Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of Phenol-Containing Phthalonitrile Oligomer (PNN) Solution
2.4. Curing of PNN Oligomers with Novolac
2.5. Preparation of Phthalonitrile Prepreg and Composite
2.6. Flammability Tests
3. Results and Discussion
3.1. Synthesis of PNN Oligomer
3.2. Curing Behavior of PNN-NOV Blends
3.3. FRP Manufacturing: Mechanical and Thermal Properties
3.4. Flammability Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guseva, D.V.; Rudyak, V.Y.; Komarov, P.V.; Sulimov, A.V.; Bulgakov, B.A.; Chertovich, A.V. Crosslinking Mechanisms, Structure and Glass Transition in Phthalonitrile Resins: Insight from Computer Multiscale Simulations and Experiments. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 362–374. [Google Scholar] [CrossRef]
- Elsheikh, A. Bistable Morphing Composites for Energy-Harvesting Applications. Polymers 2022, 14, 1893. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A.H.; Abd Elaziz, M.; Ramesh, B.; Egiza, M.; Al-qaness, M.A.A. Modeling of Drilling Process of GFRP Composite Using a Hybrid Random Vector Functional Link Network/Parasitism-Predation Algorithm. J. Mater. Res. Technol. 2021, 14, 298–311. [Google Scholar] [CrossRef]
- Alnajmi, L.; Abed, F. Evaluation of FRP Bars under Compression and Their Performance in RC Columns. Materials 2020, 13, 4541. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, M.V.; Sheshenin, S.V. Modeling the Progressive Failure of Laminated Composites. Mech. Compos. Mater. 2016, 51, 695–706. [Google Scholar] [CrossRef]
- Guseva, D.V.; Rudyak, V.Y.; Komarov, P.V.; Bulgakov, B.A.; Babkin, A.V.; Chertovich, A.V. Dynamic and Static Mechanical Properties of Crosslinked Polymer Matrices: Multiscale Simulations and Experiments. Polymers 2018, 10, 792. [Google Scholar] [CrossRef] [Green Version]
- Miracle, D.B.; Donaldson, S.L. Composites. In ASM Handbook; Henry, S.D., Moosbrugger, C., Anton, G.J., Sanders, B.R., Hrivnak, N., Terman, C., Kinson, J., Muldoon, K., Scott, W.W., Jr., Eds.; ASM International: Almere, The Netherlands, 2001; Volume 21, p. 7. ISBN 0-87170-703-9. [Google Scholar]
- Li, C.; Xian, G. Mechanical Property Evolution and Life Prediction of Carbon Fiber and Pultruded Carbon Fiber Reinforced Polymer Plate Exposed to Elevated Temperatures. Polym. Compos. 2020, 41, 5143–5155. [Google Scholar] [CrossRef]
- Dirlikov, S.K. Propargyl-Terminated Resins—A Hydrophobic Substitute for Epoxy Resins. High Perform. Polym. 1990, 2, 67–77. [Google Scholar] [CrossRef]
- Nair, C.P.R. Advances in Addition-Cure Phenolic Resins. Prog. Polym. Sci. 2004, 29, 401–498. [Google Scholar] [CrossRef]
- Bulgakov, B.; Babkin, A.; Makarenko, I.; Tikhonov, N.; Kalugin, D.; Kepman, A.; Malakho, A.; Avdeev, V. Ni(II) and Cu(II) Based Catalysts for Propargylated Novolac Resins Curing: Activity Study and Curing Process Simulation. Eur. Polym. J. 2015, 73, 247–258. [Google Scholar] [CrossRef]
