Maximizing the Application of RAP in Asphalt Concrete Pavements and Its Long-Term Performance: A Review
Abstract
:1. Introduction
2. Brief Overview on the Application RAP in Different Asphalt Pavement Layers
2.1. RAP Usage in the Asphalt Surface/Bound Layers
2.2. RAP Usage in the Base and Sub-Base Layers
3. State of the Art
3.1. Pavement Preventive Maintenance Treatments Using RAP (RAP-PPM)
3.1.1. Thin Hot-Mix Asphalt Overlay (THMAO)
3.1.2. RAP in Micro-Surfacing
3.1.3. RAP in Chip Seal
3.1.4. RAP in Slurry Seal
3.2. Repeated Recycling of RAP (RnAP)
4. Long-Term Behavior of Asphalt Pavements Containing RAP
4.1. Long-Term Structural and Functional Performance of RAP-ACP
4.2. Influencing Factors on RAP-ACP Long-Term Performance
5. Reflections from the Literature Review and Perspectives for Future Research
5.1. Potential Challenges and Future Research Needs for RAP-PPM
5.2. Potential Challenges and Future Research Needs for RnAP
5.2.1. Molecular and Chemical Characterization
5.2.2. Microstructural Characterization
5.2.3. RnAP Pavement Field Performance
5.3. RAP-ACP Long-Term Performance Research
6. Summary and Conclusions
- The use of RAP in PPM treatment mixtures is an innovative concept to help maximize its application in asphalt pavements, thereby reducing the amount of remaining RAP. It is possible to slightly adjust existing mixture designs for THMAO, micro-surfacing, chip seals, and slurry seals in order to accommodate RAP materials. Fractionation of RAP produces more fines, and so, to make the most of this resource, more RAP fines should be used in the mix designs of PPM treatments. Performance-wise, the literature reported similar or better performance of RAP-PPM than PPM containing VA.
- Bonding and workability are the main challenges that must be addressed in order to fully advance RAP-PPM technology. It is necessary to understand how several factors such as RAP characteristics (gradation, amount, source), additives, emulsion type, and amount could help improve the bonding issues and workability of the RAP-PPM mix components and correlate the results with mixture performance.
- The amount of research on RAP-PPM is very limited. Most studies only focus on the modification of PPM treatment mix design to incorporate RAP, and how RAP inclusion affects the mechanical performance of PPM treatment mixtures. Still little or nothing is known about the functional properties, long-term performance, or cost-effectiveness of RAP-PPM treatment mixtures, which should be considered when aiming for sustainability.
- RAP can be recycled several times, which can extend the life of the materials until they can no longer be used. However, if the repeatedly recycled RAP materials are not properly incorporated into a new mix, various performance characteristics such as stiffness or durability properties can be adversely affected, leading to premature pavement failure and, ultimately, more frequent pavement repairs and rehabilitation.
- Research on RnAP mixtures have only been limited to the macro level. Detailed understanding of how multiple recycling can influence the chemical and molecular structure of fresh asphalt mixtures is vital to the performance improvements of RnAP mixtures.
- Although the recycling of RAP can reduce costs, there are still some concerns about ACP containing RAP, particularly in the load-bearing layers. A major concern is its durability and long-term performance under various exposure conditions. Knowledge of the long-term performance of RAP-ACP is important, and without it, confidence in its widespread implementation may be reduced. Available literature suggests that RAP has a negative impact on long-term cracking performance, but performs similarly or better than ACP without RAP in terms of rutting resistance, raveling, and ride quality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- R. Blacktop. “6 Benefits of Recycling Asphalt.” Richfield Blacktop. Available online: https://www.richfieldblacktop.com/asphalt-recycling (accessed on 18 June 2022).
- Zaumanis, M.; Mallick, R.B. Review of very high-content reclaimed asphalt use in plant-produced pavements: State of the art. Int. J. Pavement Eng. 2015, 16, 39–55. [Google Scholar] [CrossRef]
- West, R. Reclaimed asphalt pavement management: Best practices. In NCAT Draft Report; National Center for Asphalt Technology: Auburn, AL, USA, 2010. [Google Scholar]
- Al-Qadi, I.L.; Aurangzeb, Q.; Carpenter, S.H.; Pine, W.J.; Trepanier, J. Impact of High RAP Contents on Structural and Performance Properties of Asphalt Mixtures. 2012, 0197-9191. Available online: https://www.ideals.illinois.edu/bitstream/handle/2142/45810/FHWA-ICT-12-002.pdf?sequence=2 (accessed on 18 June 2022).
