donnees-recyclage/icv-des-mpr.html (accessed on 15 January 2022).
- Plastics Europe. Polyamide 6.6 (PA6.6). Eco-Profiles Environ. Prod. Declar. Eur. Plast. Manuf. 2014. Available online: https://plasticseurope.org/sustainability/circularity/life-cycle-thinking/eco-profiles-set/ (accessed on 26 October 2022).
- Plastics Europe. Polypropylene (PP). Eco-Profiles Environ. Prod. Declar. Eur. Plast. Manuf. 2016. Available online: https://plasticseurope.org/sustainability/circularity/life-cycle-thinking/eco-profiles-set/ (accessed on 26 October 2022).
- Kirillin, G.; Shatwell, T.; Kasprzak, P. Consequences of thermal pollution from a nuclear plant on lake temperature and mixing regime. J. Hydrol. 2013, 496, 47–56. [Google Scholar] [CrossRef]
- Simon, B. What are the most significant aspects of supporting the circular economy in the plastic industry? Resour. Conserv. Recycl. 2019, 141, 299–300. [Google Scholar] [CrossRef]
- Paletta, A.; Filho, W.L.; Balogun, A.-L.; Foschi, E.; Bonoli, A. Barriers and challenges to plastics valorisation in the context of a circular economy: Case studies form Italy. J. Clean. Prod. 2019, 241, 118149. [Google Scholar] [CrossRef]
- Gall, M.; Wiener, M.; de Oliveira, C.C.; Lang, R.W.; Hansen, E.G. Building a circular plastics economy with informal waste pickers: Recyclate quality, business model, and societal impacts. Resour. Conserv. Recycl. 2020, 156, 108645. [Google Scholar] [CrossRef]
- Robaina, M.; Murillo, K.; Rocha, E.; Villar, J. Circular economy in plastic waste–Efficiency analysis of European countries. Sci. Total Environ. 2020, 730, 139038. [Google Scholar] [CrossRef] [PubMed]
- Polymer Comply Europe. The Usage of Recycled Plastics Materials by Plastics Converters in Europe: A Qualitative European Industry Survey. 2017. Available online: https://www.ahpi.gr/wp-content/uploads/2019/01/PCE-Report-2nd-EuPC-Survey-on-the-Use-of-rPM-by-European-Plastics-Converters-v.1_compressed.pdf (accessed on 10 May 2022).
- Bruyn, S.; de Bijleveld, M.; Graaff, L.; de Schep, E.; Schroten, A.; Vergeer, R.; Ahdour, S. Environmental Prices Handbook; CE Delft Publication: Delft, The Netherlands, 2018. [Google Scholar]
- Environmental Cost Indicator (ECI)—Overview. Ecochain 2022. Available online: https://ecochain.com/knowledge/environmental-cost-indicator-eci/ (accessed on 5 August 2022).
- Carranza, G.; Do Nascimento, M.; Fanals, J.; Febrer, J.; Valderrama, C. Life cycle assessment and economic analysis of the electric motorcycle in the city of Barcelona and the impact on air pollution. Sci. Total Environ. 2022, 821, 153419. [Google Scholar] [CrossRef] [PubMed]
Parameter | Material | |||
---|---|---|---|---|
PP | PA66 | 20w% r-O-PET/80% r-PP | 20w% r-O-PET/76% r-PP/4% TiO2 | |
Density, ρ (@ 23 °C) (kg·m−3) | 902 | 1120 | 940 | 1006 |
MFI (a) (dg·min−1) | 5 | -- | 3.8 | 8 |
Elastic modulus, E (MPa) | 1200 | 1400 | 1220 | 1260 |
Yielding stress, σY (MPa) | 28 | 55 | 24 | 26 |
Elongation at yield (ey) (%) | 13 | 25 | 10 | 8 |
Specific modulus, Esp (MPa·m3·kg−1) | 1.33 | 1.25 | 1.30 | 1.24 |
Material | Distance (km) | Transport Type |
---|---|---|
r-O-PET flakes | 600 | Transport, freight, lorry>32 metric tons, EURO5 |