- Sreelal, N.; Balachandran, N.; Vijayalekshmi, K.P. Synthesis and characterization of low temperature curable phthalonitrile containing propargyl- novolacs through click-chemistry approach. J. Polym. Res. 2022, 29, 376. [Google Scholar] [CrossRef]
- Sirotin, I.S.; Sarychev, I.A.; Vorobyeva, V.V.; Kuzmich, A.A.; Bornosuz, N.V.; Onuchin, D.V.; Gorbunova, I.Y.; Kireev, V.V. Synthesis of Phosphazene-Containing, Bisphenol A-Based Benzoxazines and Properties of Corresponding Polybenzoxazines. Polymers 2020, 12, 1225. [Google Scholar] [CrossRef]
- McConnell, V.P. Resins for the Hot Zone, Part II: BMIs, CEs, Benzoxazines and Phthalonitriles; CompositesWorld: Cincinnati, OH, USA, 2009. [Google Scholar]
- Ishida, H.; Agag, T. (Eds.) Handbook of Benzoxazine Resins, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780444537904. [Google Scholar]
- Bauer, M.; Wurzel, R.; Uhlig, C.; Bauer, J. Flame-Resistant, Low-Temperature Curing Cyanate-Based Resins with Improved Properties. U.S. Patent Application No. 11/747,269, 22 May 2008. [Google Scholar]
- Uhlig, C.; Bauer, M.; Bauer, J.; Kahle, O.; Taylor, A.C.; Kinloch, A.J. Influence of Backbone Structure, Conversion and Phenolic Co-Curing of Cyanate Esters on Side Relaxations, Fracture Toughness, Flammability Properties and Water Uptake and Toughening with Low Molecular Weight Polyethersulphones. React. Funct. Polym. 2018, 129, 2–22. [Google Scholar] [CrossRef]
- Hamerton, I. Chemistry and Technology of Cyanate Ester Resins; Springer Science & Business Media: Dordrecht, The Netherlands, 1994; ISBN 9401113262. [Google Scholar]
- Evsyukov, S.E.; Pohlmann, T.; Stenzenberger, H.D. M-Xylylene Bismaleimide: A Versatile Building Block for High-Performance Thermosets. Polym. Adv. Technol. 2015, 26, 574–580. [Google Scholar] [CrossRef]
- Evsyukov, S.; Klomp-de Boer, R.; Stenzenberger, H.; Pohlmann, T.; Wiel, M. A New m -Xylylene Bismaleimide-Based High Performance Resin for Vacuum-Assisted Infusion and Resin Transfer Molding. J. Compos. Mater. 2019, 53, 3063–3072. [Google Scholar] [CrossRef]
- Iredale, R.J.; Ward, C.; Hamerton, I. Modern Advances in Bismaleimide Resin Technology: A 21st Century Perspective on the Chemistry of Addition Polyimides. Prog. Polym. Sci. 2017, 69, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Evsyukov, S.; Pohlmann, T.; ter Wiel, M. Modern Approaches to the Processing of Bismaleimide Resins. In Current Trends in Polymer Science; Research Trends (P) Ltd.: Kerala, India, 2021; Volume 20, pp. 1–28. [Google Scholar]
- Babkin, A.V.; Erdni-Goryaev, E.M.; Solopchenko, A.V.; Kepman, A.V.; Avdeev, V.V. Mechanical and Thermal Properties of Modified Bismaleimide Matrices Toughened by Polyetherimides and Polyimide. Polym. Adv. Technol. 2016, 27, 774–780. [Google Scholar] [CrossRef]
- Satheesh Chandran, M.; Niranjana Sreelal, C.P. Reghunadhan Nair Chapter 12—Maleimide based Alder-ene thermosets: Recent advances. In Handbook of Thermoset Plastics, 4th ed.; Plastics Design Library; Elsevier: Amsterdam, The Netherlands, 2022; pp. 619–657. [Google Scholar] [CrossRef]
