Temperature-Dependent Polymorphism and Phase Transformation of Friction Transferred PLLA Thin Films
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample
2.2. Characterization
2.2.1. Polarized Optical Microscopy
2.2.2. Scanning Electron Microscopy
2.2.3. Differential Scanning Calorimetry
2.2.4. Fourier Transform Infrared Spectroscopy
2.2.5. Synchrotron Radiation 2-Dimensional-Wide Angle X-Ray Diffraction (Sr-2D WAXD)
3. Results and Discussion
3.1. Temperature Dependence of Friction Transferred PLLA Polymorphous Crystal Structure
3.2. Thermal-Induced Phase Transition of PLLA Friction Transferred at 100 °C
3.3. Acetone-Induced Phase Transition of PLLA Friction Transferred at 100 °C
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auras, R.A. Biodegradation. In Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, 1st ed.; Lim, L.T., Selke, S.E.M., Tsuji, H., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Chapter 25; pp. 423–430. [Google Scholar]
- Kabasci, S. Poly(Lactic Acid). In Bio-Based Plastics: Materials and Applications, 1st ed.; Tsuji, H., Ed.; John Wiley & Sons, Ltd.: London, UK, 2014; Chapter 8; pp. 171–240. [Google Scholar]
- Ikada, Y.; Tsuji, H. Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun. 2000, 21, 117–132. [Google Scholar] [CrossRef]
- Dorgan, J.R.; Lehermeier, H.J.; Palade, L.-I.; Cicero, J. Polylactides: Properties and Prospects of an Environmentally Benign Plastic from Renewable Resources. Macromol. Symp. 2001, 175, 55–66. [Google Scholar] [CrossRef]
- Benicewicz, B.C.; Hopper, P.K. Review: Polymers for Absorbable Surgical Sutures—Part I. J. Bioact. Compat. Polym. 1990, 5, 453–472. [Google Scholar] [CrossRef]
- Ouchi, T.; Ohya, Y. Design of Lactide Copolymers as Biomaterials. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 453–462. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef]
- Hyon, S.-H.; Jin, F.; Jamshidi, K.; Tsutsumi, S.; Kanamoto, T. Biodegradable Ultra High Strength Poly(L-Lactide) Rods for Bone Fixation. Macromol. Symp. 2003, 197, 355–368. [Google Scholar] [CrossRef]
- Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Migliaresi, C.; De Lollis, A.; Fambri, L.; Cohn, D. The Effect of Thermal History on the Crystallinity of Different Molecular Weight PLLA Biodegradable Polymers. Clin. Mater. 1991, 8, 111–118. [Google Scholar] [CrossRef]
- Perego, G.; Cella, G.D.; Bastioli, C. Effect of Molecular Weight and Crystallinity on Poly(Lactic Acid) Mechanical Properties. J. Appl. Polym. Sci. 1996, 59, 37–43. [Google Scholar] [CrossRef]
- Tashiro, K. Structural Science of Crystalline Polymers: Basic Concepts and Practices, 1st ed.; Springer Nature: Singapore, 2022; pp. 1–5. [Google Scholar]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly(Lactic Acid) Crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677. [Google Scholar] [CrossRef]
- Tashiro, K.; Kouno, N.; Wang, H.; Tsuji, H. Crystal Structure of Poly(Lactic Acid) Stereocomplex: Random Packing Model of PDLA and PLLA Chains as Studied by X-ray Diffraction Analysis. Macromolecules 2017, 50, 8048–8065. [Google Scholar] [CrossRef]
- Wasanasuk, K.; Tashiro, K. Structural Regularization in the Crystallization Process from the Glass or Melt of Poly(L-lactic Acid) Viewed from the Temperature-Dependent and Time-Resolved Measurements of FTIR and Wide-Angle/Small-Angle X-ray Scatterings. Macromolecules 2011, 44, 9650–9660. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Cocca, M.; Malinconico, M. Crystal Polymorphism Of Poly(L-Lactic Acid) and its Influence on Thermal Properties. Thermochim. Acta 2011, 522, 110–117. [Google Scholar] [CrossRef]
