Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon sp.) Using Physical and Chemical Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Autoclave Heating-Treated (AHT) Starch Preparation
2.3. Osmotic Pressure-Treated (OPT) Starch Preparation
2.4. Octenyl-Succinate Anhydride (OSA) Starch Preparation
2.5. Citric Acid Cross-Linked (CA) Starch Preparation
2.6. Chemical Composition and Amylose Content Determination
2.7. Granular Morphology Determination
2.8. Particle Size Analysis
2.9. Starch Crystallinity
2.10. Functional Groups and Molecular Order Degree (FTIR-ATR)
2.11. Swelling Volume and Solubility
2.12. Water Absorption Capacity (WAC)
2.13. Oil Absorption Capacity (OAC)
2.14. Freeze–Thaw Stability (% Syneresis)
2.15. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Granule Morphology
3.3. Particle Size Distribution
3.4. Starch Crystallinity
3.5. Molecular Degree Order
3.6. Functional Properties
3.6.1. Swelling Volume and Solubility
3.6.2. Water Absorption Capacity (WAC), Oil Absorption Capacity (OAC), and Syneresis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bujang, K. Production, Purification, and Health Benefits of Sago Sugar. In Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods; Ehara, H., Toyoda, Y., Johnson, D.V., Eds.; Springer: Singapore, 2018; pp. 299–307. [Google Scholar]
- Nordin, N.A.; Rahman, N.A.; Talip, N.; Yacob, N. Citric Acid Cross-Linking of Carboxymethyl Sago Starch Based Hydrogel for Controlled Release Application. Macromol. Symp. 2018, 382, 1800086. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M. Densely Packed-Matrices of Heat Moisture Treated-Starch Determine the Digestion Rate Constant as Revealed by Logarithm of Slope Plots. J. Food Sci. Technol. 2021, 58, 2237–2245. [Google Scholar] [CrossRef] [PubMed]
- Zavareze, E.d.R.; Dias, A.R.G. Impact of Heat-Moisture Treatment and Annealing in Starches: A Review. Carbohydr. Polym. 2011, 83, 317–328. [Google Scholar] [CrossRef]
- Pukkahuta, C.; Shobsngob, S.; Varavinit, S. Effect of Osmotic Pressure on Starch: New Method of Physical Modification of Starch. Starch-Stärke 2007, 59, 78–90. [Google Scholar] [CrossRef]
- Korma, S.A.; Kamal-Alahmad, S.N.; Ammar, A.F.; Zaaboul, F.; Zhang, T. Chemically Modified Starch and Utilization in Food Stuffs. Int. J. Nutr. Food Sci. 2016, 5, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Altuna, L.; Herrera, M.L.; Foresti, M.L. Synthesis and Characterization of Octenyl Succinic Anhydride Modified Starches for Food Applications. A Review of Recent Literature. Food Hydrocoll. 2018, 80, 97–110. [Google Scholar] [CrossRef]
- Bajaj, R.; Singh, N.; Kaur, A. Properties of Octenyl Succinic Anhydride (Osa) Modified Starches and Their Application in Low Fat Mayonnaise. Int. J. Biol. Macromol. 2019, 131, 147–157. [Google Scholar] [CrossRef]
- Mason, W.R. Chapter 20—Starch Use in Foods. In Starch, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 745–795. [Google Scholar]
- Kim, J.Y.; Lee, Y.-K.; Chang, Y.H. Structure and Digestibility Properties of Resistant Rice Starch Cross-Linked with Citric Acid. Int. J. Food Prop. 2017, 20, 2166–2177. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Improving the Barrier and Mechanical Properties of Corn Starch-Based Edible Films: Effect of Citric Acid and Carboxymethyl Cellulose. Ind. Crops Prod. 2011, 33, 229–235. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Arifin, H.R.; Khairani, L. Comparing the Effect of Four Different Thermal Modifications on Physicochemical and Pasting Properties of Breadfruit (Artocarpus altilis) Starch. Int. Food Res. J. 2019, 26, 269–276. [Google Scholar]
