Hyperbranched Polyester Polyfumaratomaleate Doped with Gd(III) and Dy(III) Ions: Synthesis, Structure and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Equipment
2.3. Synthesis of Compounds
2.3.1. Synthesis of Hyperbranched Polyester with End Fumarate and Maleate Groups (1)
2.3.2. Synthesis of the Sodium Salt of Hyperbranched Polyester Polyfumaratomaleate (2)
2.3.3. General Methodology for the Synthesis of Gd(III) (3) and Dy(III) (4) Complexes with Compound (2)
3. Results
3.1. 1H NMR Spectra
3.2. IR Spectra
3.3. Electronic Spectra
(1) λ, nm | (2) λ, nm | (3) λ, nm | (4) λ, nm | Transition | Band, Bond and Metal | Literature |
---|---|---|---|---|---|---|
255 | 256 | 255 | 255 | n→σ* | ROH | [35] |
259 | 259 | 258 | 258 | π→π* | CH=CH (cis) | [35] |
263 | 264 | 263 | 263 | π→π* | CH=CH (trans) | [35] |
272 | 272 | 269 | 269 | n→π* | RC(O)OR’ | [35] |
- | 282 | 281 | 279 | n→π* | C(O)O− (cis) | [45,46] |
288 | - | - | - | n→π* | C(O)OH | [47] |
- | 305 | 304 | 302 | n→π* | C(O)O− (trans) | [45,46] |
- | - | 304 | - | 8S7/2→6P7/2, 6P5/2, 6I7/2, 6I9/2, 6I17/2, 6I11/2, 6I13/2, 6I15/2, 6D9/2, | Gd(III) | [36] |
- | - | - | 305, 365, 387, 450, 758, 808 | 6H15/2→6P7/2, 4P5/2, 4I13/2, 4I15/2; 6F3/2; 6F5/2 | Dy(III) | [43,44] |
3.4. Luminessence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzola-Aldamizetxebarria, S.; Fernández-Méndez, L.; Padro, D.; Ruíz-Cabello, J.; Ramos-Cabrer, P. A Comprehensive Introduction to Magnetic Resonance Imaging Relaxometry and Contrast Agents. ACS Omega 2022, 7, 36905–36917. [Google Scholar] [CrossRef]
- Avasthi, A.; Caro, C.; Pozo-Torres, E.; Leal, M.P.; García-Martín, M.L. Magnetic Nanoparticles as MRI Contrast Agents. In Surface-Modified Nanobiomaterials for Electrochemical and Biomedicine Applications; Puente-Santiago, A.R., Rodríguez-Padrón, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 49–91. ISBN 978-3-030-55502-3. [Google Scholar]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. [Google Scholar] [CrossRef] [PubMed]
- Zapolotsky, E.N.; Qu, Y.; Babailov, S.P. Lanthanide Complexes with Polyaminopolycarboxylates as Prospective NMR/MRI Diagnostic Probes: Peculiarities of Molecular Structure, Dynamics and Paramagnetic Properties. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Park, J.Y.; Chang, Y.; Lee, G.H. Ultrasmall Europium, Gadolinium, and Dysprosium Oxide Nanoparticles: Polyol Synthesis, Properties, and Biomedical Imaging Applications. Mini Rev. Med. Chem. 2020, 20, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Lee, G.H.; Chang, Y. Gadolinium as an MRI Contrast Agent. Future Med. Chem. 2018, 10, 639–661. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Jiang, L.; Wong, K.-L.; Long, N.J. Ligand Design Strategies to Increase Stability of Gadolinium-Based Magnetic Resonance Imaging Contrast Agents. Nat. Commun. 2019, 10, 1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garda, Z.; Nagy, V.; Rodríguez-Rodríguez, A.; Pujales-Paradela, R.; Patinec, V.; Angelovski, G.; Tóth, É.; Kálmán, F.K.; Esteban-Gómez, D.; Tripier, R.; et al. Unexpected Trends in the Stability and Dissociation Kinetics of Lanthanide(III) Complexes with Cyclen-Based Ligands across the Lanthanide Series. Inorg. Chem. 2020, 59, 8184–8195. [Google Scholar] [CrossRef] [PubMed]