- Bulgakov, B.A.; Morozov, O.S.; Timoshkin, I.A.; Babkin, A.V.; Kepman, A.V. Bisphthalonitrile-Based Thermosets as Heat-Resistant Matrices for Fiber Reinforced Plastics. Polym. Sci.–Ser. C 2021, 63, 64–101. [Google Scholar] [CrossRef]
- Sastri, S.B.; Armistead, J.P.; Keller, T.M. Phthalonitrile-Carbon Fiber Composites. Polym. Compos. 1996, 17, 816–822. [Google Scholar] [CrossRef]
- Sastri, S.B.; Keller, T.M. Phthalonitrile Thermoset Polymers and Composites Cured with Halogen-Containing Aromatic Amine Curing Agents. U.S. Patent US5925475A, 20 July 1997. [Google Scholar]
- Zu, Y.; Zhang, F.; Chen, D.; Zong, L.; Wang, J.; Jian, X. Wave-Transparent Composites Based on Phthalonitrile Resins with Commendable Thermal Properties and Dielectric Performance. Polymer 2020, 198, 122490. [Google Scholar] [CrossRef]
- Ren, D.; Li, K.; Chen, L.; Chen, S.; Han, M.; Xu, M.; Liu, X. Modification on Glass Fiber Surface and Their Improved Properties of Fiber-Reinforced Composites via Enhanced Interfacial Properties. Compos. Part B Eng. 2019, 177, 107419. [Google Scholar] [CrossRef]
- Liu, C.; Qiao, Y.; Jia, H.; Li, N.; Chen, Y.; Jian, X. Improved Mechanical Properties of Basalt Fiber/Phthalonitrile Composites Modified by Thermoplastic Poly(Phthalazinone Ether Nitrile)s. Polymer 2021, 228, 123947. [Google Scholar] [CrossRef]
- Sun, B.-G.G.; Lei, Q.; Guo, Y.; Shi, H.-Q.Q.; Sun, J.-B.B.; Yang, K.-X.X.; Zhou, H.; Li, Y.-Q.Q.; Hu, N.; Wang, H.; et al. Enhanced Mechanical Properties at 400 °C of Carbon Fabric Reinforced Phthalonitrile Composites by High Temperature Postcure. Compos. Part B Eng. 2019, 166, 681–687. [Google Scholar] [CrossRef]
- Sun, J.; Han, Y.; Zhao, Z.; Wang, G.; Zhan, S.; Ding, J.; Liu, X.; Guo, Y.; Zhou, H.; Zhao, T. Improved Toughness of Phthalonitrile Composites through Synergistic Toughening Methods. Compos. Commun. 2021, 26, 100779. [Google Scholar] [CrossRef]
- Medjahed, A.; Derradji, M.; Zegaoui, A.; Wu, R.; Li, B.; Wang, Y.; Hou, L.; Zhang, J.; Zhang, M. Fabrication Process, Tensile, and Gamma Rays Shielding Properties of Newly Developed Fiber Metal Laminates Based on an Al–Li Alloy and Carbon Fibers-Tungsten Carbide Nanoparticles Reinforced Phthalonitrile Resin Composite. Adv. Eng. Mater. 2019, 21, 1800779. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Zhou, H.; Lin, X.; Zhao, T.; Zhang, M.; Xu, C. Self-Catalyzed Silicon-Containing Phthalonitrile Resins with Low Melting Point, Excellent Solubility and Thermal Stability. J. Appl. Polym. Sci. 2014, 131, 1–7. [Google Scholar] [CrossRef]
- Han, Y.; Tang, D.; Wang, G.; Guo, Y.; Zhou, H.; Qiu, W.; Zhao, T. Low Melting Phthalonitrile Resins Containing Methoxyl and/or Allyl Moieties: Synthesis, Curing Behavior, Thermal and Mechanical Properties. Eur. Polym. J. 2019, 111, 104–113. [Google Scholar] [CrossRef]