- Stoclet, G.; Seguela, R.; Lefebvre, J.M.; Rochas, C. New Insights on the Strain-Induced Mesophase of Poly(D,L-lactide): In Situ WAXS and DSC Study of the Thermo-Mechanical Stability. Macromolecules 2010, 43, 7228–7237. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, Y.; Domb, A.J.; Ozaki, Y. PLLA Mesophase and its Phase Transition Behavior in the PLLA−PEG−PLLA Copolymer as Revealed by Infrared Spectroscopy. Macromolecules 2010, 43, 4240–4246. [Google Scholar] [CrossRef]
- Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A.J. Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(L-Lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357. [Google Scholar] [CrossRef]
- Yasuniwa, M.; Sakamo, K.; Ono, Y.; Kawahara, W. Melting Behavior of Poly(L-Lactic Acid): X-ray and DSC Analyses of the Melting Process. Polymer 2008, 49, 1943–1951. [Google Scholar] [CrossRef]
- De Santis, P.; Kovacs, A.J. Molecular Conformation of Poly(L-Lactic Acid). Biopolymers 1968, 6, 299–306. [Google Scholar] [CrossRef]
- Kobayashi, J.; Asahi, T.; Ichiki, M.; Oikawa, A.; Suzuki, H.; Watanabe, T.; Fukada, E.; Shikinami, Y. Structural and Optical Properties of Poly Lactic Acids. J. Appl. Phys. 1995, 77, 2957–2973. [Google Scholar] [CrossRef]
- Alemán, C.; Lotz, B.; Puiggali, J. Crystal Structure of the α-Form of Poly(L-Lactide). Macromolecules 2001, 34, 4795–4801. [Google Scholar] [CrossRef]
- Wasanasuk, K.; Tashiro, K.; Hanesaka, M.; Ohhara, T.; Kurihara, K.; Kuroki, R.; Tamada, T.; Ozeki, T.; Kanamoto, T. Crystal Structure Analysis of Poly(L-Lactic Acid) α-Form on the Basis of the 2-Dimensional Wide-Angle Synchrotron X-ray and Neutron Diffraction Measurements. Macromolecules 2011, 44, 6441–6452. [Google Scholar] [CrossRef]
- Brant, D.A.; Tonelli, A.E.; Flory, P.J. The Configurational Statistics of Random Poly(Lactic Acid) Chains. II. Theory. Macromolecules 1969, 2, 228–235. [Google Scholar] [CrossRef]
- Wasanasuk, K.; Tashiro, K. Crystal Structure and Disorder in Poly(L-Lactic Acid) δ-Form (α′ -form) and the Phase Transition Mechanism to the Ordered α-Form. Polymer 2011, 52, 6097–6109. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L. Crystallization Behavior of Poly(L-Lactic Acid). Eur. Polym. J. 2005, 41, 569–575. [Google Scholar] [CrossRef]
- Zhang, J.; Tashiro, K.; Domb, A.J.; Tsuji, H. Confirmation of Disorder α-Form of Poly(L-Lactic Acid) by the X-ray Fiber Pattern and Polarized IR/Raman Spectra Measured for Uniaxially-Oriented Samples. Macromol. Symp. 2006, 242, 274–278. [Google Scholar] [CrossRef]
- Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; et al. Crystallization and Melting Behavior of Poly (L-Lactic Acid). Macromolecules 2007, 40, 9463–9469. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Duan, Y.; Domb, A.J.; Ozaki, Y. Glass Transition and Disorder-to-Order Phase Transition Behavior of Poly(L-Lactic Acid) Revealed by Infrared Spectroscopy. Vib. Spectrosc. 2010, 53, 307–310. [Google Scholar] [CrossRef]
- Cho, T.-Y.; Strobl, G. Temperature Dependent Variations in the Lamellar Structure of Poly(L-Lactide). Polymer 2006, 47, 1036–1043. [Google Scholar] [CrossRef]
- Chen, X.; Han, L.; Zhang, T.; Zhang, J. Influence of Crystal Polymorphism on Crystallinity Calculation of Poly(L-Lactic Acid) by Infrared Spectroscopy. Vib. Spectrosc. 2014, 70, 1–5. [Google Scholar] [CrossRef]
- Takahashi, K.; Sawai, D.; Yokoyama, T.; Kanamoto, T.; Hyon, S.-H. Crystal Transformation from the α- to the β-Form upon Tensile Drawing of Poly(L-Lactic Acid). Polymer 2004, 45, 4969–4976. [Google Scholar] [CrossRef]
- Hoogsteen, W.; Postema, A.R.; Pennings, A.J.; Ten Brinke, G.; Zugenmaier, P. Crystal Structure, Conformation and Morphology of Solution-Spun Poly(L-Lactide) Fibers. Macromolecules 1990, 23, 634–642. [Google Scholar] [CrossRef]