- Anthonissen, J.; Braet, J. Review and environmental impact assessment of green technologies for base courses in bituminous pavements. Environ. Impact Assess. Rev. 2016, 60, 139–147. [Google Scholar] [CrossRef]
- Lopes, M.; Gabet, T.; Bernucci, L.; Mouillet, V. Durability of hot and warm asphalt mixtures containing high rates of reclaimed asphalt at laboratory scale. Mater. Struct. 2015, 48, 3937–3948. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B.; Shu, X.; Woods, M. Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Constr. Build. Mater. 2013, 44, 92–100. [Google Scholar] [CrossRef]
- Colbert, B.; You, Z. The determination of mechanical performance of laboratory produced hot mix asphalt mixtures using controlled RAP and virgin aggregate size fractions. Constr. Build. Mater. 2012, 26, 655–662. [Google Scholar] [CrossRef]
- Apeagyei, A.K.; Diefenderfer, B.K.; Diefenderfer, S.D. Rutting resistance of asphalt concrete mixtures that contain recycled asphalt pavement. Transp. Res. Rec. 2011, 2208, 9–16. [Google Scholar] [CrossRef]
- Margaritis, A.; Blom, J.; van den Bergh, W. Evaluating the mechanical performance of Flemish bituminous mixtures containing RA by statistical analysis. Road Mater. Pavement Des. 2019, 20 (Suppl. 2), S725–S739. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% recycled hot mix asphalt: A review and analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- McDaniel, R.; Shah, A.; Huber, G.; Gallivan, V. Investigation of properties of plant-produced RAP mixtures. Transp. Res. Rec. J. Transp. Res. Board 1998, 2007, 103–111. [Google Scholar]
- McDaniel, R.S.; Soleymani, H.; Anderson, R.M.; Turner, P.; Peterson, R. Recommended use of reclaimed asphalt pavement in the Superpave mix design method. In NCHRP Web Document 30; Transportation Research Board: Washington, DC, USA, 2000. [Google Scholar]
- Shu, X.; Huang, B.; Vukosavljevic, D. Laboratory evaluation of fatigue characteristics of recycled asphalt mixture. Constr. Build. Mater. 2008, 22, 1323–1330. [Google Scholar] [CrossRef]
- Daniel, J.S.; Pochily, J.L.; Boisvert, D.M. Can more reclaimed asphalt pavement be added? Study of extracted binder properties from plant-produced mixtures with up to 25% reclaimed asphalt pavement. Transp. Res. Rec. 2010, 2180, 19–29. [Google Scholar] [CrossRef]
- West, R.C.; Willis, J.R.; Marasteanu, M.O. Improved mix design, evaluation, and materials management practices for hot mix asphalt with high reclaimed asphalt pavement content. Transp. Res. Board. 2013, 752, 1–132. [Google Scholar]
- Willis, J.R.; Turner, P.; Padula, F.d.; Tran, N.; Julian, G. Effects of changing virgin binder grade and content on high reclaimed asphalt pavement mixture properties. Transp. Res. Rec. 2013, 2371, 66–73. [Google Scholar] [CrossRef]
- Reyes-Ortiz, O.; Berardinelli, E.; Alvarez, A.E.; Carvajal-Muñoz, J.; Fuentes, L. Evaluation of hot mix asphalt mixtures with replacement of aggregates by reclaimed asphalt pavement (RAP) material. Procedia-Soc. Behav. Sci. 2012, 53, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.O.; Borges, P.H.; Santos, F.A.d.; Bezerra, A.C.S.; Blom, J. Cementitious binders and reclaimed asphalt aggregates for sustainable pavement base layers: Potential, challenges and research needs. Constr. Build. Mater. 2020, 265, 120325. [Google Scholar] [CrossRef]
- Recycling, A.; Association, R.; Dunn, L. Basic Asphalt Recycling Manual; Asphalt Recycling and Reclaiming Association: Glen Ellyn, IL, USA, 2001. [Google Scholar]