- Laskoski, M.; Schear, M.B.; Neal, A.; Dominguez, D.D.; Ricks-Laskoski, H.L.; Hervey, J.; Keller, T.M. Improved synthesis and properties of aryl ether-based oligomeric phthalonitrile resins and polymers. Polymer 2015, 67, 185–191. [Google Scholar] [CrossRef]
- Wang, T.; Dayo, A.Q.; Wang, Z.; Lu, H.; Shi, C.; Pan, Z.; Wang, J.; Zhou, H.; Liu, W. Novel self-promoted phthalonitrile monomer with siloxane segments: Synthesis, curing kinetics, and thermal properties. New J. Chem. 2022, 46, 4072–4081. [Google Scholar] [CrossRef]
- Wu, M.; Xu, J.; Bai, S.; Chen, X.; Yu, X.; Naito, K.; Zhang, Z.; Zhang, Q. A high-performance functional phthalonitrile resin with a low melting point and a low dielectric constant. Soft Matter. 2020, 16, 1888–1896. [Google Scholar] [CrossRef]
- Dominguez, D.D.; Keller, T.M. Low-melting Phthalonitrile Oligomers: Preparation, Polymerization and Polymer Properties. J. High. Perform. Polym. 2006, 18, 283–304. [Google Scholar] [CrossRef]
- Terekhov, V.E.; Aleshkevich, V.V.; Afanaseva, E.S.; Nechausov, S.S.; Babkin, A.V.; Bulgakov, B.A.; Kepman, A.V.; Avdeev, V.V. Bis(4-cyanophenyl) phenyl phosphate as viscosity reducing comonomer for phthalonitrile resins. React. Funct. Polym. 2019, 139, 34–41. [Google Scholar] [CrossRef]
- Yakovlev, M.V.; Morozov, O.S.; Afanaseva, E.S.; Bulgakov, B.A.; Babkin, A.V.; Kepman, A.V. Tri-Functional Phthalonitrile Monomer as Stiffness Increasing Additive for Easy Processable High Performance Resins. React. Funct. Polym. 2020, 146, 104409. [Google Scholar] [CrossRef]
- Bulgakov, B.A.; Sulimov, A.V.; Babkin, A.V.; Timoshkin, I.A.; Solopchenko, A.V.; Kepman, A.V.; Avdeev, V.V. Phthalonitrile-Carbon Fiber Composites Produced by Vacuum Infusion Process. J. Compos. Mater. 2017, 51, 4157–4164. [Google Scholar] [CrossRef]
- Timoshkin, I.A.; Aleshkevich, V.V.; Afanas’eva, E.S.; Bulgakov, B.A.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V. Heat-Resistant Carbon Fiber Reinforced Plastics Based on a Copolymer of Bisphthalonitriles and Bisbenzonitrile. Polym. Sci. Ser. C 2020, 62, 172–182. [Google Scholar] [CrossRef]
- Bulgakov, B.A.; Belsky, K.S.; Nechausov, S.S.; Afanaseva, E.S.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V. Carbon Fabric Reinforced Propargyl Ether/Phthalonitrile Composites Produced by Vacuum Infusion. Mendeleev Commun. 2018, 28, 44–46. [Google Scholar] [CrossRef]
- Yakovlev, M.V.; Kuchevskaia, M.E.; Terekhov, V.E.; Morozov, O.S.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V.; Bulgakov, B.A. Easy Processable Tris-Phthalonitrile Based Resins and Carbon Fabric Reinforced Composites Fabricated by Vacuum Infusion. Mater. Today Commun. 2022, 33, 104738. [Google Scholar] [CrossRef]
- Bulgakov, B.A.; Sulimov, A.V.; Babkin, A.V.; Afanasiev, D.V.; Solopchenko, A.V.; Afanaseva, E.S.; Kepman, A.V.; Avdeev, V.V. Flame-Retardant Carbon Fiber Reinforced Phthalonitrile Composite for High-Temperature Applications Obtained by Resin Transfer Molding. Mendeleev Commun. 2017, 3, 257–259. [Google Scholar] [CrossRef]