- Layne, K.A.; Dargan, P.I.; Archer, J.R.H.; Wood, D.M. Gadolinium Deposition and the Potential for Toxicological Sequelae—A Literature Review of Issues Surrounding Gadolinium-Based Contrast Agents. Br. J. Clin. Pharmacol. 2018, 84, 2522–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, A.; Keresztes, I.; MacMillan, S.N.; Yang, Y.; Ding, E.; Zipfel, W.R.; DiStasio, R.A., Jr.; Babich, J.W.; Wilson, J.J. Oxyaapa: A Picolinate-Based Ligand with Five Oxygen Donors That Strongly Chelates Lanthanides. Inorg. Chem. 2020, 59, 5116–5132. [Google Scholar] [CrossRef]
- Blomqvist, L.; Nordberg, G.F.; Nurchi, V.M.; Aaseth, J.O. Gadolinium in Medical Imaging–Usefulness, Toxic Reactions and Possible Countermeasures—A Review. Biomolecules 2022, 12, 742. [Google Scholar] [CrossRef]
- Sembo-Backonly, B.S.; Estour, F.; Gouhier, G. Cyclodextrins: Promising Scaffolds for MRI Contrast Agents. RSC Adv. 2021, 11, 29762–29785. [Google Scholar] [CrossRef] [PubMed]
- Maksimov, A.; Kutyrev, G. Functionalized Hyperbranched Aliphatic Polyester Polyols: Synthesis, Properties and Applications. Chinese J. Polym. Sci. 2022, 40, 1567–1585. [Google Scholar] [CrossRef]
- Janicki, R.; Mondry, A.; Starynowicz, P. Carboxylates of Rare Earth Elements. Coord. Chem. Rev. 2017, 340, 98–133. [Google Scholar] [CrossRef]
- Bondar, O.V.; Gataulina, A.R.; Ulakhovich, N.A.; Kutyreva, M.P. Synthesis and Complexing Ability of Hyperbranched Polyester Polyols Containing Carboxylic Acid Fragments. Russ. J. Org. Chem. 2018, 54, 1301–1306. [Google Scholar] [CrossRef]
- Yurtaeva, S.V.; Gilmutdinov, I.F.; Rodionov, A.A.; Zaripov, R.B.; Kutyreva, M.P.; Bondar, O.V.; Nedopekin, O.V.; Khafizov, N.R.; Kadkin, O.N. Ferromagnetically Coupled Copper (II) Clusters Incorporated in Functionalized Boltorn H30 Hyperbranched Polymer Architecture: ESR, Magnetic Susceptibility Measurements, and Quantum-Chemical Calculations. ACS Omega 2019, 4, 16450–16461. [Google Scholar] [CrossRef] [Green Version]
- Khannanov, A.A.; Rossova, A.A.; Ignatyeva, K.A.; Ulakhovich, N.A.; Gerasimov, A.V.; Boldyrev, A.E.; Evtugyn, V.G.; Rogov, A.M.; Cherosov, M.A.; Gilmutdinov, I.F. Superparamagnetic Cobalt Nanoparticles in Hyperbranched Polyester Polyol Matrix with Anti-Protease Activity. J. Magn. Magn. Mater. 2022, 547, 168808. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, Y.-N.; Zhao, J.; Xu, Y.; Shen, J.; Wu, M. An Intensive Green Emitting Terbium Complex Using a Newly Designed Aromatic Hyperbranched Polyester as an Efficient Antenna Ligand. J. Mater. Chem. C 2017, 5, 11620–11630. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Xu, Y.; Zhou, D.; Wang, H.; Sun, P.; Jiang, H. Near-Infrared Luminescent Erbium Complexes with 8-Hydroxyquinoline-Terminated Hyperbranched Polyester. Polymer 2017, 113, 274–282. [Google Scholar] [CrossRef]
- Zhao, K.; Song, H.; Duan, X.; Wang, Z.; Liu, J.; Ba, X. Novel Chemical Cross-Linked Ionogel Based on Acrylate Terminated Hyperbranched Polymer with Superior Ionic Conductivity for High Performance Lithium-Ion Batteries. Polymers 2019, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Kolokolov, F.A.; Panyushkin, V.T.; Mikhailov, I.E.; Dushenko, G.A. Luminescent Complexes of Lanthanides with Carboxyl Ligands. Nauka Yuga Ross. 2016, 12, 25–32. [Google Scholar]
