Antioxidant-Mediated Modification of Citral and Its Control Effect on Mildewy Bamboo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Antioxidant-Modified Citral Standard Curve
2.3. Effect of Antioxidants on the Degradation Performance of Citral
2.4. Determination of Antioxidant-Modified Citral DPPH Radical-Scavenging Rate
2.5. Fourier-Transform Infrared Spectroscopy of Antioxidant-Modified Citral
2.6. Efficacy of Antioxidant-Modified Citral against Bamboo Mildew
3. Analysis of Results
3.1. Preparation of Standard Curve for Antioxidant-Modified Citral
3.2. Effect of Antioxidants on the Degradation Performance of Citral
3.2.1. Effect of Antioxidant Type on the Degradation Performance of Citral
3.2.2. Effect of Antioxidant Addition on the Degradation Performance of Citral
3.2.3. Effect of Citral Concentration on its Degradation Performance
3.3. Effect of Antioxidants on the DPPH Radical-Scavenging Rate of Citral
3.4. FT-IR Analysis of Antioxidant-Modified Citral
3.5. Efficacy of Antioxidant-Modified Citral against Bamboo Mildew
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Chen, C.; Mi, R.; Gan, W.; Dai, J.; Jiao, M.; Xie, H.; Yao, Y.; Xiao, S.; Hu, L. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 2020, 32, 1906308. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ma, Y.; Lin, H.; Zheng, Q.; Zhang, X.; Yang, W.; Li, R. Fabrication of hydrophobic ZnO/PMHS coatings on bamboo surfaces: The synergistic effect of ZnO and PMHS on anti-mildew properties. Coatings 2018, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, Z.; Bao, Y.; Chen, Y.; Huang, C.; Li, N.; He, S.; Chen, Z. Wet chemical synthesis of ZnO nanocoating on the surface of bamboo timber with improved mould-resistance. J. Saudi Chem. Soc. 2017, 21, 920–928. [Google Scholar] [CrossRef]
- Li, W.; Chen, L.; Li, Y.; Li, X. Bamboo modification with 1, 3-dimethylol-4, 5-dihydroxyethyleneurea (DMDHEU) catalyzed by maleic anhydride. J. Wood Chem. Technol. 2020, 40, 126–135. [Google Scholar] [CrossRef]
- Ren, D.; Li, J.; Bao, Y.; Wu, Z.; He, S.; Wang, A.; Guo, F.; Chen, Y. Low-temperature synthesis of flower-like ZnO microstructures supported on TiO2 thin films as efficient antifungal coatings for bamboo protection under dark conditions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 381–388. [Google Scholar] [CrossRef]
- Liu, W.; Hui, C.; Wang, F.; Wang, M.; Liu, G. Review of the Resources and Utilization of Bamboo in China. In Bamboo-Current and Future Prospects; Intech Open: London, UK, 2018; pp. 133–142. [Google Scholar]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Analysis of the synergistic antifungal mechanism of eugenol and citral. LWT 2020, 123, 109128. [Google Scholar] [CrossRef]
- Leite, M.C.A.; Bezerra, A.P.d.B.; Sousa, J.P.d.; Guerra, F.Q.S.; Lima, E.d.O. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid.-Based Complement. Altern. Med. 2014, 2014, 378280. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xu, T.; Hu, J.; Tian, H. Progress in the study of stability of citral, a spice compound. Food Ind. 2016, 37, 215–219. [Google Scholar]
- Zhang, J.; Du, C.; Peng, R.; Hu, A.; Li, Q.; Liu, C.; Shan, Y.; Chen, S.; Yin, W. Antimildew Treatment and Control Effect of Citral on Bamboo. Int. J. Polym. Sci. 2021, 2021, 5949458. [Google Scholar] [CrossRef]
- Zhang, J.J.; Du, C.G.; Li, Q.; Hu, A.L.; Peng, R.; Sun, F.L.; Zhang, W.G. Inhibition mechanism and antibacterial activity of natural antibacterial agent citral on bamboo mould and its anti-mildew effect on bamboo. Roy. Soc. Open Sci. 2021, 8, 202244. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.; Khare, P.; Singh, D.K.; Luqman, S.; Kumar, P.A.; Yadav, A.; Das, T.; Saikia, B. Retention of antibacterial and antioxidant properties of lemongrass oil loaded on cellulose nanofibre-poly ethylene glycol composite. Ind. Crops Prod. 2018, 114, 68–80. [Google Scholar] [CrossRef]
