Self-Assembled Serpentine Ni3Si2O5(OH)4 Hybrid Sheets with Ammonium Polyphosphate for Fire Safety Enhancement of Polylactide Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Serpentine@APP Hybrid
2.3. Preparation of PLA Composites
2.4. Characterization
3. Results and Discussion
3.1. Characterization of Serpentine@APP
3.2. Fractured Surface Analysis of PLA Composites
3.3. Thermal Stability
3.4. Flame-Retardant Performance
3.5. Char Residues Analysis
3.6. Rheological Behavior of PLA Composites
3.7. Mechanical Properties of PLA Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raquez, J.M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542. [Google Scholar] [CrossRef]
- Armentano, I.; Bitinis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-Manchado, M.A.; Kenny, J.M. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog. Polym. Sci. 2013, 38, 1720–1747. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Han, S.; Venkatesh, S.; Sun, Q.; Peng, H.; Zhou, Y.; Yeung, C.; Li, R.K.Y.; Roy, V.A.L. Biodegradable skin-inspired nonvolatile resistive switching memory based on gold nanoparticles embedded alkali lignin. Org. Electron. 2018, 59, 382–388. [Google Scholar] [CrossRef]
- Wu, W.; Cao, X.W.; Zhang, Y.J.; He, G.J. Polylactide/halloysite nanotube nanocomposites: Thermal, mechanical properties, and foam processing. J. Appl. Polym. Sci. 2013, 130, 443–452. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Yuen, A.C.Y.; Yuen, R.K.K.; Xin, J.H.; Fei, B. Thermal, crystalline and mechanical properties of flame retarded poly(lactic acid) with a PBO-like small molecule-phenylphosphonic bis(2-aminobenzothiazole). Polym. Degrad. Stab. 2019, 163, 76–86. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Yang, W.; Yuen, R.K.K.; Fei, B. Flame retardant poly(lactic acid) biocomposites based on azo-boron coupled 4,4’-sulfonyldiphenol and its combination with calcium lignosulfonate-crystalline and mechanical properties. Polym. Adv. Technol. 2019, 30, 2207–2220. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Wei, R.C.; Yuen, R.K.K.; Chen, W.; Xin, J.H.; Fei, B. Simultaneous fire safety enhancement and mechanical reinforcement of poly (lactic acid) biocomposites with hexaphenyl (nitrilotris(ethane-2,1-diyl))tris (phosphoramidate). J. Hazard. Mater. 2019, 380, 120856. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhou, K.Q.; Wen, P.Y.; Wang, B.B.; Hu, Y.; Gui, Z. The influence of multiple modified MMT on the thermal and fire behavior of poly(lactic acid) nanocomposites. Polym. Adv. Technol. 2015, 26, 626–634. [Google Scholar] [CrossRef]
- Wen, X.; Liu, Z.Q.; Li, Z.; Zhang, J.; Wang, D.Y.; Szymanska, K.; Chen, X.C.; Mijowska, E.; Tang, T. Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties. Compos. Sci. Technol. 2020, 188, 107988. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, S.; Bourbigot, S.; Chen, Z.L.; Duquesne, S.; Casetta, M. Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites. Polym. Degrad. Stab. 2019, 165, 68–79. [Google Scholar] [CrossRef]
- Hu, Y.D.; Xu, P.; Gui, H.G.; Wang, X.X.; Ding, Y.S. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos. Part A Appl. Sci. Manuf. 2015, 77, 147–153. [Google Scholar] [CrossRef]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar]