- Laskoski, M.; Dominguez, D.D.; Keller, T.M. Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability. Polymer 2007, 48, 6234–6240. [Google Scholar] [CrossRef]
- Jia, Y.; Bu, X.; Dong, J.; Zhou, Q.; Liu, M.; Wang, F.; Wang, M. Catalytic Polymerization of Phthalonitrile Resins by Carborane with Enhanced Thermal Oxidation Resistance: Experimental and Molecular Simulation. Polymers 2022, 14, 219. [Google Scholar] [CrossRef]
- Derradji, M.; Ramdani, N.; Gong, L.D.; Wang, J.; Xu, X.D.; Lin, Z.W.; Henniche, A.; Liu, W. Bin Mechanical, Thermal, and UV-Shielding Behavior of Silane Surface Modified ZnO-Reinforced Phthalonitrile Nanocomposites. Polym. Adv. Technol. 2016, 27, 882–888. [Google Scholar] [CrossRef]
- Dominguez, D.D.; Jones, H.N.; Keller, T.M. The Effect of Curing Additive on the Mechanical Properties of Phthalonitrile-Carbon Fiber Composites. Polym. Compos. 2004, 25, 554–561. [Google Scholar] [CrossRef]
- Kolesnikov, T.I.; Orlova, A.M.; Tsegelskaya, A.Y.; Cherkaev, G.V.; Kechekyan, A.S.; Buzin, A.I.; Dmitryakov, P.V.; Belousov, S.I.; Abramov, I.G.; Serushkina, O.V.; et al. Dual-curing propargyl-phthalonitrile imide-based thermoset: Synthesis, characterization and curing behavior. Eur. Polym. J. 2021, 161, 110865. [Google Scholar] [CrossRef]
- Aleshkevich, V.V.; Bulgakov, B.A.; Lipatov, Y.V.; Babkin, A.V.; Kepman, A.V. High Performance Carbon–Carbon Composites Obtained by a Two-Step Process from Phthalonitrile Matrix Composites. Mendeleev Commun. 2022, 32, 327–330. [Google Scholar] [CrossRef]
- Zhan, S.-Y.; Han, Y.; Wu, Y.-H.; Ding, J.-N.; Liu, X.; Guo, Y.; Zhou, H.; Zhao, T. Boron-Containing Phthalonitrile Resin: Synthesis, Curing Behavior, and Thermal Properties. Chin. J. Polym. Sci. Engl. Ed. 2022, 40, 1349–1359. [Google Scholar] [CrossRef]
- Terekhov, V.E.; Morozov, O.S.; Afanaseva, E.S.; Bulgakov, B.A.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V. Fluorinated Phthalonitrile Resins with Improved Thermal Oxidative Stability. Mendeleev Commun. 2020, 30, 671–673. [Google Scholar] [CrossRef]
- Hu, J.; Xie, H.; Zhu, Z.; Yang, W.; Tan, W.; Zeng, K.; Yang, G. Reducing the Melting Point and Curing Temperature of Aromatic Cyano-Based Resins Simultaneously through a Brønsted Acid-Base Synergistic Strategy. Polymer 2022, 246, 124745. [Google Scholar] [CrossRef]
- Ji, S.; Yuan, P.; Hu, J.; Sun, R.; Zeng, K.; Yang, G. A Novel Curing Agent for Phthalonitrile Monomers: Curing Behaviors and Properties of the Polymer Network. Polymer 2016, 84, 365–370. [Google Scholar] [CrossRef]
- Sheng, L.; Xiang, K.; Qiu, R.; Wang, Y.; Su, S.; Yina, D.; Chen, Y. Polymerization Mechanism of 4-APN and a New Catalyst for Phthalonitrile Resin Polymerization. RSC Adv. 2020, 10, 39187–39194. [Google Scholar] [CrossRef]
- Pu, Y.; Xie, H.; He, X.; Lv, J.; Zhu, Z.; Hong, J.; Zeng, K.; Hu, J.; Yang, G. The Curing Reaction of Phthalonitrile Promoted by Sulfhydryl Groups with High Curing Activity. Polymer 2022, 252, 124948. [Google Scholar] [CrossRef]