- Ma, Y.; Polaczyk, P.; Park, H.; Jiang, X.; Hu, W.; Huang, B. Performance evaluation of temperature effect on hot in-place recycling asphalt mixtures. J. Clean. Prod. 2020, 277, 124093. [Google Scholar] [CrossRef]
- Ma, Y.; Polaczyk, P.; Hu, W.; Zhang, M.; Huang, B. Quantifying the effective mobilized RAP content during hot in-place recycling techniques. J. Clean. Prod. 2021, 314, 127953. [Google Scholar] [CrossRef]
- Ma, Y.; Polaczyk, P.; Xiao, R.; Jiang, X.; Zhang, M.; Liu, Y.; Huang, B. Influence of mobilized RAP content on the effective binder quality and performance of 100% hot in-place recycled asphalt mixtures. Constr. Build. Mater. 2022, 342, 127941. [Google Scholar] [CrossRef]
- Tarsi, G.; Tataranni, P.; Sangiorgi, C. The Challenges of Using Reclaimed Asphalt Pavement for New Asphalt Mixtures: A Review. Materials 2020, 13, 4052. [Google Scholar] [CrossRef]
- Antunes, V.; Freire, A.; Neves, J. A review on the effect of RAP recycling on bituminous mixtures properties and the viability of multi-recycling. Constr. Build. Mater. 2019, 211, 453–469. [Google Scholar] [CrossRef]
- Behnood, A. Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: A review. J. Clean. Prod. 2019, 231, 171–182. [Google Scholar] [CrossRef]
- Milad, A.; Taib, A.M.; Ahmeda, A.G.; Solla, M.; Yusoff, N.I.M. A review of the use of reclaimed asphalt pavement for road paving applications. J. Teknol. 2020, 82, 3. [Google Scholar] [CrossRef]
- Guo, M.; Liu, H.; Jiao, Y.; Mo, L.; Tan, Y.; Wang, D.; Liang, M. Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. J. Clean. Prod. 2020, 266, 121704. [Google Scholar] [CrossRef]
- Spreadbury, C.J.; Clavier, K.A.; Lin, A.M.; Townsend, T.G. A critical analysis of leaching and environmental risk assessment for reclaimed asphalt pavement management. Sci. Total Environ. 2021, 775, 145741. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Baaj, H. The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review. Constr. Build. Mater. 2016, 114, 805–816. [Google Scholar] [CrossRef]
- Farooq, M.A.; Mir, M.S. Use of reclaimed asphalt pavement (RAP) in warm mix asphalt (WMA) pavements: A review. Innov. Infrastruct. Solut. 2017, 2, 10. [Google Scholar] [CrossRef]
- Devulapalli, L.; Kothandaraman, S.; Sarang, G. A review on the mechanisms involved in reclaimed asphalt pavement. Int. J. Pavement Res. Technol. 2019, 12, 185–196. [Google Scholar] [CrossRef]
- Su, N.; Xiao, F.; Wang, J.; Amirkhanian, S. Characterizations of base and subbase layers for Mechanistic-Empirical Pavement Design. Constr. Build. Mater. 2017, 152, 731–745. [Google Scholar] [CrossRef]
- Nie, Y. Pavement performance of asphalt surface course containing reclaimed asphalt pavement (RAP). J. Test. Eval. 2012, 40, 1162–1168. [Google Scholar] [CrossRef]
- West, R.C.; Copeland, A. High RAP Asphalt Pavements: Japan Practice-Lesson Learned; NAPA: Lanham, MD, USA, 2015. [Google Scholar]
- Kowalski, K.J.; McDaniel, R.S.; Olek, J. Influence of reclaimed asphalt pavement (RAP) on surface friction. In Proceedings of the Transportation Research Board 89th Annual Meeting, Washington, DC, USA, 14–10 January 2010. [Google Scholar]
- Chen, D.-H.; Lin, D.-F.; Daleiden, J. Lessons Learned from LTPP and several recycled sections in Texas. In Proceedings of the Transportation Research Board 2002 Annual Meeting, Kansas City, MO, USA, 31 October–1 November 2003; pp. 35–37. [Google Scholar]
- EAPA. ASPHALT IN FIGURES 2020. European Asphalt Pavement Association. Available online: https://eapa.org/asphalt-in-figures/ (accessed on 10 June 2022).