- Rawat, N.; Bhattacharyya, A.; Tomar, B.S.; Ghanty, T.K.; Manchanda, V.K. Thermodynamics of U (VI) and Eu (III) Complexation by Unsaturated Carboxylates. Thermochim. Acta 2011, 518, 111–118. [Google Scholar] [CrossRef]
- Zhu, W.-H.; Wang, Z.-M.; Gao, S. A 3D Porous Lanthanide–Fumarate Framework with Water Hexamer Occupied Cavities, Exhibiting a Reversible Dehydration and Rehydration Procedure. Dalton Trans. 2006, 35, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, A.; Skoulika, S.; Bakalbassis, E.G.; Mrozinski, J. Cyclic Water Hexamers and Decamers in a Porous Lanthanide-Organic Framework: Correlation between Some Physical Properties and Crystal Structure. Cryst. Growth Des. 2003, 3, 487–492. [Google Scholar] [CrossRef]
- Li, X.; Zou, Y.-Q. Hydrothermal Synthesis and Crystal Structure of a New Europium Fumarate Compound. J. Chem. Crystallogr. 2005, 35, 351–355. [Google Scholar] [CrossRef]
- Mirochnik, A.G.; Petrochenkova, N.V.; Karasev, V.E. Effect of Temperature on Fluorescent Properties of Salts of Unsaturated Acids Eu3+ and Tb3+ and Polymers Based on Them. Vysokomol. Soedin. Ser. A 1999, 41, 1642–1646. [Google Scholar]
- Srivastva, A.N. Stability and Applications of Coordination Compounds; BoD–Books on Demand; IntechOpen: London, UK, 2020; ISBN 1838800573. [Google Scholar]
- Marusak, R.A.; Doan, K.; Cummings, S.D. Integrated Approach to Coordination Chemistry: An Inorganic Laboratory Guide; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 0470118431. [Google Scholar]
- Curtis, L.G.; Edwards, D.L.; Simons, R.M.; Trent, P.J.; von Bramer, P.T. Investigation of Maleate-Fumarate Isomerization in Unsaturated Polyesters by Nuclear Magnetic Resonance. Ind. Eng. Chem. Prod. Res. Dev. 1964, 3, 218–221. [Google Scholar] [CrossRef]
- Samuilov, Y.D.; Budkin, V.A.; Zgadzaj, O.E.; Leksin, V.V.; Soloveva, N.B. Application of NMR spectroscopy in the study of unsaturated polyesters with bicyclo[2,2,1]hept-2-ene fragments. Vysokomol. Soedin. Seri. A 1995, 37, 781–786. [Google Scholar]
- Max, J.-J.; Chapados, C. Infrared Spectroscopy of Aqueous Carboxylic Acids: Comparison between Different Acids and Their Salts. J. Phys. Chem. A 2004, 108, 3324–3337. [Google Scholar] [CrossRef]
- Maçôas, E.M.S.; Fausto, R.; Lundell, J.; Pettersson, M.; Khriachtchev, L.; Räsänen, M. A Matrix Isolation Spectroscopic and Quantum Chemical Study of Fumaric and Maleic Acid. J. Phys. Chem. A 2001, 105, 3922–3933. [Google Scholar] [CrossRef] [Green Version]
- Llanes, L.C.; Clasen, S.H.; Pires, A.T.N.; Gross, I.P. Mechanical and Thermal Properties of Poly (Lactic Acid) Plasticized with Dibutyl Maleate and Fumarate Isomers: Promising Alternatives as Biodegradable Plasticizers. Eur. Polym. J. 2021, 142, 110112. [Google Scholar] [CrossRef]
- Efimenko, I.A.; Efimov, N.N.; Erofeeva, O.S.; Demina, L.I.; Simonenko, N.P.; Churakov, A.V.; Minin, V.V. Palladium (I) Coordination Polymers with Unsaturated Dicarboxylic Acids with Stable Paramagnetic Centers. Russ. J. Coord. Chem. 2021, 47, 707–716. [Google Scholar] [CrossRef]