- Laskoski, M.; Shepherd, A.R.; Mahzabeen, W.; Clarke, J.S.; Keller, T.M.; Sorathia, U. Sustainable, Fire-Resistant Phthalonitrile-Based Glass Fiber Composites. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 1128–1132. [Google Scholar] [CrossRef]
- Augustine, D.; Mathew, D.; Reghunadhan Nair, C. End-Functionalized Thermoplastic-Toughened Phthalonitrile Composites: Influence on Cure Reaction and Mechanical and Thermal Properties. Polym. Int. 2015, 64, 146–153. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Wang, Y.; Zhou, H. Novolac/Phenol-Containing Phthalonitrile Blends: Curing Characteristics and Composite Mechanical Properties. Polymers 2020, 12, 126. [Google Scholar] [CrossRef] [Green Version]
- Augustine, D.; Mathew, D.; Nair, C.P.R. Phenol-Containing Phthalonitrile Polymers–Synthesis, Cure Characteristics and Laminate Properties. Polym. Int. 2013, 62, 1068–1076. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, Z.; Zhou, H.; Liu, F.; Yu, R.; Pan, Y.; Wang, Y.; Zhao, T. Addition-Curable Phthalonitrile-Functionalized Novolac Resin. High Perform. Polym. 2012, 24, 398–404. [Google Scholar] [CrossRef]
- Augustine, D.; Vijayalakshmi, K.P.; Sadhana, R.; Mathew, D.; Reghunadhan Nair, C.P. Hydroxyl Terminated PEEK-Toughened Epoxy-Amino Novolac Phthalonitrile Blends–Synthesis, Cure Studies and Adhesive Properties. Polymer 2014, 55, 6006–6016. [Google Scholar] [CrossRef]
- Bindu, R.L.; Reghunadhan Nair, C.P.; Ninan, K.N. Addition-Cure Phenolic Resins Based on Propargyl Ether Functional Novolacs: Synthesis, Curing and Properties. Polym. Int. 2001, 50, 651–658. [Google Scholar] [CrossRef]
- Xu, S.; Han, Y.; Guo, Y.; Luo, Z.; Ye, L.; Li, Z.; Zhou, H.; Zhao, Y.; Zhao, T. Allyl Phenolic-Phthalonitrile Resins with Tunable Properties: Curing, Processability and Thermal Stability. Eur. Polym. J. 2017, 95, 394–405. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, G.; Wang, W.; Wei, L.; Zhang, Q.; Song, L.; Fang, X. Synthesis and Characterization of Transparent Polyimides Derived from Ester-Containing Dianhydrides with Different Electron Affinities. RSC Adv. 2015, 5, 79207–79215. [Google Scholar] [CrossRef]
- Wohrle, D.; Knothe, G. Reaction of 4-Nitrophthalonitrile with Carbonate, Nitrite, And Fluoride. Synth. Commun. 1989, 19, 3231–3239. [Google Scholar] [CrossRef]
- Eryılmaz, S.; Akdemir, N.; İnkaya, E. The Examination of Molecular Structure Properties of 4,4′-Oxydiphthalonitrile Compound: Combined Spectral and Computational Analysis Approaches. Spectrosc. Lett. 2019, 52, 28–42. [Google Scholar] [CrossRef]
- Augustine, D.; Mathew, D.; Reghunadhan Nair, C.P. One Component Propargyl Phthalonitrile Novolac: Synthesis and Characterization. Eur. Polym. J. 2015, 71, 389–400. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Y.; Wang, G.; Xu, S.; Han, Y.; Liu, X.; Luo, Z.; Ye, L.; Zhou, H.; Zhao, T. Preparation and Characterization of a Self-Catalyzed Fluorinated Novolac-Phthalonitrile Resin. Polym. Adv. Technol. 2018, 29, 2936–2942. [Google Scholar] [CrossRef]