- Nordin, N.; Yeap, S.K.; Rahman, H.S.; Zamberi, N.R.; Abu, N.; Mohamad, N.E.; How, C.W.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci. Rep. 2019, 9, 1614. [Google Scholar] [CrossRef] [Green Version]
- Prakash, A.; Baskaran, R.; Vadivel, V. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT 2020, 118, 108851. [Google Scholar] [CrossRef]
- Tian, H.; Lu, Z.; Li, D.; Hu, J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chem. 2018, 248, 78–85. [Google Scholar] [CrossRef]
- Wang, J.; Khelissa, S.O.; Chihib, N.-E.; Dumas, E.; Gharsallaoui, A. Effect of drying and interfacial membrane composition on the antimicrobial activity of emulsified citral. Food Chem. 2019, 298, 125079. [Google Scholar] [CrossRef]
- Chang, X.; Chen, C.; Gong, D.; Dong, Q. Research progress of natural antioxidants to inhibit oxidation of fats and oils. China Fats Oils 2020, 45, 46–50. [Google Scholar]
- Qiu, B.; Zhou, Y.; Yin, X.; Chen, J.; Yin, Y.; Zhu, L. Preparation of citral microcapsules by spray drying method and study of microcapsule stability. Food Ind. Sci. Technol. 2017, 38, 190–195. [Google Scholar]
- Wang, G.; Zhao, H.; Chen, X.; Li, W.; Song, S. Study on inhibition of citral degradation by plant-based natural antioxidants. Flavors Cosmet. 2019, 1, 29–32. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=XLXJ201901008&uniplatform=NZKPT&v=URpUShKibhFVUn5CSi_C5gjnVAO2IvPC4qrAdjk-WIhLG5-QS9vkR1EsRgjLtBO_ (accessed on 15 September 2022).
- Lu, W.-C.; Huang, D.-W.; Wang, C.-C.; Yeh, C.-H.; Tsai, J.-C.; Huang, Y.-T.; Li, P.-H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal. 2018, 26, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Arnon-Rips, H.; Sabag, A.; Tepper-Bamnolker, P.; Chalupovich, D.; Levi-Kalisman, Y.; Eshel, D.; Porat, R.; Poverenov, E. Effective suppression of potato tuber sprouting using polysaccharide-based emulsified films for prolonged release of citral. Food Hydrocoll. 2020, 103, 105644. [Google Scholar] [CrossRef]
- Mendes, J.; Norcino, L.; Martins, H.; Manrich, A.; Otoni, C.; Carvalho, E.; Piccoli, R.; Oliveira, J.; Pinheiro, A.; Mattoso, L. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll. 2020, 100, 105428. [Google Scholar] [CrossRef]
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar] [CrossRef]
- Da Cruz, R.G.; Beney, L.; Gervais, P.; De Lira, S.P.; de Souza Vieira, T.M.F.; Dupont, S. Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. Food Chem. 2019, 277, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.P.; Wang, M.; Simon, J.E.; Ho, C.T. Antioxidant activity of plant extracts on the inhibition of citral off-odor formation. Mol. Nutr. Food Res. 2004, 48, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.L.; Du, C.G.; Huang, Q.L.; Yao, X.L.; Hua, Y.T.; Zhang, W.G.; Zhou, Z.X.; Liu, H.Z. Effects of Extraction Methods on Anti-Mould Property of Bamboo Strips. Bioresources 2018, 13, 2658–2669. [Google Scholar] [CrossRef]
- Yu, H.L.; Du, C.G.; Liu, H.Z.; Wei, J.G.; Zhou, Z.X.; Huang, Q.L.; Yao, X.L. Preparation and Characterization of Bamboo Strips Impregnation Treated by Silver-Loaded Thermo-Sensitive Nanogels. Bioresources 2017, 12, 8390–8401. [Google Scholar]
- Shi, C.; Zhao, X.; Liu, Z.; Meng, R.; Chen, X.; Guo, N. Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination. Food Nutr. Res. 2016, 60, 31891. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tian, H.; Ho, C.-T.; Huang, Q. Inhibition of citral degradation by oil-in-water nanoemulsions combined with antioxidants. J. Agric. Food Chem. 2011, 59, 6113–6119. [Google Scholar] [CrossRef]
- Kim, S.H.; Song, H.Y.; Choi, S.J. Influence of structural properties of emulsifiers on citral degradation in model emulsions. Food Sci. Biotechnol. 2019, 28, 701–710. [Google Scholar] [CrossRef]
- Test Method for Anti-Mildew Agents in Controlling Wood Mould and Stain Fungi. GB/T 18261-2013. 2013. Available online: https://www.nssi.org.cn/nssi/front/83564233.html (accessed on 26 October 2022).