- Anwar, S.H.; Hasni, D.; Rohaya, S.; Antasari, M.; Winarti, C. The Role of Breadfruit Osa Starch and Surfactant in Stabilizing High-Oil-Load Emulsions Using High-Pressure Homogenization and Low-Frequency Ultrasonication. Heliyon 2020, 6, e04341. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, W.; Zhang, B.; Zhao, S.; Du, H. Structure and Physicochemical Properties of Resistant Starch Prepared by Autoclaving-Microwave. Starch-Stärke 2018, 70, 1800060. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis; The Association of Official Analytical Chemistry: Washington, DC, USA, 1995. [Google Scholar]
- AOAC. Official Method of Analysis; The Association of Official Analytical Chemistry: Washington, DC, USA, 1970. [Google Scholar]
- Graham, R. A Proposal for Irri to Establish a Grain Quality and Nutrition Research Center; IRRI Discussion Paper Series, No. 44; International Rice Research Institute: Los Baños, Philippines, 2002; 15p. [Google Scholar]
- Marta, H.; Cahyana, Y.; Bintang, S.; Soeherman, G.P.; Djali, M. Physicochemical and Pasting Properties of Corn Starch as Affected by Hydrothermal Modification by Various Methods. Int. J. Food Prop. 2022, 25, 792–812. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M.; Arcot, J.; Tensiska, T. A Comparative Study on the Physicochemical and Pasting Properties of Starch and Flour from Different Banana (Musa spp.) Cultivars Grown in Indonesia. Int. J. Food Prop. 2019, 22, 1562–1575. [Google Scholar] [CrossRef] [Green Version]
- Marta, H.; Cahyana, Y.; Djali, M. Pectin Interaction with Thermally Modified Starch Affects Physicochemical Properties and Digestibility of Starch as Revealed by Logarithm of Slop Plot. CyTA J. Food 2021, 19, 63–71. [Google Scholar] [CrossRef]
- Dewi, A.M.; Santoso, U.; Pranoto, Y.; Marseno, D.W. Dual Modification of Sago Starch Via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity. Polymers 2022, 14, 1086. [Google Scholar] [CrossRef] [PubMed]
- Wattanachant, S.; Muhammad, K.; Mat Hashim, D.; Rahman, R.A. Effect of Crosslinking Reagents and Hydroxypropylation Levels on Dual-Modified Sago Starch Properties. Food Chem. 2003, 80, 463–471. [Google Scholar] [CrossRef]
- Remya, R.; Jyothi, A.N.; Sreekumar, J. Effect of Chemical Modification with Citric Acid on the Physicochemical Properties and Resistant Starch Formation in Different Starches. Carbohydr. Polym. 2018, 202, 29–38. [Google Scholar] [CrossRef]
- Uthumporn, U.; Wahidah, N.; Karim, A.A. Physicochemical Properties of Starch from Sago (Metroxylon sagu) Palm Grown in Mineral Soil at Different Growth Stages. IOP Conf. Ser. Mater. Sci. Eng. 2014, 62, 012026. [Google Scholar] [CrossRef]
- Karmakar, R.; Ban, D.; Ghosh, U. Comparative Study of Native and Modified Starches Isolated from Conventional and Nonconventional Sources. Int. Food Res. J. 2014, 21, 597–602. [Google Scholar]
- Lopez-Silva, M.; Bello-Perez, L.A.; Agama-Acevedo, E.; Alvarez-Ramirez, J. Effect of Amylose Content in Morphological, Functional and Emulsification Properties of Osa Modified Corn Starch. Food Hydrocoll. 2019, 97, 105212. [Google Scholar] [CrossRef]