- Lee, J.; Denneman, E.; Choi, Y. Maximising the Re-Use of Reclaimed Asphalt Pavement: Outcomes of Year Two: RAP Mix Design 1925294048; Austroads: Sydney, Australia, 2015. [Google Scholar]
- Xu, J.; Huang, S.; Qin, Y. Asphalt Pavement Recycling in Mainland China. In Application of Reclaimed Asphalt Pavement and Recycled Asphalt Shingles in Hot-Mix Asphalt 51; Transportation Research Board: Washington, DC, USA, 2014; p. 2014. [Google Scholar]
- Copeland, A. Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice; United States. Federal Highway Administration. Office of Research: Washington, DC, USA, 2011. [Google Scholar]
- Mogawer, W.; Bennert, T.; Daniel, J.S.; Bonaquist, R.; Austerman, A.; Booshehrian, A. Performance characteristics of plant produced high RAP mixtures. Road Mater. Pavement Des. 2012, 13 (Suppl. 1), 183–208. [Google Scholar] [CrossRef]
- West, R.; Timm, D.; Willis, J.R.; Powell, R.B.; Tran, N.; Watson, D.; Sakhaeifar, M.; Robbins, M.; Brown, R.; Vargas-Nordcbeck, A.; et al. Phase IV NCAT Pavement Test Track Findings: Draft Report; Transportation Research Board: Washington, DC, USA, 2012. [Google Scholar]
- Al-Saffar, Z.H.; Yaacob, H.; Satar, M.K.I.M.; Saleem, M.K.; Lai, J.C.; Jaya, R.P. A review on rejuvenating materials used with reclaimed hot mix asphalt. Can. J. Civ. Eng. 2021, 48, 233–249. [Google Scholar] [CrossRef]
- Hoppe, E.J.; Lane, D.S.; Fitch, G.M.; Shetty, S. Feasibility of Reclaimed Asphalt Pavement (RAP) Use as Road Base and Subbase Material; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2015. [Google Scholar]
- Arulrajah, A.; Piratheepan, J.; Aatheesan, T.; Bo, M. Geotechnical properties of recycled crushed brick in pavement applications. J. Mater. Civ. Eng. 2011, 23, 1444–1452. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, B. Laboratory evaluation on resilient modulus and rate dependencies of RAP used as unbound base material. J. Mater. Civ. Eng. 2014, 26, 379–383. [Google Scholar] [CrossRef]
- Kim, W.; Labuz, J.F.; Dai, S. Resilient modulus of base course containing recycled asphalt pavement. Transp. Res. Rec. 2005, 1, 27–35. [Google Scholar] [CrossRef]
- Wen, H.; Warner, J.; Edil, T.; Wang, G. Laboratory comparison of crushed aggregate and recycled pavement material with and without high carbon fly ash. Geotech. Geol. Eng. 2010, 28, 405–411. [Google Scholar] [CrossRef]
- Thakur, J.K.; Han, J.; Pokharel, S.K.; Parsons, R.L. Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading. Geotext. Geomembr. 2012, 35, 14–24. [Google Scholar] [CrossRef]
- Plati, C.; Cliatt, B. A Sustainability Perspective for Unbound Reclaimed Asphalt Pavement (RAP) as a Pavement Base Material. Sustainability 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Monu, K.; Ransinchung, R.N.G.D. Laboratory investigation of RAP for various layers of flexible and concrete pavement. Int. J. Pavement Eng. 2020, 21, 1780–1793. [Google Scholar] [CrossRef]
- Cliatt, B.; Plati, C.; Loizos, A. Investigating Resilient Modulus Interdependence to Moisture for Reclaimed Asphalt Pavement Aggregates. Procedia Eng. 2016, 143, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Tanyu, B.F. Methodology to develop design guidelines to construct unbound base course with reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2019, 223, 463–476. [Google Scholar] [CrossRef]
- Yuan, D.; Nazarian, S.; Hoyos, L.R.; Puppala, A.J. Evaluation and Mix Design of Cement-Treated Base Materials with High Content of Reclaimed Asphalt Pavement. Transp. Res. Rec. 2011, 2212, 110–119. [Google Scholar] [CrossRef]