r-PP pellets | 1350 | Transport, freight, lorry>32 metric tons, EURO5 |
Module Name | Source | Name of Dataset |
---|---|---|
Electricity, Spain | Ecoinvent 3.6 | market for electricity, medium voltage | electricity, medium voltage | Cutoff, U - ES |
Water | Ecoinvent 3.6 | market for tap water | tap water | Cutoff, U |
Non-hazardous waste (disposed) - O-PET | Ecoinvent 3.6 | treatment of waste polyethylene terephthalate, sanitary landfill | waste polyethylene terephthalate | Cutoff, U |
Non-hazardous waste (recycled) -O-PET | Ecoinvent 3.6 | waste polyethylene terephthalate, for recycling, sorted |
Electricity, France | Ecoinvent 3.6 | market for electricity, medium voltage | electricity, medium voltage | Cutoff, U - FR |
Non-hazardous waste (disposed) - PP waste | Ecoinvent 3.6 | treatment of waste polypropylene, sanitary landfill | waste polypropylene | Cutoff, U |
Electricity, Netherlands | Ecoinvent 3.6 | market for electricity, medium voltage | electricity, medium voltage | Cutoff, U - NL |
Transport, Spain | Ecoinvent 3.6 | transport, freight, lorry >32 metric ton, EURO5 - RER |
TiO2 | Ecoinvent 3.6 | market for titanium dioxide | titanium dioxide | Cutoff, U |
Material loss | Ecoinvent 3.6 | treatment of waste polyethylene/polypropylene product, collection for final disposal | waste polyethylene/polypropylene product | Cutoff, U |
Nitrogen | Ecoinvent 3.6 | market for nitrogen, liquid | nitrogen, liquid | Cutoff, U |
Process | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|
O-PET waste recycling | Inputs | O-PET waste | 0.35 kg | 0.35 kg |
Auxiliary energy | 0.35 MJ | 0.35 MJ | ||
Auxiliary materials | ||||
Water | 18.06 kg | 18.06 kg | ||
Outputs | Products | |||
r-O-PET flakes | 0.25 kg | 0.25 kg | ||
Waste | ||||
Non-hazardous (disposed) | 0.19 kg | 0.19 kg | ||
Non-hazardous for recycling | 0.07 kg | 0.07 kg | ||
PP waste recycling | Inputs | PP waste | 0.90 kg | 0.96 kg |
Auxiliary energy | 0.96 MJ | 1.05 MJ | ||
Auxiliary materials | ||||
Water | 30.40 kg | 32.08 kg | ||
Outputs | Products | |||
r-PP pellets | 0.89 kg | 0.94 kg | ||
Waste | ||||
Non-hazardous (disposed) | 0.19 kg | 0.20 kg | ||
r-O-PET flakes transport | Inputs | r-O-PET flakes | 0.25 kg | 0.25 kg |
Transport | 0.15 t*km | 0.15 t*km | ||
Outputs | r-O-PET flakes (transported) | 0.25 kg | 0.25 kg | |
r-PP pellets transport | Inputs | r-PP pellets | 0.89 kg | 0.94 kg |
Transport | 1.20 t*km | 1.27 t*km | ||
Outputs | r-PP pellets (transported) | 0.89 kg | 0.94 kg | |
Drying of r-O-PET flakes | Inputs | r-O-PET flakes (transported) | 0.25 kg | 0.25 kg |
Auxiliary energy | ||||
Electric energy | 1.11 MJ | 1.11 MJ | ||
Outputs | r-O-PET flakes (dried) | 0.25 kg | 0.25 kg | |
Homogenisation of r-O-PET flakes | Inputs | r-O-PET flakes (dried) | 0.25 kg | 0.25 kg |
Auxiliary energy | ||||
Electric energy | 2.93 MJ | 2.93 MJ | ||
Auxiliary materials | ||||
Cooling water | 27.78 kg | 27.78 kg | ||
Nitrogen | 0.07 kg | 0.07 kg | ||
Outputs | Products | |||
r-O-PET pellets | 0.22 kg | 0.22 kg | ||
Residues | ||||
Material loss | 0.03 kg | 0.03 kg | ||
Re-crystallisation of r-O-PET pellets | Inputs | r-O-PET pellets | 0.22 kg | 0.22 kg |
Auxiliary energy | ||||
Electric energy | 0.51 MJ | 0.51 MJ | ||