- Prech, E.; Byulmann, F.; Affolter, K. Determination of the Structure of Organic Compounds. Spectral Data Tables; Mir″ Publishing House: Moscow, Russia, 2006. [Google Scholar]
- Janicki, R.; Mondry, A. Structural and Thermodynamic Aspects of Hydration of Gd (III) Systems. Dalton Trans. 2019, 48, 3380–3391. [Google Scholar] [CrossRef] [PubMed]
- Tamuri, A.R.; Majid, A.A.; Husin, R. Luminescence Properties of Magnesium Sodium Borate Glasses Doped Sm3+, Dy3+ and Eu3+. Solid State Phenom. 2020, 307, 314–320. [Google Scholar] [CrossRef]
- Dodson, C.M.; Zia, R. Supplemental Material Magnetic Dipole and Electric Quadrupole Transitions in Trivalent Lanthanide Ions: Calculated Emission Rates and Oscillator Strengths. Phys. Rev. B 2012, 86, 125102. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Liu, C.; Han, X.; Wang, L.; Tan, C.; Yan, Z.; Xu, Y. Dopant Occupancy and UV-VIS-NIR Spectroscopy of Mg (0, 4, 5 and 6 Mol.%): Dy: LiNbO3 Crystal. Mod. Phys. Lett. B 2017, 31, 1750232. [Google Scholar] [CrossRef]
- Tao, G.; Guo, H.; Feng, L.; Lu, M.; Wei, W.; Peng, B. Formation and Properties of a Novel Heavy-metal Chalcogenide Glass Doped with a High Dysprosium Concentration. J. Am. Ceram. Soc. 2009, 92, 2226–2229. [Google Scholar] [CrossRef]
- Kaur, S.; Arora, D.; Kumar, S.; Singh, G.; Mohan, S.; Kaur, P.; Singh, D.P. Blue-Yellow Emission Adjustability with Aluminium Incorporation for Cool to Warm White Light Generation in Dysprosium Doped Borate Glasses. J. Lumin. 2018, 202, 168–175. [Google Scholar] [CrossRef]
- Alvarez-Ramos, M.E. Study of the Optical Properties and Cross Relaxation Process of Dy3+ under Simultaneous UV-IR Excitation in Tellurite Glasses. J. Lumin. 2021, 233, 117874. [Google Scholar] [CrossRef]
- Shrestha, P.K.; Shakya, P.R. Synthesis and Structural Characterization of Some Lanthanide(III) Nitrate Complexes with a Mesogenic Schiff-Base, N,N’-Di-4-(4’-Heptadecyloxybenzoate)salicylidene-1,3-diaminopropane Derived from 2,4-Dihydroxybenzaldehyde. J. Nepal Chem. Soc. 2020, 41, 16–25. [Google Scholar] [CrossRef]
- Shirotani, D.; Sato, H.; Yamanari, K.; Kaizaki, S. Electronic Circular Dichroism in the 4f–4f Transitions of a Series of Cesium Tetrakis (+)-3-Heptafluorobutyrylcamphorate Ln(III) Complexes. Dalton Trans. 2012, 41, 10557–10567. [Google Scholar] [CrossRef]
- Sancenón, F.; Martínez-Máñez, R.; Miranda, M.A.; Seguí, M.; Soto, J. Towards the Development of Colorimetric Probes to Discriminate between Isomeric Dicarboxylates. Angew. Chem. Int. Ed. 2003, 42, 647–650. [Google Scholar] [CrossRef]
- Samanta, S.; Kar, C.; Das, G. Colorimetric and Fluorometric Discrimination of Geometrical Isomers (Maleic Acid vs Fumaric Acid) with Real-Time Detection of Maleic Acid in Solution and Food Additives. Anal. Chem. 2015, 87, 9002–9008. [Google Scholar] [CrossRef] [PubMed]
- Koivusalmi, E. Characterisation and Analysis of Synthesis Mixtures of Hydroxy Aldehydes, Hydroxy Carboxylic Acids and Polyols. 2001. Available online: https://helda.helsinki.fi/bitstream/handle/10138/21080/characte.pdf?sequence=1 (accessed on 16 November 2001).