- Chhabra, R.S.; Ransinchung, G.D.R.N.; Islam, S.S. Performance analysis of cement treated base layer by incorporating reclaimed asphalt pavement material and chemical stabilizer. Constr. Build. Mater. 2021, 298, 123866. [Google Scholar] [CrossRef]
- Rahaman, F.; Musty, H.Y.; Hossain, M. Evaluation of Recycled Asphalt Pavement Materials from Ultra-Thin Bonded Bituminous Surface. GeoCongress 2012, 2012, 1612–1621. [Google Scholar]
- Robati, M.; Carter, A.; Perraton, D. Incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture. In Proceedings of the Canadian Technical Asphalt Association, St. John’s, Canada, 17–22 November 2013. [Google Scholar]
- Garfa, A.; Dony, A.; Carter, A. Performance Evaluation and Behavior of Microsurfacing with Recycled Materials; Confea: Barrakilly, Ireland, 2016. [Google Scholar]
- Poursoltani, M.; Hesami, S. Performance evaluation of microsurfacing mixture containing reclaimed asphalt pavement. Int. J. Pavement Eng. 2020, 21, 1491–1504. [Google Scholar] [CrossRef]
- Saghafi, M.; Tabatabaee, N.; Nazarian, S. Performance Evaluation of Slurry Seals Containing Reclaimed Asphalt Pavement. Transp. Res. Rec. 2019, 2673, 358–368. [Google Scholar] [CrossRef]
- Wang, A.; Shen, S.; Li, X.; Song, B. Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation. Constr. Build. Mater. 2019, 201, 303–313. [Google Scholar] [CrossRef]
- Podolsky, J.H.; Sotoodeh-Nia, Z.; Manke, N.; Hohmann, A.; Huisman, T.; Williams, R.C.; Cochran, E.W. Development of High RAP-High Performance Thin-Lift Overlay Mix Design Using a Soybean Oil-Derived Rejuvenator. J. Mater. Civ. Eng. 2020, 32, 04020138. [Google Scholar] [CrossRef]
- University of Arkansas. Thin Asphalt Overlay: A Thin Layer of Hot Mix Asphalt Placed over an Existing Surface. Asphalt Surface Treatment Options, p. 1. [Online]. Available online: https://cttp.uark.edu/technology-transfer/T2-PDFs/THIN-OVERLAY-handout.pdf (accessed on 25 July 2022).
- FHWA, The Use of Thin Asphalt Overlays for Pavement Preservation. USA, FHWA-HIF-19-053, 2019. [Online]. Available online: https://www.fhwa.dot.gov/pavement/asphalt/pubs/hif19053.pdf (accessed on 25 July 2022).
- Mogawer, W.S.; Austerman, A.J.; Bonaquist, R.; Roussel, M. Performance Characteristics of Thin-Lift Overlay Mixtures: High Reclaimed Asphalt Pavement Content, Recycled Asphalt Shingles, and Warm-Mix Asphalt Technology. Transp. Res. Rec. 2011, 2208, 17–25. [Google Scholar] [CrossRef]
- Newcomb, D. Thin Asphalt Overlays for Pavement Preservation. In Transportation Research Record; NAPA: Lanham, MD, USA, 2009. [Google Scholar]
- Brown, E.R.; Heitzman, a.M. Thin HMA Overlays for Pavement Preservation and Low Volume Asphalt Roads. In Auburn University United States of America NCAT Report 13-05; NAPA: Lanham, MD, USA, 2013. [Google Scholar]
- APAI, Let’s Go HIPRO! High Performance Thin Overlays Take Off. Iowa, USA, 2018. [Online]. Available online: https://www.apai.net/Files/content/Iowa%20Asphalt%20Report/APAINewsletterFall2018.pdf (accessed on 25 July 2022).
- Laboratory Test Method for Wet Track Abrasion of Slurry Surfacing System, Design Technical Bulletins, No.100, I. S. S. A. (ISSA), Annapolis, 2017. [Online]. Available online: https://cdn.ymaws.com/www.slurry.org/resource/resmgr/technical_bulletins/TB_No100-19OctRev_forPublica.pdf (accessed on 26 July 2022).
- Test Method for Measurement of Excess Asphalt in Bituminous Mixtures by Use of a Loaded Wheel Tester and Sand Adhesion, Design Technical Bulletins, No.109, I. S. S. A. (ISSA), Annapolis (MD), 2017. [Online]. Available online: https://cdn.ymaws.com/www.slurry.org/resource/resmgr/Technical_Bulletins/TB_109.pdf (accessed on 26 July 2022).