- Zainal Abiddin, N.F.; Yusoff, A.; Ahmad, N. Effect of Octenylsuccinylation on Physicochemical, Thermal, Morphological and Stability of Octenyl Succinic Anhydride (Osa) Modified Sago Starch. Food Hydrocoll. 2018, 75, 138–146. [Google Scholar] [CrossRef]
- Guo, J.; Tang, W.; Quek, S.Y.; Liu, Z.; Lu, S.; Tu, K. Evaluation of Structural and Physicochemical Properties of Octenyl Succinic Anhydride Modified Sweet Potato Starch with Different Degrees of Substitution. J. Food Sci. 2020, 85, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhou, C.-w.; Wang, R.-z.; Yang, L.; Du, S.-s.; Wang, F.-p.; Ruan, H.; He, G.-q. Lipase-Coupling Esterification of Starch with Octenyl Succinic Anhydride. Carbohydr. Polym. 2012, 87, 2137–2144. [Google Scholar] [CrossRef]
- Liang, S.; Hong, Y.; Gu, Z.; Cheng, L.; Li, C.; Li, Z. Effect of Debranching on the Structure and Digestibility of Octenyl Succinic Anhydride Starch Nanoparticles. LWT-Food Sci. Technol. 2021, 141, 111076. [Google Scholar] [CrossRef]
- Zhou, J.; Tong, J.; Su, X.; Ren, L. Hydrophobic Starch Nanocrystals Preparations through Crosslinking Modification Using Citric Acid. Int. J. Biol. Macromol. 2016, 91, 1186–1193. [Google Scholar] [CrossRef]
- No, J.; Mun, S.; Shin, M. Properties and Digestibility of Octenyl Succinic Anhydride-Modified Japonica-Type Waxy and Non-Waxy Rice Starches. Molecules 2019, 24, 765. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yin, T.; Chen, Y.; Xiong, S.; Zhao, S. Preparation and Characterization of Octenyl Succinic Anhydride Modified Waxy Rice Starch by Dry Media Milling. Starch-Stärke 2014, 66, 985–991. [Google Scholar] [CrossRef]
- Whitney, K.; Reuhs, B.L.; Ovando Martinez, M.; Simsek, S. Analysis of Octenylsuccinate Rice and Tapioca Starches: Distribution of Octenylsuccinic Anhydride Groups in Starch Granules. Food Chem. 2016, 211, 608–615. [Google Scholar] [CrossRef] [Green Version]
- Hui, R.; Qi-he, C.; Ming-liang, F.; Qiong, X.; Guo-qing, H. Preparation and Properties of Octenyl Succinic Anhydride Modified Potato Starch. Food Chem. 2009, 114, 81–86. [Google Scholar] [CrossRef]
- Rashid, I.; Omari, M.H.A.; Leharne, S.A.; Chowdhry, B.Z.; Badwan, A. Starch Gelatinization Using Sodium Silicate: FTIR, DSC, XRPD, and NMR Studies. Starch-Stärke 2012, 64, 713–728. [Google Scholar] [CrossRef]
- Song, X.; Zhu, W.; Li, Z.; Zhu, J. Characteristics and Application of Octenyl Succinic Anhydride Modified Waxy Corn Starch in Sausage. Starch-Stärke 2010, 62, 629–636. [Google Scholar] [CrossRef]
- Zhang, B.; Mei, J.-Q.; Chen, B.; Chen, H.-Q. Digestibility, Physicochemical and Structural Properties of Octenyl Succinic Anhydride-Modified Cassava Starches with Different Degree of Substitution. Food Chem. 2017, 229, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Lipatova, I.M.; Yusova, A.A. Effect of Mechanical Activation on Starch Crosslinking with Citric Acid. Int. J. Biol. Macromol. 2021, 185, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Yang, Y. Citric Acid Cross-Linking of Starch Films. Food Chem. 2010, 118, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Velásquez-Barreto, F.F.; Bello-Pérez, L.A.; Yee-Madeira, H.; Alvarez-Ramirez, J.; Velezmoro-Sánchez, C.E. Effect of the Osa Esterification of Oxalis Tuberosa Starch on the Physicochemical, Molecular, and Emulsification Properties. Starch-Stärke 2020, 72, 1900305. [Google Scholar] [CrossRef]