- Sawai, D.; Yokoyama, T.; Kanamoto, T.; Sungil, M.; Hyon, S.-H.; Myasnikova, L.P. Crystal Transformation and Development of Tensile Properties upon Drawing of Poly(L-Lactic Acid) by Solid-State Coextrusion: Effects of Molecular Weight. Macromol. Symp. 2006, 242, 93–103. [Google Scholar] [CrossRef]
- Ru, J.F.; Yang, S.G.; Zhou, D.; Yin, H.M.; Lei, J.; Li, Z.M. Dominant β-form of poly (l-lactic acid) obtained directly from melt under shear and pressure fields. Macromolecules 2016, 49, 3826–3837. [Google Scholar] [CrossRef]
- Lotz, B.A. Single Crystals of the Frustrated β-Phase and Genesis of the Disordered α′-Phase of Poly(L-Lactic Acid). ACS Macro Lett. 2015, 4, 602–605. [Google Scholar] [CrossRef]
- Xie, Q.; Bao, J.; Shan, G.; Bao, Y.; Pan, P. Fractional Crystallization Kinetics and Formation of Metastable β-Form Homocrystals in Poly(L-Lactic Acid)/Poly(D-Lactic Acid) Racemic Blends Induced by Precedingly Formed Stereocomplexes. Macromolecules 2019, 52, 4655–4665. [Google Scholar] [CrossRef]
- Bao, J.; Chang, X.; Xie, Q.; Yu, C.; Shan, G.; Bao, Y.; Pan, P. Preferential Formation of β-Form Crystals and Temperature-Dependent Polymorphic Structure in Supramolecular Poly(L-Lactic Acid) Bonded by Multiple Hydrogen Bonds. Macromolecules 2017, 50, 8619–8630. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Tashiro, K. Phase Transition Mechanism of Poly(L-Lactic Acid) among the α-, δ-, and β-Forms on the Basis of the Reinvestigated Crystal Structure of the β Form. Macromolecules 2017, 50, 3285–3300. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Zhang, H.; Hu, J.; Liu, Q.; Xin, R.; Song, C.; Yan, S. Structure Evolution of Oriented Poly(L-Lactic Acid) Ultrathin Films during Deformation. Macromolecules 2022, 55, 6633–6643. [Google Scholar] [CrossRef]
- Fakirov, S. Oriented Polymer Materials, 1st ed.; Wiley-VCH: Weinheim, Germany, 2010; Chapter 1; pp. 1–36. [Google Scholar]
- Peterlin, A. Drawing and Extrusion of Semi-Crystalline Polymers. Colloid Polym. Sci. 1987, 265, 357–382. [Google Scholar]
- Drumright, R.E.; Gruber, P.R.; Henton, D.E. Polylactic Acid Technology. Adv. Mater. 2000, 12, 1841–1846. [Google Scholar] [CrossRef]
- Hu, J.; Xin, R.; Hou, C.; Yan, S. Preparation and Self-Repairing of Highly Oriented Structures of Ultrathin Polymer Films. Chem. Phys. 2019, 220, 1800478. [Google Scholar] [CrossRef]
- Larrañaga, A.; Lizundia, E. Strain-Induced Crystallization. In Crystallization in Multiphase Polymer Systems; Thomas, S., Arif, P.M., Gowd, E.B., Kalarikkal, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 15; pp. 471–508. [Google Scholar]
- Cimrova, V.; Remmers, M.; Neher, D.; Wegner, G. Polarized Light Emission from LEDs Prepared by the Langmuir-Blodgett Technique. Wegner Adv. Mater. 1996, 8, 146–149. [Google Scholar] [CrossRef]
- Bolognesi, A.; Bajo, G.; Paloheimo, J.; Östergärd, T.; Stubb, H. Polarized Electroluminescence from an Oriented Poly (3-Alkylthiophene) Langmuir–Blodgett Structure. Adv. Mater. 1997, 9, 121–124. [Google Scholar] [CrossRef]
- Jandke, M.; Strohriegl, P.; Gmeiner, J.; Brütting, W.; Schwoerer, M. Polarized Electroluminescence from Rubbing-Aligned Poly(P-Phenylenevinylene). Adv. Mater. 1999, 11, 1518–1521. [Google Scholar] [CrossRef]
- Bolognesi, A.; Botta, C.; Facchinetti, D.; Jandke, M.; Kreger, K.; Strohriegl, P.; Relini, A.; Rolandi, R.; Blumstengel, S. Polarized Electroluminescence in Double-Layer Light-Emitting Diodes with Perpendicularly Oriented Polymers. Adv. Mater. 2001, 13, 1072–1075. [Google Scholar] [CrossRef]
- Godbert, N.; Burn, P.L.; Gilmour, S.; Markham, J.P.J.; Samuel, I.D.W. Polarized Organic Electroluminescence: Ordering from the Top. Phys. Lett. 2003, 83, 5347–5349. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, J.C.; Smith, P. Highly Oriented Thin Films of Poly(Tetrafluoroethylene) as a Substrate for Oriented Growth of Materials. Nature 1991, 352, 414–417. [Google Scholar] [CrossRef]