- Outline Guide Design Procedure for Slurry Seal, 2nd Revision Design Technical Bulletins, No.111, I. S. S. A. (ISSA), Annapolis (MD), 2005. [Online]. Available online: https://cdn.ymaws.com/www.slurry.org/resource/resmgr/Technical_Bulletins/TB_111.pdf (accessed on 26 July 2022).
- Patrick, S. Guidelines and Specifications for Microsurfacing. Sydney, Australia, 2018. [Online]. Available online: https://austroads.com.au/publications/pavement/ap-r569-18/media/AP-R569-18-Guidelines_and_Specifications_for_Microsurfacing_V1.1.pdf (accessed on 27 July 2022).
- Updyke, E.; Ruh, D. Abundance of RAP Spurs New Uses in Preservation Treatments. Transportation Research Board vol. 9, no. 4, 2016. [Online]. Available online: http://www.nxtbook.com/naylor/FPPQ/FPPQ0416/index.php?startid=25 (accessed on 27 July 2022).
- Tarefder, R.A.; Ahmad, M. Cost-effectiveness analysis of chip seal with and without millings. Int. J. Pavement Eng. 2018, 19, 893–900. [Google Scholar] [CrossRef]
- Gregory, P.E.L.S.; Duncan, P.E.; Steve Seeds, P.E.; David Peshkin, P.E. Using Reclaimed Asphalt Pavement in Pavement-Preservation Treatments. USA, FHWA-HRT-21-007, 2020. [Online]. Available online: https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/21007/ (accessed on 27 July 2022).
- Wang, H.; Wang, Z. Evaluation of pavement surface friction subject to various pavement preservation treatments. Constr. Build. Mater. 2013, 48, 194–202. [Google Scholar] [CrossRef]
- Ye, H. Innovative Evaluation of Recycled Asphalt Pavement (RAP) Use in Slurry Seal Applications. Civil Engineering Michigan State University, Michigan, USA, 2021. [Online]. Available online: https://www.proquest.com/openview/b6e1fae09e770ff91113b63e50cac4b9/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 27 July 2022).
- Chen, J.-S.; Wang, C.-H.; Huang, C.-C. Engineering Properties of Bituminous Mixtures Blended with Second Reclaimed Asphalt Pavements (R2AP). Road Mater. Pavement Des. 2009, 10 (Suppl. 1), 129–149. [Google Scholar] [CrossRef]
- Heneash, U. Effect of the Repeated Recycling on Hot Mix Asphalt Properties; University of Nottingham: Nottingham, UK, 2013. [Google Scholar]
- Idham, M.K.; Hainin, M.R. The effect of incorporating reclaimed asphalt pavement on the performance of hot mix asphalt mixtures. J. Teknol. 2015, 77, 32. [Google Scholar] [CrossRef] [Green Version]
- Pedraza, A.; di Benedetto, H.; Sauzéat, C.; Pouget, S. Linear viscoelastic behaviour of bituminous mixtures with multi-Recycled Asphalt Pavement. In Bearing Capacity of Roads, Railways and Airfields; CRC Press: Boca Raton, FL, USA, 2017; pp. 201–208. [Google Scholar]
- Pedraza, A.; di Benedetto, H.; Sauzéat, C.; Pouget, S. 3D Linear viscoelastic behaviour of bituminous mixtures containing high content of multi-recycled RAP. Road Mater. Pavement Des. 2019, 20, 1709–1721. [Google Scholar] [CrossRef]
- Petho, L.; Denneman, E. Maximising the Use of Reclaimed Asphalt Pavement in Asphalt Mix Design; Field Validation: Sydney, Australia, 2016. [Google Scholar]
- Pouget, S.; Marsac, P.; Pedraza, A.; Sauzéat, C.; Di Benedetto, H.; Gaudefroy, V.; Boulangé, L.; Pévère, A.; Mouillet, V. Advanced characterisation of multi-recycled warm asphalt pavement (MRWAP) with high content of recycled asphalt pavement. Road Mater. Pavement Des. 2021, 1–22. [Google Scholar] [CrossRef]
- Yang, S.-H.; Lee, L.-C. Characterizing the chemical and rheological properties of severely aged reclaimed asphalt pavement materials with high recycling rate. Constr. Build. Mater. 2016, 111, 139–146. [Google Scholar] [CrossRef]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593–609. [Google Scholar] [CrossRef]