- Zheng, M.-z.; Xiao, Y.; Yang, S.; Liu, H.-m.; Liu, M.-h.; Yaqoob, S.; Xu, X.-y.; Liu, J.-s. Effects of Heat–Moisture, Autoclaving, and Microwave Treatments on Physicochemical Properties of Proso Millet Starch. Food. Sci. Nutr. 2020, 8, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Bhosale, R.; Singhal, R. Effect of Octenylsuccinylation on Physicochemical and Functional Properties of Waxy Maize and Amaranth Starches. Carbohydr. Polym. 2007, 68, 447–456. [Google Scholar] [CrossRef]
- Gayary, M.A.; Mahanta, C.L. Optimization of Process Parameters of Osmotic Pressure Treatment and Heat Moisture Treatment for Rice Starch Using Response Surface Methodology. J. Food Meas. Charact. 2020, 14, 2862–2877. [Google Scholar] [CrossRef]
- Pukkahuta, C.; Suwannawat, B.; Shobsngob, S.; Varavinit, S. Comparative Study of Pasting and Thermal Transition Characteristics of Osmotic Pressure and Heat–Moisture Treated Corn Starch. Carbohydr. Polym. 2008, 72, 527–536. [Google Scholar] [CrossRef]
- Utomo, P.; Nizardo, N.M.; Saepudin, E. Crosslink Modification of Tapioca Starch with Citric Acid as a Functional Food. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; p. 040055. [Google Scholar]
- Xiao, H.X.; Lin, Q.L.; Liu, G.Q.; Yu, F.X. A Comparative Study of the Characteristics of Cross-Linked, Oxidized and Dual-Modified Rice Starches. Molecules 2012, 17, 10946–10957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharti, I.; Singh, S.; Saxena, D.C. Exploring the Influence of Heat Moisture Treatment on Physicochemical, Pasting, Structural and Morphological Properties of Mango Kernel Starches from Indian Cultivars. LWT -Food Sci. Technol. 2019, 110, 197–206. [Google Scholar] [CrossRef]
- Sindhu, R.; Khatkar, B.S. Thermal, Structural and Textural Properties of Amaranth and Buckwheat Starches. J. Food Sci. Technol. 2018, 55, 5153–5160. [Google Scholar] [CrossRef] [PubMed]
- Solaesa, Á.G.; Villanueva, M.; Muñoz, J.M.; Ronda, F. Dry-Heat Treatment vs. Heat-Moisture Treatment Assisted by Microwave Radiation: Techno-Functional and Rheological Modifications of Rice Flour. LWT-Food Sci. Technol. 2021, 141, 110851. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, A.K.; Yadav, D.N.; Arora, S.; Vishwakarma, R.K. Impact of Octenyl Succinylation on Rheological, Pasting, Thermal and Physicochemical Properties of Pearl Millet (Pennisetum typhoides) Starch. LWT -Food Sci. Technol. 2016, 73, 52–59. [Google Scholar] [CrossRef]
- Naseri, A.; Shekarchizadeh, H.; Kadivar, M. Octenylsuccination of Sago Starch and Investigation of the Effect of Calcium Chloride and Ferulic Acid on Physicochemical and Functional Properties of the Modified Starch Film. J. Food Process. Preserv. 2019, 43, e13898. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Huber, K.C. Physical Modification of Food Starch Functionalities. Annu. Rev. Food Sci. Technol. 2015, 6, 19–69. [Google Scholar] [CrossRef]
- Babu, A.S.; Parimalavalli, R.; Jagannadham, K.; Rao, J.S. Chemical and Structural Properties of Sweet Potato Starch Treated with Organic and Inorganic Acid. J. Food Sci. Technol. 2015, 52, 5745–5753. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, L.; Zheng, X. Recent Advances in Heat-Moisture Modified Cereal Starch: Structure, Functionality and Its Applications in Starchy Food Systems. Food Chem. 2021, 344, 128700. [Google Scholar] [CrossRef]
- Sharma, M.; Yadav, D.; Singh, A.K.; Tomar, S. Effect of Heat-Moisture Treatment on Resistant Starch Content as Well as Heat and Shear Stability of Pearl Millet Starch. Agric. Res. 2015, 4, 411–419. [Google Scholar] [CrossRef]
