Influence of Type and Concentration of Biopolymer on β-Carotene Encapsulation Efficiency in Nanoemulsions Based on Linseed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Linseed Oil Nanoemulsions
2.2.2. Encapsulation of β-Carotene
2.2.3. Laser Diffraction Measurements
2.2.4. Rheological Characterization
2.2.5. Study of Physical Stability
2.2.6. Cryo-Scanning Electron Microscopy
2.2.7. β-Carotene Entrapment Efficiency and Degradation
3. Results and Discussion
3.1. Influence of Processing Variables on Droplet Size Distribution for Linseed Oil Nanoemulsions
3.2. Incorporation of Guar Gum and Advanced Performance Xanthan Gum in Linseed Oil Emulsions
3.3. Encapsulation of B-Carotene into Linseed Oil Emulsions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiménez-Colmenero, F. Emulsiones Múltiples: Compuestos Bioactivos y Alimentos Funcionales. Nutr. Hosp. 2013, 28, 1413–1421. [Google Scholar] [PubMed]
- Rehman, A.Q.T.; Jafari, S.M.; Assadpour, E.Q.S.; Aadil, R.M.; Iqbal, M.W.; Rashed, M.M.A.; Sajid, B.; Mushtaq, W.A. Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid Interface Sci. 2020, 275, 102048. [Google Scholar] [CrossRef] [PubMed]
- Mordi, R.C.; Ademosun, O.T.; Ajanaku, C.O.; Olanrewaju, I.O.; Walton, J.C. Free Radical Mediated Oxidative Degradation of Carotenes and Xanthophylls. Molecules 2020, 25, 1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, J.; Alfaro, M.C.; Trujillo-Cayado, L.A.; Calero, N.; Muñoz, J. Encapsulation of β-carotene in emulgels-based delivery systems formulated with sweet fennel oil. LWT 2019, 100, 189–195. [Google Scholar] [CrossRef]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors Influencing the Chemical Stability of Carotenoids in Foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1498726690. [Google Scholar]
- Trujillo-Cayado, L.A.; Santos, J.; Calero, N.; Alfaro-Rodríguez, M.C.; Muñoz, J. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. J. Sci. Food Agric. 2020, 100, 1671–1677. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, H.; Liu, W.; Zou, L.; McClements, D.J. A review of the rheological properties of dilute and concentrated food emulsions. J. Texture Stud. 2020, 51, 45.9–55.9. [Google Scholar] [CrossRef]
- Ax, K.; Mayer-Miebach, E.; Link, B.; Schuchmann, H.; Schubert, H. Stability of Lycopene in Oil-in-water Emulsions. Eng. Life Sci. 2003, 3, 199–201. [Google Scholar] [CrossRef]
- Szterk, A.; Roszko, M.; Górnicka, E. Chemical Stability of the Lipid Phase in Concentrated Beverage Emulsions Colored with Natural β-Carotene. J. Am. Oil Chem. Soc. 2013, 90, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Chu, B.S.; Ichikawa, S.; Kanafusa, S.; Nakajima, M. Stability of protein-stabilised β-carotene nanodispersions against heating, salts and pH. J. Sci. Food Agric. 2008, 88, 1764–1769. [Google Scholar] [CrossRef]
- Xu, D.; Wang, X.; Yuan, F.; Hou, Z.; Gao, Y. Stability of β-carotene in oil-in-water emulsions prepared by mixed layer and bilayer of whey protein isolate and beet pectin. J. Dispers. Sci. Technol. 2013, 34, 785–792. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and Flaxseed Oil: An Ancient Medicine & Modern Functional Food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar]