- Yue, X.P.; Li, C.F.; Ni, Y.H.; Xu, Y.J.; Wang, J. Flame retardant nanocomposites based on 2D layered nanomaterials: A review. J. Mater. Sci. 2019, 54, 13070–13105. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Fei, B. Advances in flame retardant poly(lactic acid). Polymers 2018, 10, 876. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.W.; Chi, X.N.; Deng, X.Q.; Liu, T.; Yu, B.; Wang, B.; Yuen, A.C.Y.; Wu, W.; Li, R.K.Y. Synergistic effect of flame retardants and graphitic carbon nitride on flame retardancy of polylactide composites. Polym. Adv. Technol. 2020, 31, 1661–1670. [Google Scholar] [CrossRef]
- Xu, L.F.; Tan, X.W.; Xu, R.J.; Xie, J.Y.; Lei, C.H. Influence of functionalized molybdenum disulfide (MoS2) with triazine derivatives on the thermal stability and flame retardancy of intumescent Poly(lactic acid) system. Polym. Compos. 2019, 40, 2244–2257. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, Y.; Fang, Z.P.; Wang, D.Y. Core-shell flame retardant/graphene oxide hybrid: A self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid. Compos. Sci. Technol. 2018, 165, 161–167. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Y.X.; Wang, W.J.; Gu, X.Y.; Li, H.F.; Li, J.H.; Sun, J. Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites. Polym. Degrad. Stab. 2018, 147, 142–150. [Google Scholar] [CrossRef]
- Malvoisin, B.; Chopin, C.; Baronnet, A.; Brunet, F.; Bezacier, L.; Guillot, S. Fe-Ni-rich silicate aggregates formed after sulfides in high-pressure serpentinites. J. Petrol. 2017, 58, 963–978. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yang, B.P.; He, Y.Q.; He, Y.L.; Liu, X.H.; Liu, M.; Song, G.Y.; Chen, G.; Pan, A.Q.; Liang, S.Q.; et al. Serpentine Ni3Ge2O5(OH)4 nanosheets with tailored layers and size for efficient oxygen evolution reactions. Small 2018, 14, 1803015. [Google Scholar] [CrossRef]
- Dong, X.Y.; Zhang, Y.F.; Wang, Q.S.; Zhang, X.R.; Gao, M.; Meng, C.G. Synthesis of urchin-like Ni3Si2O5(OH)4 hierarchical hollow spheres/GO composite with enhanced electrochemical properties for high-performance hybrid supercapacitors. Dalton Trans. 2019, 48, 11749–11762. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.C.; Pan, T.S.; Wang, D.K.; Li, J.C.; Jin, L.; Huang, L.; Jiang, J.H.; Qi, Z.H.; Zhang, H.L.; Gao, M.; et al. Stretchable micromotion sensor with enhanced sensitivity using serpentine layout. ACS Appl. Mater. Inter. 2019, 11, 12261–12271. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.G.; Xiao, Z.Y.; Zhang, N.; Liang, B.; Chen, G.; Wu, W.; Pan, J.L.; Liu, M.; Zheng, X.R.; Kang, Q. Photo-irradiation tunes highly active sites over β-Ni(OH)2 nanosheets for the electrocatalytic oxygen evolution reaction. Chem. Commun. 2021, 57, 9060–9063. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Huang, Y.; Han, X.P.; Zhang, K.C. Synthesis of cobalt nanofibers@nickel sulfide nanosheets hierarchical core-shell composites for anode materials of lithium ion batteries. Electrochim. Acta 2018, 284, 418–426. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Nevedomsky, V.N.; Gusarov, V.V. Comparative energy modeling of multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscroll growth. J. Phys. Chem. C 2017, 121, 12495–12502. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, P.; Yue, H.R.; Xiang, G.; Qian, Z.X.; Li, H.T.; Jiang, W.; Liang, B.; Pehkonen, S.O.; Yuan, S.J. Poly(methacrylic acid)-graft-Ni3Si2O5(OH)4 multiwalled nanotubes as a novel nanosorbent for effective removal of copper(II) ions. Colloids Surf. A 2016, 502, 89–101. [Google Scholar] [CrossRef]
- Lu, J.W.; Sun, M.J.; Yuan, Z.T.; Qi, S.L.; Tong, Z.Y.; Li, L.X.; Meng, Q.Y. Innovative insight for sodium hexametaphosphate interaction with serpentine. Colloids Surf. A 2019, 560, 35–41. [Google Scholar] [CrossRef]