- Snow, A.W.; Griffith, J.R.; Marullo, N.P. Syntheses and Characterization of Heteroatom-Bridged Metal-Free Phthalocyanine Network Polymers and Model Compounds. Macromolecules 1984, 17, 1614–1624. [Google Scholar] [CrossRef]
- Kolb, M. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry. Synth. Commun. 1993, 23, vii. [Google Scholar] [CrossRef]
- Sastri, S.B.; Keller, T.M. Phthalonitrile Polymers: Cure Behavior and Properties. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 2105–2111. [Google Scholar] [CrossRef]
- Sastri, S.B.; Keller, T.M. Phthalonitrile Cure Reaction with Aromatic Diamines. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 1885–1890. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Guo, Y.; Wang, S.; Sun, J.; Zhou, H.; Zhao, T. Phthalonitrile-Terminated Silicon-Containing Oligomers: Synthesis, Polymerization, and Properties. Ind. Eng. Chem. Res. 2019, 58, 9921–9930. [Google Scholar] [CrossRef]
- Xu, X.; Xu, M.; Liu, T.; Ren, D.; Liu, X. Understanding the curing behaviors and properties of phthalonitrile containing benzoxazine with a new type of aniline curing agent. Polym. Test. 2022, 107, 107487. [Google Scholar] [CrossRef]
- Wu, Z.; Li, N.; Han, J.; Wang, C.; Yuan, K.; Zeng, Q.; Wang, J.; Jian, X. Low-Viscosity and Soluble Phthalonitrile Resin with Improved Thermostability for Organic Wave-Transparent Composites. J. Appl. Polym. Sci. 2018, 135, 45976. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, D.J.; Kim, H.J.; Hwang, T.S.; Rafailovich, M.; Sokolov, J. Activation Energy and Curing Behavior of Resol- and Novolac-Type Phenolic Resins by Differential Scanning Calorimetry and Thermogravimetric Analysis. J. Appl. Polym. Sci. 2003, 89, 2589–2596. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, H.; Tang, H.; Yang, X.; Xu, M.; Liu, X. Preparation and Properties of Bisphenol A-Based Bis-Phthalonitrile Composite Laminates. J. Appl. Polym. Sci. 2013, 129, 2621–2628. [Google Scholar] [CrossRef]
- Yang, X.; Li, K.; Xu, M.; Liu, X. Significant Improvement of Thermal Oxidative Mechanical Properties in Phthalonitrile GFRP Composites by Introducing Microsilica as Complementary Reinforcement. Compos. Part B Eng. 2018, 155, 425–430. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Zong, L.; Li, N.; Wang, J.; Jian, X. Novel Phthalonitrile-Based Composites with Excellent Processing, Thermal, and Mechanical Properties. High Perform. Polym. 2018, 30, 720–730. [Google Scholar] [CrossRef]
- Sastri, S.B.; Armistead, J.P.; Keller, T.M. Phthalonitrile-Glass Fabric Composites. Int. SAMPE Symp. Exhib. 1996, 41, 171–177. [Google Scholar] [CrossRef]
- Guo, X.; Liang, B.; Chen, M.; He, X.; Xiao, H.; Zeng, K.; Zhou, T.; Hu, J.; Yang, G. Study on Pyrolysis Behavior of Bio-based adenine containing phthalonitrile resin obtained by powder metallurgy-like process. Polym. Degrad. Stab. 2021, 188, 109569. [Google Scholar] [CrossRef]