Outputs | r-O-PET pellets (crystallised) | 0.22 kg | 0.22 kg | |
Extrusion of r-PP/TiO2 masterbatch | Inputs | r-PP pellets (transported) | - | 0.94 kg |
TiO2 | 0.05 kg | |||
Auxiliary energy | ||||
Electric energy | - | 8.21 MJ | ||
Auxiliary materials | ||||
Cooling water | - | 111.1 kg | ||
Outputs | Products | |||
r-PP/TiO2 masterbatch | - | 0.89 kg | ||
Residues | ||||
Material loss | - | 0.05 kg | ||
Extrusion of final blend | Inputs | r-O-PET pellets (crystallised) | 0.22 kg | 0.22 kg |
r-PP pellets (transported) | 0.89 kg | - | ||
r-PP/TiO2 masterbatch | - | 0.89 kg | ||
Auxiliary energy | ||||
Electric energy | 12.6 MJ | 12.6 MJ | ||
Auxiliary materials | ||||
Cooling water | 125.0 kg | 125.0 kg | ||
Outputs | Products | |||
r-PP/r-O-PET pellets | 1 kg | - | ||
r-PP/r-O-PET/TiO2 pellets | 1 kg | |||
Residues | ||||
Material loss | 0.11 kg | 0.11 kg |
Name | Scenario 1 | Scenario 2 | Units | Comparison (% of Increase of Impacts from Scenario 1 to Scenario 2) |
---|---|---|---|---|
Abiotic depletion | 5.33 × 10−6 | 9.38 × 10−6 | kg Sb eq | 76% |
Eutrophication | 0.006 | 0.008 | kg PO43- eq | 40% |
Global warming (GWP100a) | 2.39 | 3.57 | kg CO2 eq | 50% |
Acidification | 0.01 | 0.03 | kg SO2 eq | 80% |
Ozone layer depletion (ODP) | 1.29 × 10−7 | 2.01 × 10−7 | kg CFC-11 eq | 56% |
Abiotic depletion (fossil fuels) | 25.73 | 39.34 | MJ | 53% |
Impact Category | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|
r-PP/r-O-PET Blend | PP | r-PP/r-O-PET/TiO2 Blend | PA66 | |
ADP fossil (MJ) | 25.73 | 68.35 | 39.34 | 104.31 |
ADP elements (kg Sb eq) | 5.33 × 10−6 | 1.33 × 10−5 | 9.38 × 10−6 | 6.53 × 10−5 |
GWP 100 (kg CO2 eq) | 2.39 | 1.90 | 3.57 | 9.22 |
EP (kg PO4 eq.) | 5.94 × 10−3 | 1.21 × 10−3 | 8.33 × 10−3 | 6.80 × 10−3 |
AP (kg SO2 eq.) | 1.41 × 10−2 | 5.43 × 10−3 | 2.54 × 10−2 | 2.96 × 10−2 |
ODP (kg CFC11 eq.) | 1.29 × 10−7 | 2.24 × 10−8 | 2.01 × 10−7 | 7.19 × 10−9 |
Impact Category | Blend for Scenario 1 | PP (Virgin) | Unit | Environmental Price per Environmental Impact Indicator | Unit | Blend for Scenario 1 | PP (Virgin) |
---|---|---|---|---|---|---|---|
Climate change | 2.35 | 1.83 | kg CO2-eq. | €0.06 | €/kg CO2-eq. | €0.13 | €0.10 |
Ozone depletion | 1.28 × 10−7 | 2.25 × 10−8 | kg CFC-eq. | €30.40 | €/kg CFC-eq. | €0.00 | €0.00 |
Acidification | 0.012 | 0.004 | kg SO2-eq. | €7.48 | €/kg SO2-eq. | €0.10 | €0.04 |
Freshwater eutrophication | 8.43 × 10−4 | 2.47 × 10−4 | kg P-eq. | €1.86 | €/kg P-eq. | €0.00 | €0.00 |
Marine eutrophication | 0.004 | 0.001 | kg N | €3.11 | €/kg N | €0.01 | €0.00 |
Human toxicity | 0.94 | 0.22 | kg 1.4 DB-eq. | €0.10 | €/kg 1.4 DB-eq. | €0.09 | €0.02 |
Photochemical oxidant formation | 7.89 × 10−3 | 6.05 × 10−3 | kg NMVOC-eq. | €1.15 | €/kg NMVOC-eq. | €0.01 | €0.01 |
Particulate matter formation | 4.70 × 10−3 | 1.81 × 10−3 | kg PM10-eq. | €39.20 | €/kg PM10-eq. | €0.18 | €0.07 |
Terrestrial ecotoxicity | 2.19 × 10−4 | 2.06 × 10−5 | kg 1.4 DB-eq. | €8.69 | €/kg 1.4 DB-eq. | €0.00 | €0.00 |
Freshwater ecotoxicity | 7.09 × 10−2 | 2.63 × 10−2 | kg 1.4 DB-eq. | €0.04 | €/kg 1.4 DB-eq. | €0.00 | €0.00 |
Marine ecotoxicity | 6.69 × 10−2 | 2.32 × 10−2 | kg 1.4 DB-eq. | €0.01 | €/kg 1.4 DB-eq. | €0.00 | €0.00 |