- Peng, R.; Du, C.; Hu, A.; Li, Q.; Zhang, J.; Zhang, W.; Sun, F. Fabrication of core–shell type poly (NIPAm)-encapsulated citral and its application on bamboo as an anti-molding coating. RSC Adv. 2021, 11, 36884–36894. [Google Scholar] [CrossRef] [PubMed]
- Ay, E.; Gérard, V.; Graff, B.; Morlet-Savary, F.; Mutilangi, W.; Galopin, C.; Lalevée, J. Citral photodegradation in solution: Highlighting of a radical pathway in parallel to cyclization pathway. J. Agric. Food Chem. 2019, 67, 3752–3760. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Li, D.; Xu, T.; Hu, J.; Rong, Y.; Zhao, B. Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and Tween 20 in an acidic system. J. Sci. Food Agric. 2017, 97, 2991–2998. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Fang, C.; Zhou, H.; Tang, T.; Zhang, S.; Wang, X.; Fei, B. Effect of Rosin Modification on the Visual Characteristics of Round Bamboo Culm. Polymers 2021, 13, 3500. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Wang, L.; Liu, J.; Wu, J. FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi. Appl. Surf. Sci. 2013, 280, 799–805. [Google Scholar] [CrossRef]
Infection Value | Infected Area of Specimen |
---|---|
0 | No mycelium or mildew on the specimen surface |
1 | Infected area of specimen surface <1/4 |
2 | Infection area of specimen surface 1/4 to 1/2 |
3 | Infection area of specimen surface 1/2 to 3/4 |
4 | Infection area of specimen surface >3/4 |
Concentration (mg/mL) | Antimildew Efficiency (%) | |||
---|---|---|---|---|
AN | PC | TV | HUN | |
150 | 90 | 92.5 | 100 | 100 |
175 | 100 | 100 | 100 | 100 |
200 | 100 | 100 | 100 | 100 |
Concentration (mg/mL) | Antimildew Efficiency (%) | |||
---|---|---|---|---|
AN | PC | TV | HUN | |
150 | 33.25 | 100 | 66.75 | 16.75 |
175 | 41.75 | 100 | 83.25 | 66.75 |
200 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, Q.; Shan, Y.; Du, C.; Chen, S.; Yin, W.; Yang, F.; Shao, Y.; Wang, Y. Antioxidant-Mediated Modification of Citral and Its Control Effect on Mildewy Bamboo. Polymers 2022, 14, 4652. https://doi.org/10.3390/polym14214652
Liu C, Li Q, Shan Y, Du C, Chen S, Yin W, Yang F, Shao Y, Wang Y. Antioxidant-Mediated Modification of Citral and Its Control Effect on Mildewy Bamboo. Polymers. 2022; 14(21):4652. https://doi.org/10.3390/polym14214652
Chicago/Turabian StyleLiu, Chunlin, Qi Li, Yingying Shan, Chungui Du, Shiqin Chen, Wenxiu Yin, Fei Yang, Yuran Shao, and Yuting Wang. 2022. "Antioxidant-Mediated Modification of Citral and Its Control Effect on Mildewy Bamboo" Polymers 14, no. 21: 4652. https://doi.org/10.3390/polym14214652
APA StyleLiu, C., Li, Q., Shan, Y., Du, C., Chen, S., Yin, W., Yang, F., Shao, Y., & Wang, Y. (2022). Antioxidant-Mediated Modification of Citral and Its Control Effect on Mildewy Bamboo. Polymers, 14(21), 4652. https://doi.org/10.3390/polym14214652