- Huei, L.C. Performance Based Properties of Rejuvenated Severe Aged Asphalt Binder. Masters Thesis, National Cheng Kung University, Tainan, Taiwan, 2014. [Google Scholar]
- Dong, Q.; Huang, B. Evaluation of Influence Factors on Crack Initiation of LTPP Resurfaced-Asphalt Pavements Using Parametric Survival Analysis. J. Perform. Constr. Facil. 2014, 28, 412–421. [Google Scholar] [CrossRef]
- Huang, B.; Shu, X.; Vukosavljevic, D. Laboratory investigation of cracking resistance of hot-mix asphalt field mixtures containing screened reclaimed asphalt pavement. J. Mater. Civ. Eng. 2011, 23, 1535–1543. [Google Scholar] [CrossRef]
- West, R.; Michael, J.; Turochy, R.; Maghsoodloo, S. Use of Data from Specific Pavement Studies Experiment 5 in the Long-Term Pavement Performance Program to Compare Virgin and Recycled Asphalt Pavements. Transp. Res. Rec. 2011, 2208, 82–89. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Santos, S.d.; Bueno, M.; Kuentzel, S.; Hugener, M.; Partl, M.N. Influence of short and long term aging on chemical, microstructural and macro-mechanical properties of recycled asphalt mixtures. Constr. Build. Mater. 2014, 51, 414–423. [Google Scholar] [CrossRef]
- Hong, F.; Chen, D.-H.; Mikhail, M.M. Long-Term Performance Evaluation of Recycled Asphalt Pavement Results from Texas: Pavement Studies Category 5 Sections from the Long-Term Pavement Performance Program. Transp. Res. Rec. 2010, 2180, 58–66. [Google Scholar] [CrossRef]
- Zhou, Z.; Gu, X.; Dong, Q.; Ni, F.; Jiang, Y. Low- and intermediate-temperature behaviour of polymer-modified asphalt binders, mastics, fine aggregate matrices, and mixtures with Reclaimed Asphalt Pavement material. Road Mater. Pavement Des. 2020, 21, 1872–1901. [Google Scholar] [CrossRef]
- Carvalho, R.L.; Shirazi, H.; Ayres, M.; Selezneva, O. Performance of Recycled Hot-Mix Asphalt Overlays in Rehabilitation of Flexible Pavements. Transp. Res. Rec. 2010, 2155, 55–62. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, B. Evaluation of Effectiveness and Cost-Effectiveness of Asphalt Pavement Rehabilitations Utilizing LTPP Data. J. Transp. Eng. 2012, 138, 681–689. [Google Scholar] [CrossRef]
- Hall, K.T.; Correa, C.E.; Simpson, A.L. Performance of Flexible Pavement Rehabilitation Treatments in the Long-Term Pavement Performance SPS-5 Experiment. Transp. Res. Rec. 2003, 1823, 93–101. [Google Scholar] [CrossRef]
- Gong, H.; Huang, B.; Shu, X. Field performance evaluation of asphalt mixtures containing high percentage of RAP using LTPP data. Constr. Build. Mater. 2018, 176, 118–128. [Google Scholar] [CrossRef]
- Wang, Y. The effects of using reclaimed asphalt pavements (RAP) on the long-term performance of asphalt concrete overlays. Constr. Build. Mater. 2016, 120, 335–348. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, H.; Huang, L.; Wei, C. Long-term performance and microstructure of asphalt emulsion cold recycled mixture with different gradations. J. Clean. Prod. 2019, 215, 944–951. [Google Scholar] [CrossRef]
- Monu, K.; Ransinchung, G.D.R.N.; Singh, S. Effect of long-term ageing on properties of RAP inclusive WMA mixes. Constr. Build. Mater. 2019, 206, 483–493. [Google Scholar] [CrossRef]
- Puppala, A.J.; Pedarla, A.; Chittoori, B.; Ganne, V.K.; Nazarian, S. Long-Term Durability Studies on Chemically Treated Reclaimed Asphalt Pavement Material as a Base Layer for Pavements. Transp. Res. Rec. 2017, 2657, 1–9. [Google Scholar] [CrossRef]