Ionizing radiation | 1.23 | 0.01 | kg kBq U235-eq. | €0.05 | €/kg kBq U235-eq. | €0.06 | €0.00 |
Land use | 3.42 × 10−5 | 1.54 × 10−5 | m2 | €0.08 | €/m2 | €0.00 | €0.00 |
Abiotic depletion (fossil fuels) | 25.73 | 68.35 | MJ | €0.16 | €/MJ | €4.12 | €10.94 |
Total weigh LCA score using environmental pricing | €4.71 | €11.19 |
Impact Category | Blend for Scenario 2 | PA 66 (Virgin) | Unit | Environmental Price per Environmental Impact Indicator | Unit | Blend for Scenario 2 | PA 66 (Virgin) |
---|---|---|---|---|---|---|---|
Climate change | 3.52 | 9.27 | kg CO2-eq. | €0.06 | €/kg CO2-eq. | €0.20 | €0.52 |
Ozone depletion | 2.00 × 10−7 | 7.26 × 10−9 | kg CFC-eq. | €30.40 | €/kg CFC-eq. | €0.00 | €0.00 |
Acidification | 0.022 | 0.027 | kg SO2-eq. | €7.48 | €/kg SO2-eq. | €0.17 | €0.21 |
Freshwater eutrophication | 1.32 × 10−3 | 2.07 × 10−4 | kg P-eq. | €1.86 | €/kg P-eq. | €0.00 | €0.00 |
Marine eutrophication | 0.006 | 0.009 | kg N | €3.11 | €/kg N | €0.02 | €0.03 |
Human toxicity | 1.39 | 0.08 | kg 1.4 DB-eq. | €0.10 | €/kg 1.4 DB-eq. | €0.14 | €0.01 |
Photochemical oxidant formation | 1.25 × 10−2 | 2.83 × 10−2 | kg NMVOC-eq. | €1.15 | €/kg NMVOC-eq. | €0.01 | €0.03 |
Particulate matter formation | 7.88 × 10−3 | 9.49 × 10−3 | kg PM10-eq. | €39.20 | €/kg PM10-eq. | €0.31 | €0.37 |
Terrestrial ecotoxicity | 2.82 × 10−4 | 4.40 × 10−5 | kg 1.4 DB-eq. | €8.69 | €/kg 1.4 DB-eq. | €0.00 | €0.00 |
Freshwater ecotoxicity | 0.10 | 1.94 × 10−2 | kg 1.4 DB-eq. | €0.04 | €/kg 1.4 DB-eq. | €0.00 | €0.00 |
Marine ecotoxicity | 9.42 × 10−2 | 7.53 × 10−3 | kg 1.4 DB-eq. | €0.01 | €/kg 1.4 DB-eq. | €0.00 | €0.00 |
Ionizing radiation | 1.81 | 2.59 × 10−3 | kg kBq U235-eq. | €0.05 | €/kg kBq U235-eq. | €0.08 | €0.00 |
Land use | 6.73 × 10−6 | 0 | m2 | €0.08 | €/m2 | €0.00 | €0.00 |
Abiotic depletion (fossil fuels) | 39.34 | 104.31 | MJ | €0.16 | €/MJ | €6.29 | €16.69 |
Total weigh LCA score using environmental pricing | €7.24 | €17.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
León Albiter, N.; Santana Pérez, O.; Klotz, M.; Ganesan, K.; Carrasco, F.; Dagréou, S.; Maspoch, M.L.; Valderrama, C. Implications of the Circular Economy in the Context of Plastic Recycling: The Case Study of Opaque PET. Polymers 2022, 14, 4639. https://doi.org/10.3390/polym14214639
León Albiter N, Santana Pérez O, Klotz M, Ganesan K, Carrasco F, Dagréou S, Maspoch ML, Valderrama C. Implications of the Circular Economy in the Context of Plastic Recycling: The Case Study of Opaque PET. Polymers. 2022; 14(21):4639. https://doi.org/10.3390/polym14214639
Chicago/Turabian StyleLeón Albiter, Noel, Orlando Santana Pérez, Magali Klotz, Kishore Ganesan, Félix Carrasco, Sylvie Dagréou, Maria Lluïsa Maspoch, and César Valderrama. 2022. "Implications of the Circular Economy in the Context of Plastic Recycling: The Case Study of Opaque PET" Polymers 14, no. 21: 4639. https://doi.org/10.3390/polym14214639
APA StyleLeón Albiter, N., Santana Pérez, O., Klotz, M., Ganesan, K., Carrasco, F., Dagréou, S., Maspoch, M. L., & Valderrama, C. (2022). Implications of the Circular Economy in the Context of Plastic Recycling: The Case Study of Opaque PET. Polymers, 14(21), 4639. https://doi.org/10.3390/polym14214639