- Cunnane, S.C.; Ganguli, S.; Menard, C.; Liede, A.C.; Hamadeh, M.J.; Chen, Z.-Y.; Wolever, T.M.S.; Jenkins, D.J.A. High α-Linolenic Acid Flaxseed (Linum Usitatissimum): Some Nutritional Properties in Humans. Br. J. Nutr. 1993, 69, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty Acid Profiles of 80 Vegetable Oils with Regard to Their Nutritional Potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A Potential Functional Food Source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.K. Encyclopedia of Food Microbiology; Academic Press: Cambridge, MA, USA, 2014; ISBN 0123847338. [Google Scholar]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Guar Gum: Processing, Properties and Food Applications—A Review. J. Food Sci. Technol. 2014, 51, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Heyman, B.; De Vos, W.H.; Van der Meeren, P.; Dewettinck, K. Gums Tuning the Rheological Properties of Modified Maize Starch Pastes: Differences between Guar and Xanthan. Food Hydrocoll. 2014, 39, 85–94. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Santos, J.; Ramírez, P.; Alfaro, M.C.; Muñoz, J. Strategy for the Development and Characterization of Environmental Friendly Emulsions by Microfluidization Technique. J. Clean. Prod. 2018, 178, 723–730. [Google Scholar] [CrossRef]
- Santos, J.; Alcaide-González, M.A.; Trujillo-Cayado, L.A.; Carrillo, F.; Alfaro-Rodríguez, M.C. Development of Food-Grade Pickering Emulsions Stabilized by a Biological Macromolecule (Xanthan Gum) and Zein. Int. J. Biol. Macromol. 2020, 153, 747–754. [Google Scholar] [CrossRef]
- Santos, J.; Calero, N.; Trujillo-Cayado, L.; Alfaro, M.C.; Muñoz, J. The Role of Processing Temperature in Flocculated Emulsions. Ind. Eng. Chem. Res. 2017, 57, 807–812. [Google Scholar] [CrossRef]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.N.; Ishwarya, S.P.; Nisha, P. Nanoemulsion versus microemulsion systems for the encapsulation of beetroot extract: Comparison of physicochemical characteristics and betalain stability. Food Bioprocess Technol. 2021, 14, 133–150. [Google Scholar] [CrossRef]
- Sneha, K.; Kumar, A. Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innov. Food Sci. Emerg. Technol. 2021, 102914. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qiu, Z.; Gong, H.; Liu, C.; Li, Y.; Dong, M. Effect of Diutan Microbial Polysaccharide on the Stability and Rheological Properties of O/W Nanoemulsions Formed with a Blend of Span20-Tween20. J. Dispers. Sci. Technol. 2018, 39, 1644–1654. [Google Scholar] [CrossRef]
- Santos, J.; Jiménez, M.; Calero, N.; Undabeytia, T.; Muñoz, J. A Comparison of Microfluidization and Sonication to Obtain Lemongrass Submicron Emulsions. Effect of Diutan Gum Concentration as Stabilizer. LWT 2019, 114, 108424. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Alfaro, M.C.; Muñoz, J.; Raymundo, A.; Sousa, I. Development and Rheological Properties of Ecological Emulsions Formulated with a Biosolvent and Two Microbial Polysaccharides. Colloids Surf. B Biointerfaces 2016, 141, 53–58. [Google Scholar] [CrossRef]
- Alghooneh, A.; Razavi, S.M.A.; Kasapis, S. Classification of Hydrocolloids Based on Small Amplitude Oscillatory Shear, Large Amplitude Oscillatory Shear, and Textural Properties. J. Texture Stud. 2019, 50, 520–538. [Google Scholar] [CrossRef]