- Bai, Y.; Yan, B.; Chen, Z. Hydrothermal Synthesis of a Strongly Luminescent Dimeric Dysprosium Complex. J. Coord. Chem. 2005, 58, 841–847. [Google Scholar] [CrossRef]
- Chen, W.-T. Preparation, Photoluminescence and Semiconductive Band Gap of a Gadolinium Compound. Inorg. Nano-Met. Chem. 2020, 51, 420–426. [Google Scholar] [CrossRef]
- Maksimov, A.; Vagapova, A.; Kutyreva, M.; Kutyrev, G. Polymer Metal-Organic Clusters Based on Hyperbranched Polyester Polybenzoylthiocarbamate and Cu(II) and Co(II) Ions. J. Mol. Struct. 2022, 1258, 132575. [Google Scholar] [CrossRef]
- Tang, H.; Tang, Y.; Xiao, M.; Zhu, H.; Guo, M. Study on Microwave Synthesis Mechanism of Carbon Dots Based on NMR Characterization. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129564. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, Y.; Xu, X.; Liu, Z.; Tang, J. Synthesis, Structure and Luminescence Properties of a Series of Dinuclear LnIII Complexes (Ln = Gd, Tb, Dy, Ho, Er). J. Lumin. 2012, 132, 1906–1909. [Google Scholar] [CrossRef]
- Bazhina, E.S.; Bovkunova, A.A.; Medved’ko, A.v; Varaksina, E.A.; Taidakov, I.v; Efimov, N.N.; Kiskin, M.A.; Eremenko, I.L. Lanthanide(III) (Eu, Gd, Tb, Dy) Complexes Derived from 4-(Pyridin-2-Yl)Methyleneamino-1,2,4-Triazole: Crystal Structure, Magnetic Properties, and Photoluminescence. Chem. Asian J. 2018, 13, 2060–2068. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimov, A.; Vagapova, A.; Kutyreva, M.; Kutyrev, G. Hyperbranched Polyester Polyfumaratomaleate Doped with Gd(III) and Dy(III) Ions: Synthesis, Structure and Properties. Polymers 2022, 14, 5298. https://doi.org/10.3390/polym14235298
Maksimov A, Vagapova A, Kutyreva M, Kutyrev G. Hyperbranched Polyester Polyfumaratomaleate Doped with Gd(III) and Dy(III) Ions: Synthesis, Structure and Properties. Polymers. 2022; 14(23):5298. https://doi.org/10.3390/polym14235298
Chicago/Turabian StyleMaksimov, Aleksei, Alina Vagapova, Marianna Kutyreva, and Gennadii Kutyrev. 2022. "Hyperbranched Polyester Polyfumaratomaleate Doped with Gd(III) and Dy(III) Ions: Synthesis, Structure and Properties" Polymers 14, no. 23: 5298. https://doi.org/10.3390/polym14235298
APA StyleMaksimov, A., Vagapova, A., Kutyreva, M., & Kutyrev, G. (2022). Hyperbranched Polyester Polyfumaratomaleate Doped with Gd(III) and Dy(III) Ions: Synthesis, Structure and Properties. Polymers, 14(23), 5298. https://doi.org/10.3390/polym14235298