- Falade, K.O.; Ayetigbo, O.E. Effects of Annealing, Acid Hydrolysis and Citric Acid Modifications on Physical and Functional Properties of Starches from Four Yam (Dioscorea spp.) Cultivars. Food Hydrocoll. 2015, 43, 529–539. [Google Scholar] [CrossRef]
- Deka, D.; Sit, N. Dual Modification of Taro Starch by Microwave and Other Heat Moisture Treatments. Int. J. Biol. Macromol. 2016, 92, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Su, L.; Wang, S. Physicochemical Properties of Octenyl Succinic Anhydride-Modified Potato Starch with Different Degrees of Substitution. J. Sci. Food Agric. 2010, 90, 424–429. [Google Scholar] [CrossRef] [PubMed]
Treatment | Moisture Content (%) | Starch Content (%) | Amylose Content (%) |
---|---|---|---|
Native | 11.15 ± 0.07 a | 85.06 ± 0.52 c | 25.09 ± 0.86 bc |
AHT | 10.14 ± 0.15 b | 86.01 ± 0.40 b | 26.23 ± 1.00 a |
OPT | 10.59 ± 0.6 b | 85.47 ± 0.83 bc | 25.97 ± 1.51 ab |
OSA | 8.84 ± 0.53 c | 87.16 ± 0.05 a | 24.85 ± 0.67 c |
CA | 6.41 ± 0.36 d | 85.79 ± 0.01 bc | 25.80 ± 0.78 abc |
Treatment | Particle Size Distribution (μm) | ||||
---|---|---|---|---|---|
<10% | <50% | <90% | Mean | Median | |
Native | 19.39 | 30.11 | 41.82 | 30.33 | 30.11 |
AHT | 17.01 | 35.62 | 100.60 | 46.69 | 35.62 |
OPT | 17.88 | 32.53 | 52.65 | 36.12 | 32.53 |
OSA | 20.75 | 30.61 | 41.25 | 30.65 | 30.61 |
CA | 18.95 | 29.40 | 40.32 | 29.41 | 29.40 |
Treatment | 1047/1022 Ratio (DO) | 995/1022 Ratio (DD) |
---|---|---|
Native | 0.659 ± 0.01 a | 1.235 ± 0.14 bc |
AHT | 0.640 ± 0.00 b | 1.257 ± 0.01 ab |
OPT | 0.657 ± 0.01 a | 1.259 ± 0.03 a |
OSA | 0.647 ± 0.17 ab | 1.217 ± 0.01 c |
CA | 0.659 ± 0.11 a | 1.235 ± 0.02 bc |
Treatment | Swelling Volume (%) | Solubility (%) |
---|---|---|
Native | 24.04 ± 1.26 c | 12.42 ± 1.23 c |
AHT | 13.24 ± 0.77 d | 18.14 ± 0.62 a |
OPT | 11.88 ± 0.43 e | 17.07 ± 0.37 b |
OSA | 28.88 ± 1.65 a | 4.10 ± 0.57 e |
CA | 26.52 ± 0.58 b | 11.20 ± 0.73 d |
Treatment | WAC (g/g db) | OAC (g/g db) | Syneresis (%) |
---|---|---|---|
Native | 0.72 ± 0.04 a | 0.97 ± 0.06 b | 6.26 ± 0.55 a |
AHT | 1.92 ± 0.07 d | 1.08 ± 0.11 c | 0.00 |
OPT | 1.65 ± 0.11 c | 0.98 ± 0.05 bc | 0.00 |
OSA | 1.01 ± 0.28 b | 0.83 ± 0.03 a | 1.54 ± 0.07 b |
CA | 0.94 ± 0.06 b | 0.84 ± 0.05 a | 1.02 ± 0.21 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marta, H.; Hasya, H.N.L.; Lestari, Z.I.; Cahyana, Y.; Arifin, H.R.; Nurhasanah, S. Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon sp.) Using Physical and Chemical Treatment. Polymers 2022, 14, 4845. https://doi.org/10.3390/polym14224845
Marta H, Hasya HNL, Lestari ZI, Cahyana Y, Arifin HR, Nurhasanah S. Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon sp.) Using Physical and Chemical Treatment. Polymers. 2022; 14(22):4845. https://doi.org/10.3390/polym14224845
Chicago/Turabian StyleMarta, Herlina, Hana Nur Layalia Hasya, Zahra Indah Lestari, Yana Cahyana, Heni Radiani Arifin, and Siti Nurhasanah. 2022. "Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon sp.) Using Physical and Chemical Treatment" Polymers 14, no. 22: 4845. https://doi.org/10.3390/polym14224845
APA StyleMarta, H., Hasya, H. N. L., Lestari, Z. I., Cahyana, Y., Arifin, H. R., & Nurhasanah, S. (2022). Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon sp.) Using Physical and Chemical Treatment. Polymers, 14(22), 4845. https://doi.org/10.3390/polym14224845