- Zhu, S.E.; Wang, F.D.; Liu, J.J.; Wang, L.L.; Wang, C.; Yuen, A.C.Y.; Chen, T.B.Y.; Kabir, I.; Yeoh, G.H.; Lu, H.D.; et al. BODIPY coated on MXene nanosheets for improving mechanical and fire safety properties of ABS resin. Compos. Part B Eng. 2021, 223, 109130. [Google Scholar] [CrossRef]
- Giménez-López, J.; Millera, A.; Bilbao, R.; Alzueta, M.U. HCN Oxidation in an O2/CO2 Atmosphere: An Experimental and Kinetic Modeling Study. Combust. Flame 2010, 157, 267–276. [Google Scholar] [CrossRef]
- Dagaut, P.; Glarborg, P.; Alzueta, M.U. The Oxidation of Hydrogen Cyanide and Related Chemistry. Prog. Energy Combust. Sci. 2008, 34, 1–46. [Google Scholar] [CrossRef]
Blend | Curing Time at 220 °C, min |
---|---|
NOV 25 | 5 |
NOV 50 | 7 |
NOV 75 | 12 |
Post-Curing Temperature, °C | Post-Curing Time | |||
---|---|---|---|---|
30 min | 1 h | 2 h | ||
Tg, °C | 280 | 329 | 324 | 354 |
300 | 360 | 372 | 379 | |
Weight loss of matrix, wt% | 280 | 0.6 | 1.3 | 1.4 |
300 | 2.2 | 2.9 | 3.9 |
Fiber | Carbon | Glass | Glass | ||
---|---|---|---|---|---|
Matrix | NOV25 | NOV20 | NOV15 | NOV5 | |
Interlaminar shear strength τ13, MPa | 26.7 ± 1.1 | 86.2 ± 2.9 | 78.6 ± 2.8 | 72.0 ± 4.7 | 66.4 ± 4.0 |
Compressive strength σ11−, MPa | 533 ± 67 | 620 ± 49 | 555 ± 32 | 496 ± 35 | 462 ± 27 |
Compressive modulus, GPa | 60.5 ± 6.6 | 34.4 ± 1.5 | 33.3 ± 2.6 | 33.6 ± 3.8 | 27.4 ± 3.6 |
Flexural strength, MPa | 632 ± 33 | 946 ± 28 | 797 ± 30 | 906 ± 16 | 866 ± 70 |
Tensile strength, σ11+, MPa | 728 ± 35 | 698 ± 19 | 599 ± 26 | 610 ± 24 | 593 ± 19 |
Tensile modulus, E11+, GPa | 51.8 ± 2.8 | 35.7 ± 0.5 | 32.1 ± 0.8 | 32.0 ± 0.5 | 31.0 ± 1.0 |
Tg, °C | 345 | 308 | 301 | 309 | 307 |
Measurement Temperature, °C | RT | 200 | 250 |
---|---|---|---|
Interlaminar shear strength τ13, MPa | 37.6 ± 1.6 | 33.1 ± 3.0 | 30.7 ± 1.7 |
Compressive strength σ11−, MPa | 285.6 ± 5.6 | 207.2 ± 6.1 | 203.7 ± 6.7 |
Compressive modulus, GPa | 21.2 ± 0.5 | 16.3 ± 0.5 | 16.8 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poliakova, D.; Morozov, O.; Lipatov, Y.; Babkin, A.; Kepman, A.; Avdeev, V.; Bulgakov, B. Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites. Polymers 2022, 14, 4975. https://doi.org/10.3390/polym14224975
Poliakova D, Morozov O, Lipatov Y, Babkin A, Kepman A, Avdeev V, Bulgakov B. Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites. Polymers. 2022; 14(22):4975. https://doi.org/10.3390/polym14224975
Chicago/Turabian StylePoliakova, Daria, Oleg Morozov, Yakov Lipatov, Alexander Babkin, Alexey Kepman, Viktor Avdeev, and Boris Bulgakov. 2022. "Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites" Polymers 14, no. 22: 4975. https://doi.org/10.3390/polym14224975
APA StylePoliakova, D., Morozov, O., Lipatov, Y., Babkin, A., Kepman, A., Avdeev, V., & Bulgakov, B. (2022). Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites. Polymers, 14(22), 4975. https://doi.org/10.3390/polym14224975