- Avirneni, D.; Peddinti, P.R.T.; Saride, S. Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses. Constr. Build. Mater. 2016, 121, 198–209. [Google Scholar] [CrossRef]
- Isola, M.; Betti, G.; Marradi, A.; Tebaldi, G. Evaluation of cement treated mixtures with high percentage of reclaimed asphalt pavement. Constr. Build. Mater. 2013, 48, 238–247. [Google Scholar] [CrossRef]
- Pan, Y.; Han, D.; Yang, T.; Tang, D.; Huang, Y.; Tang, N.; Zhao, Y. Field observations and laboratory evaluations of asphalt pavement maintenance using hot in-place recycling. Constr. Build. Mater. 2021, 271, 121864. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Tighe, S.L.; Zhao, G.; You, Z. Effects of preheating conditions on performance and workability of hot in-place recycled asphalt mixtures. Constr. Build. Mater. 2019, 226, 288–298. [Google Scholar] [CrossRef]
PPM Treatment | RAP Amount (%) | Rejuvenator | Rutting Resistance | Low-Temperature Cracking | Fatigue Resistance | Moisture Susceptibility | Workability | Skid Resistance | Cohesion | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
THMAO | 40 | None | + | + | − | [42] | ||||
Chip seal | 20 | None | + | O | [57] | |||||
Microsurfacing | 50 & 100 | None | + | O | − | [58] | ||||
Microsurfacing | 50 & 100 | None | + | + | [59] | |||||
Microsurfacing | 69 | None | + | + | − | [60] | ||||
Slurry seal | 87.5 | None | + | + | − | [61] | ||||
Microsurfacing | 20–40 | Chemical | + | + | − | [62] | ||||
THMAO | 40 | Biological | + | + | + | [63] |
Ref (s). | Performance Investigated | Long-Term Performance Duration (Years) | RAP Amount Utilized (%) | Performance Indicator | Effects as Compared to Virgin ACP | |
---|---|---|---|---|---|---|
[89] | Cracking of various types | Fatigue cracking | 0–12 | 30 | Crack initiation time | Worse |
[90] | Long-term oven aging (LTOA) at 85 °C for 5 days | DCSEf and Plateau Value | ||||
[91] | 10–15 | Fatigue cracking area (m2) | ||||
[92] | LTOA at 85 °C for 5 days | 40 | Fatigue life | |||
[93] | Transverse cracking | 16 | 35 | Transverse cracking length | ||
[91] | 10–15 | 30 | Number of cracks/sections | |||
[94] | Low-temperature cracking | LTOA at 85 °C for 5 days | 15, 30, 40, 50 | 60 s stiffness and m-value | ||
[91] | Longitudinal cracking | 10–15 | 30 | Longitudinal cracking length (m) | ||
Block cracking | Block cracking area (m2) | Similar | ||||
[95] | Rutting | 8–17 | 30 | Deflection | Similar | |
[93] | 16 | 35 | Rut depth (mm) | Worse | ||
[91] | 10–15 | 30 | Similar | |||
[91] | Raveling | 10–15 | 30 | Raveling area (m2) | Similar | |
[93] | Ride quality | 16 | 35 | International Roughness index (IRI) | ||
[96,97] | 10–15 | 30 | ||||
[91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Sesay, T.; You, Q.; Jing, H. Maximizing the Application of RAP in Asphalt Concrete Pavements and Its Long-Term Performance: A Review. Polymers 2022, 14, 4736. https://doi.org/10.3390/polym14214736
Zhang J, Sesay T, You Q, Jing H. Maximizing the Application of RAP in Asphalt Concrete Pavements and Its Long-Term Performance: A Review. Polymers. 2022; 14(21):4736. https://doi.org/10.3390/polym14214736
Chicago/Turabian StyleZhang, Jialin, Taiwo Sesay, Qinglong You, and Hongjun Jing. 2022. "Maximizing the Application of RAP in Asphalt Concrete Pavements and Its Long-Term Performance: A Review" Polymers 14, no. 21: 4736. https://doi.org/10.3390/polym14214736
APA StyleZhang, J., Sesay, T., You, Q., & Jing, H. (2022). Maximizing the Application of RAP in Asphalt Concrete Pavements and Its Long-Term Performance: A Review. Polymers, 14(21), 4736. https://doi.org/10.3390/polym14214736