- Xiong, Z.Q.; Zhang, Y.; Du, X.Y.; Song, P.A.; Fang, Z.P. Green and scalable fabrication of core-shell biobased flame retardants for reducing flammability of polylactic acid. ACS Sustain. Chem. Eng. 2019, 7, 8954–8963. [Google Scholar] [CrossRef]
- Cao, X.W.; Chi, X.N.; Deng, X.Q.; Sun, Q.J.; Gong, X.J.; Yu, B.; Yuen, A.C.Y.; Wu, W.; Li, R.K.Y. Facile synthesis of phosphorus and cobalt co-doped graphitic carbon nitride for fire and smoke suppressions of polylactide composite. Polymers 2020, 12, 1106. [Google Scholar] [CrossRef]
- Tong, Y.Z.; Wu, W.; Zhao, W.J.; Xing, Y.R.; Zhang, H.T.; Wang, C.; Chen, T.B.Y.; Yuen, A.C.Y.; Yu, B.; Cao, X.W.; et al. Nanohybrid of Co3O4 nanoparticles and polyphosphazene-decorated ultra-thin boron nitride nanosheets for simultaneous enhancement in fire safety and smoke suppression of thermoplastic polyurethane. Polymers 2022, 14, 4341. [Google Scholar] [CrossRef]
- Wu, W.; Huang, W.J.; Tong, Y.Z.; Huang, J.S.; Wu, J.C.; Cao, X.W.; Zhang, Q.C.; Yu, B.; Li, R.K.Y. Self-assembled double core-shell structured zeolitic imidazole framework-8 as an effective flame retardant and smoke suppression agent for thermoplastic polyurethane. Appl. Surf. Sci. 2022, 610, 155540. [Google Scholar] [CrossRef]
- Yu, H.L.; Cui, J.F.; Zhang, H.Y.; Yang, B.P.; Guo, J.H.; Mu, B.; Wang, Z.H.; Li, H.M.; Tian, L.L. A novel flame retardant consisting of functionalized Salen-Ni based polyphosphazene microspheres. High Perform. Polym. 2022, 34, 09540083221094972. [Google Scholar] [CrossRef]
- Wang, X.G.; Wang, S.H.; Wang, W.J.; Li, H.F.; Liu, X.D.; Gu, X.Y.; Bourbigot, S.; Wang, Z.W.; Sun, J.; Zhang, S. The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups. Compos. Part B Eng. 2020, 183, 107568. [Google Scholar] [CrossRef]
- Wu, Q.; Cui, X.Y.; Mu, C.Z.; Sun, J.; Gu, X.Y.; Li, H.F.; Zhang, S. Toward a new approach to synchronously improve the fire performance and toughness of polylactic acid by the incorporation of facilely synthesized ammonium polyphosphate derivatives. Compos. Part A Appl. Sci. 2021, 150, 106595. [Google Scholar]
- Li, D.F.; Zhao, X.; Jia, Y.W.; He, L.; Wang, X.L.; Wang, Y.Z. Dual effect of dynamic vulcanization of biobased unsaturated polyester: Simultaneously enhance the toughness and fire safety of Poly(lactic acid). Compos. Part B Eng. 2019, 175, 107069. [Google Scholar] [CrossRef]
- Cai, W.; Cai, T.; He, L.; Chu, F.; Mu, X.; Han, L.; Hu, Y.; Wang, B.; Hu, W. Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane. J. Hazard Mater. 2020, 387, 121971. [Google Scholar]
- Han, D.Q.; Wang, H.; Lu, T.T.; Cao, L.Y.; Dai, Y.F.; Cao, H.Z.; Yu, X.L. Scalable manufacturing green core–shell structure flame retardant, with enhanced mechanical and flame-retardant performances of polylactic acid. J. Polym. Environ. 2022, 30, 2516–2533. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, W.C.; Li, Q.; Khan, M.R.; Hu, G.H.; Liu, Y.; Wu, W.; Huang, C.X.; Li, R.K.Y. Recent advances in superhydrophobic polyurethane: Preparations and applications. Adv. Colloid Interface Sci. 2022, 303, 102644. [Google Scholar] [CrossRef]
- Ye, G.F.; Huo, S.Q.; Wang, C.; Shi, Q.; Liu, Z.T.; Wang, H. One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid). Polym. Degrad. Stab. 2021, 192, 109696. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, W.; Gong, X.; Sun, Q.; Cao, X.; Su, Y.; Yu, B.; Li, R.K.; Vellaisamy, R.A. Surface decoration of halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites. J. Mater. Sci. Technol. 2022, 101, 107–117. [Google Scholar] [CrossRef]