- Kontogiorgos, V.; Biliaderis, C.G.; Kiosseoglou, V.; Doxastakis, G. Stability and Rheology of Egg-Yolk-Stabilized Concentrated Emulsions Containing Cereal β-Glucans of Varying Molecular Size. Food Hydrocoll. 2004, 18, 987–998. [Google Scholar] [CrossRef]
- Jenkins, P.; Snowden, M. Depletion Flocculation in Colloidal Dispersions. Adv. Colloid Interface Sci. 1996, 68, 57–96. [Google Scholar] [CrossRef]
- Song, H.Y.; Moon, T.W.; Choi, S.J. Impact of Antioxidant on the Stability of β-Carotene in Model Beverage Emulsions: Role of Emulsion Interfacial Membrane. Food Chem. 2019, 279, 194–201. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.; Kumosani, T.; Khoja, S.; Abualnaja, K.O.; McClements, D.J. Encapsulation of β-Carotene in Nanoemulsion-Based Delivery Systems Formed by Spontaneous Emulsification: Influence of Lipid Composition on Stability and Bioaccessibility. Food Biophys. 2016, 11, 154–164. [Google Scholar] [CrossRef]
- Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem. 2012, 132, 1221–1229. [Google Scholar] [CrossRef]
- Santos, J.; Trujillo-Cayado, L.A.; Alcaide, M.A.; Alfaro, M.C. Impact of Microfluidization on the Emulsifying Properties of Zein-Based Emulsions: Influence of Diutan Gum Concentration. Materials. 2021, 14, 3695. [Google Scholar] [CrossRef]
Sample | D3,2 (μm) | D4,3 (μm) | D10 (μm) | D50 (μm) | D90 (μm) | Span |
---|---|---|---|---|---|---|
Pre-emulsion | 2.333 | 3.698 | 1.056 | 3.531 | 6.495 | 1.540 |
15,000 psi/1 pass | 0.295 | 0.334 | 0.194 | 0.315 | 0.504 | 0.984 |
15,000 psi/2 passes | 0.239 | 0.267 | 0.164 | 0.245 | 0.389 | 0.965 |
20,000 psi/1 pass | 0.299 | 0.343 | 0.195 | 0.321 | 0.525 | 1.029 |
20,000 psi/2 passes | 0.238 | 0.265 | 0.158 | 0.233 | 0.384 | 0.954 |
25,000 psi/1 pass | 0.255 | 0.288 | 0.171 | 0.265 | 0.440 | 1.011 |
25,000 psi/2 passes | 0.258 | 0.296 | 0.171 | 0.268 | 0.465 | 1.097 |
Gum Concentration (wt.%) | η0 (mPa·s) | η∞ (mPa·s) | k | n |
---|---|---|---|---|
0 wt.% gum | Ostwald de Waele model | |||
0.1 wt.% Guar Gum | 0.16 | 0 | 0.55 | 0.52 |
0.2 wt.% Guar Gum | 651 | 0.05 | 3150 | 0.2 |
0.3 wt.% Guar Gum | 1105 | 0.1 | 4236 | 0.2 |
0.1 wt.% APXG | 221 | 0.02 | 1554 | 0.21 |
0.2 wt.% APXG | 7392 | 0.02 | 10200 | 0.2 |
0.3 wt.% APXG | 10748 | 0.05 | 3529 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.; Trujillo-Cayado, L.A.; Barquero, M.; Calero, N. Influence of Type and Concentration of Biopolymer on β-Carotene Encapsulation Efficiency in Nanoemulsions Based on Linseed Oil. Polymers 2022, 14, 4640. https://doi.org/10.3390/polym14214640
Santos J, Trujillo-Cayado LA, Barquero M, Calero N. Influence of Type and Concentration of Biopolymer on β-Carotene Encapsulation Efficiency in Nanoemulsions Based on Linseed Oil. Polymers. 2022; 14(21):4640. https://doi.org/10.3390/polym14214640
Chicago/Turabian StyleSantos, Jenifer, Luis A. Trujillo-Cayado, Marina Barquero, and Nuria Calero. 2022. "Influence of Type and Concentration of Biopolymer on β-Carotene Encapsulation Efficiency in Nanoemulsions Based on Linseed Oil" Polymers 14, no. 21: 4640. https://doi.org/10.3390/polym14214640
APA StyleSantos, J., Trujillo-Cayado, L. A., Barquero, M., & Calero, N. (2022). Influence of Type and Concentration of Biopolymer on β-Carotene Encapsulation Efficiency in Nanoemulsions Based on Linseed Oil. Polymers, 14(21), 4640. https://doi.org/10.3390/polym14214640