- Nagamatsu, S.; Takashima, W.; Kaneto, K.; Yoshida, Y.; Tanigaki, N.; Yase, K.; Omote, K. Backbone Arrangement in “Friction-Transferred” Regioregular Poly(3-Alkylthiophene)s. Macromolecules 2003, 36, 5252–5257. [Google Scholar] [CrossRef]
- Misaki, M.; Ueda, Y.; Nagamatsu, S.; Yoshida, Y.; Tanigaki, N.; Yase, K. Formation of Single-Crystal-like Poly(9,9-Dioctylfluorene) Thin Film by the Friction-Transfer Technique with Subsequent Thermal Treatments. Macromolecules 2004, 37, 6926–6931. [Google Scholar] [CrossRef]
- Sawai, D.; Takahashi, K.; Sasashige, A.; Kanamoto, T.; Hyon, S.-H. Preparation of Oriented β-Form Poly(L-Lactic Acid) by Solid-State Coextrusion: Effect of Extrusion Variables. Macromolecules 2003, 36, 3601–3605. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, Y.; Bai, J.; Wang, Z. Shear-Induced Nucleation and Morphological Evolution for Bimodal Long Chain Branched Polylactide. Macromolecules 2013, 46, 6555–6565. [Google Scholar] [CrossRef]
- Jariyasakoolroj, P.; Tashiro, K.; Wang, H.; Yamamoto, H.; Chinsirikul, W.; Kerddonfag, N.; Chirachanchai, S. Isotropically Small Crystalline Lamellae Induced by High Biaxial-Stretching Rate as a Key Microstructure for Super-Tough Polylactide Film. Polymer 2015, 68, 234–245. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Gowd, E.B.; Yuan, Y.; Zhang, T.; Duan, Y.; Hu, W.; Zhang, J. Small- and Wide-Angle X-Ray Scattering Study on α′-to-α Transition of Poly(L-Lactide Acid) Crystals. Polymer 2019, 167, 122–129. [Google Scholar] [CrossRef]
- Naga, N.; Yoshida, Y.; Inui, M.; Noguchi, K.; Murase, S. Crystallization of Amorphous Poly(Lactic Acid) Induced by Organic Solvents. J. Appl. Polym. Sci. 2011, 119, 2058–2064. [Google Scholar] [CrossRef]
- Wu, N.; Lang, S.; Zhang, H.; Ding, M.; Zhang, J. Solvent-Induced Crystallization Behaviors of PLLA Ultrathin Films Investigated by RAIR Spectroscopy and AFM Measurements. J. Phys. Chem. B 2014, 118, 12652–12659. [Google Scholar] [CrossRef]
- Zhang, J.; Tsuji, H.; Noda, I.; Ozaki, Y. Structural Changes and Crystallization Dynamics of Poly(L-Lactide) During the Cold-Crystallization Process Investigated by Infrared and Two-Dimensional Infrared Correlation Spectroscopy. Macromolecules 2004, 37, 6433–6439. [Google Scholar] [CrossRef]
IR Frequencies (cm−1) | Polarization | Assignments | |||
---|---|---|---|---|---|
Amorphous | α’ | α | β | ||
1761 | 1759 | ⊥ | ν(C=O) | ||
1457 | 1457 | δas(CH3) | |||
1386 | ⊥ | δs(CH3) | |||
1370 | // | δs(CH3) + δ(CH) | |||
1360 | 1360 | ⊥ | |||
1213 | 1213 | / | νas(COC) + ras(CH3) | ||
1183 | 1183 | // | |||
1131 | 1134 | // | ras(CH3) | ||
1092 | 1092 | 1092 | // | νs(COC) | |
1046 | 1046 | 1045 | ν(C-CH3) | ||
955 | 957 | 957 | // | r(CH3) + ν(C-COO) | |
921 | 921 | 912 | ⊥ | ν(C-C) + r(CH3) | |
870 | 872 | 872 | ν(C-COO) | ||
757 | 757 | 757 | ⊥ | δ(C=O) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Chen, X.; Hu, J.; Yan, S.; Zhang, J. Temperature-Dependent Polymorphism and Phase Transformation of Friction Transferred PLLA Thin Films. Polymers 2022, 14, 5300. https://doi.org/10.3390/polym14235300
Wu J, Chen X, Hu J, Yan S, Zhang J. Temperature-Dependent Polymorphism and Phase Transformation of Friction Transferred PLLA Thin Films. Polymers. 2022; 14(23):5300. https://doi.org/10.3390/polym14235300
Chicago/Turabian StyleWu, Jinghua, Xing Chen, Jian Hu, Shouke Yan, and Jianming Zhang. 2022. "Temperature-Dependent Polymorphism and Phase Transformation of Friction Transferred PLLA Thin Films" Polymers 14, no. 23: 5300. https://doi.org/10.3390/polym14235300
APA StyleWu, J., Chen, X., Hu, J., Yan, S., & Zhang, J. (2022). Temperature-Dependent Polymorphism and Phase Transformation of Friction Transferred PLLA Thin Films. Polymers, 14(23), 5300. https://doi.org/10.3390/polym14235300