- Zhan, Y.Y.; Wu, X.J.; Wang, S.S.; Yuan, B.H.; Fang, Q.; Shang, S.; Cao, C.R.; Chen, G.Q. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid. Polym. Degrad. Stab. 2021, 191, 109684. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.Z.; Zhang, X.H.; Li, T.; Du, M.L.; Chen, M.Q.; Dong, W.F. Preferred zinc-modified melamine phytate for the flame retardant polylactide with limited smoke release. New J. Chem. 2021, 45, 13329–13339. [Google Scholar] [CrossRef]
- Jin, X.D.; Cui, S.P.; Sun, S.B.; Gu, X.Y.; Li, H.F.; Liu, X.D.; Tang, W.F.; Sun, J.; Bourbigot, S.; Zhang, S. The preparation of a bio-polyelectrolytes based core-shell structure and its application in flame retardant polylactic acid composites. Compos. Part A Appl. Sci. 2019, 124, 105485. [Google Scholar] [CrossRef]
- Wu, W.; Wu, C.K.; Peng, H.Y.; Sun, Q.J.; Zhou, L.; Zhuang, J.Q.; Cao, X.W.; Roy, V.A.L.; Li, R.K.Y. Effect of nitrogen-doped graphene on morphology and properties of immiscible poly(butylene succinate)/polylactide blends. Compos. Part B Eng. 2017, 113, 300–307. [Google Scholar] [CrossRef]
- Zhao, H.B.; Cui, Z.X.; Wang, X.F.; Turng, L.S.; Peng, X.F. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Compos. Part B Eng. 2013, 51, 79–91. [Google Scholar] [CrossRef]
- Zhao, H.; Li, K.C.; Wu, W.; Li, Q.; Jiang, Y.n.; Cheng, B.X.; Huang, C.X.; Li, H.N. Microstructure and viscoelastic behavior of waterborne polyurethane/cellulose nanofiber nanocomposite. J. Ind. Eng. Chem. 2022, 110, 150–157. [Google Scholar] [CrossRef]
Sample | PLA (wt%) | APP (wt%) | Serpentine (wt%) | Serpentine@APP (wt%) |
---|---|---|---|---|
PLA | 100 | -- | -- | -- |
PLA/APP | 98 | 2 | -- | -- |
PLA/serpentine | 98 | -- | 2 | -- |
PLA/serpentine@APP | 98 | -- | -- | 2 |
Samples | T10 (°C) | Tmax (°C) | Residues at 800 °C (wt%) |
---|---|---|---|
PLA | 346.2 | 379.0 | 0.21 |
PLA/APP | 349.7 | 377.1 | 1.39 |
PLA/serpentine | 341.5 | 373.5 | 1.72 |
PLA/serpentine@APP | 346.0 | 376.7 | 1.95 |
Samples | LOI (%) | UL-94 Rating | Dripping | TTI (s) | PHRR (kW/m2) | THR (MJ/m2) |
---|---|---|---|---|---|---|
PLA | 19 | NR | Yes | 75 | 507.8 | 57.1 |
PLA/APP | 22 | V-2 | Yes | 77 | 419.7 | 51.8 |
PLA/serpentine | 23.5 | V-2 | Yes | 68 | 362.4 | 49.5 |
PLA/serpentine@APP | 25.5 | V-1 | Yes | 72 | 284.7 | 47.8 |
Samples | Tensile Stress (MPa) | Young’s Modulus (MPa) | Elongation at Break (%) |
---|---|---|---|
PLA | 59.4 ± 2.3 | 1476.6 ± 74.1 | 6.05 ± 0.49 |
PLA/serpentine | 57.9 ± 2.8 | 1553.3 ± 73.9 | 4.97 ± 0.56 |
PLA/serpentine@APP | 56.6 ± 1.5 | 1493.2 ± 44.3 | 4.83 ± 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Huang, J.; Tong, Y.; Zhao, H.; Cao, X.; Wu, W. Self-Assembled Serpentine Ni3Si2O5(OH)4 Hybrid Sheets with Ammonium Polyphosphate for Fire Safety Enhancement of Polylactide Composites. Polymers 2022, 14, 5255. https://doi.org/10.3390/polym14235255
Yi X, Huang J, Tong Y, Zhao H, Cao X, Wu W. Self-Assembled Serpentine Ni3Si2O5(OH)4 Hybrid Sheets with Ammonium Polyphosphate for Fire Safety Enhancement of Polylactide Composites. Polymers. 2022; 14(23):5255. https://doi.org/10.3390/polym14235255
Chicago/Turabian StyleYi, Xiaohong, Jingshu Huang, Yizhang Tong, Hui Zhao, Xianwu Cao, and Wei Wu. 2022. "Self-Assembled Serpentine Ni3Si2O5(OH)4 Hybrid Sheets with Ammonium Polyphosphate for Fire Safety Enhancement of Polylactide Composites" Polymers 14, no. 23: 5255. https://doi.org/10.3390/polym14235255
APA StyleYi, X., Huang, J., Tong, Y., Zhao, H., Cao, X., & Wu, W. (2022). Self-Assembled Serpentine Ni3Si2O5(OH)4 Hybrid Sheets with Ammonium Polyphosphate for Fire Safety Enhancement of Polylactide Composites. Polymers, 14(23), 5255. https://doi.org/10.3390/polym14235255