The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Activity and Dilation Rheology
2.2. Particle Characterisation
2.3. Thin-Film Balance
2.4. Foaming
3. Results and Discussion
3.1. Suspension Characterisation
3.2. Thin-Film Balance
3.3. Interfacial Rheology
3.4. Foaming
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Binks, B.P.; Campbell, S.; Mashinchi, S.; Piatko, M.P. Dispersion behavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles. Langmuir 2015, 31, 2967–2978. [Google Scholar] [CrossRef]
- Stocco, A.; Rio, E.; Binks, B.P.; Langevin, D. Aqueous foams stabilised solely by particles. Soft Matter 2011, 7, 1260–1267. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, C.; von Klitzing, R. Disjoining pressure in thin liquid foam and emulsion films—New concepts and perspectives. J. Phys. Condens. Matter 2003, 15, 1197–1232. [Google Scholar] [CrossRef]
- Chatzigiannakis, E.; Veenstra, P.; Bosch, D.; Vermant, J. Mimicking coalescence using a pressure-controlled dynamic thin balance. Soft Matter 2020, 16, 9410–9422. [Google Scholar] [CrossRef]
- Sheludko, A. Thin liquid films. Adv. Colloid Interface Sci. 1967, 1, 391–464. [Google Scholar] [CrossRef]
- Chatzigiannakis, E.; Jaensson, N.; Vermant, J. Thin liquid films: Where hydrodynamics, capillarity, surface stresses and intermolecular forces meet. Curr. Opin. Colloid Interface Sci. 2021, 53, 101441. [Google Scholar] [CrossRef]
- Chatzigiannakis, E.; Vermant, J. Dynamic stabilisation during the drainage of thin film polymer solutions. Soft Matter 2021, 17, 4790–4803. [Google Scholar] [CrossRef]
- Bergeron, V. Disjoining pressures and film stability of alkyltrimethylammonium bromide foam films. Langmuir 1997, 13, 3474–3482. [Google Scholar] [CrossRef]
- Bergeron, V.; Radke, C.J. Disjoining pressure and stratification in asymmetric thin-liquid films. Colloid Polym. Sci. 1995, 273, 165–174. [Google Scholar] [CrossRef]
- Cascao-Pereira, L.G.; Johansson, C.; Blanch, H.W.; Radke, C.J. A bike-wheel microcell for measurement of thin-film forces. Colloids Surf. A Physicochem. Eng. Asp. 2001, 186, 103–111. [Google Scholar] [CrossRef]
- Kannan, A.; Shieh, I.C.; Leiske, D.L.; Fuller, G.G. Monoclonal antibody interfaces: Dilatation mechanics and bubble coalescence. Langmuir 2018, 34, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Czakaj, A.; Kannan, A.; Wiśniewska, A.; Grześ, G.; Krzan, M.; Warszyński, P.; Fuller, G.G. Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability. Soft Matter 2020, 16, 3981–3990. [Google Scholar] [CrossRef] [PubMed]
- Czakaj, A.; Krzan, M.; Warszynski, P. The effect of electrolytes and urea on the ethyl lauroyl arginate and cellulose nanocrystals foam stability. Appl. Sci. 2022, 12, 2797. [Google Scholar] [CrossRef]
- Bertsch, P.; Fischer, P. Adsorption and interfacial structure of nanocelluloses at fluid interfaces. Adv. Colloid Interface Sci. 2020, 276, 102089. [Google Scholar] [CrossRef] [PubMed]
- Cervin, N.T.; Johansson, E.; Benjamins, J.-W.; Wågberg, L. Mechanisms behind the stabilising action of cellulose nano-fibrils in wet-stable cellulose foams. Biomacromolecules 2015, 16, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ballinger, S.; Pelton, R.; Cranston, E.D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J. Colloid Interface Sci. 2015, 439, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Czakaj, A.; Jarek, E.; Krzan, M.; Warszyński, P. Ethyl lauroyl arginate, an inherently multicomponent surfactant system. Molecules 2021, 26, 5894. [Google Scholar] [CrossRef]
- Bai, L.; Xiang, W.; Huan, S.; Rojas, O.J. Formulation and stabilisation of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroylarginate) and cellulose nanocrystals. Biomacromolecules 2018, 19, 1674–1685. [Google Scholar] [CrossRef] [Green Version]
- Holthoff, H.; Egelhaaf, S.U.; Borkovec, B.; Schurtenberger, P.; Sticher, H. Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir 1996, 12, 5541–5549. [Google Scholar] [CrossRef]
- Rullier, B.; Axelos, M.A.V.; Langevin, D.; Novales, B. β-Lactoglobulin aggregates in foam films: Effect of the concentration and size of the protein aggregates. J. Colloid Interface Sci. 2010, 343, 330–337. [Google Scholar] [CrossRef]
- Lam, E.; Hemraz, U.D. Preparation and surface functionalization of carboxylated cellulose nanocrystals. Nanomaterials 2021, 11, 1641. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.T.; Ferreira Braz, W.; Correia de Siqueira, R.N.; Omar Ginoble Pandoli, O.G.; Geraldes, M.C. Sulfated and carboxylated nanocellulose for Co+2 adsorption. J. Mater. Res. Technol. 2021, 15, 434–447. [Google Scholar] [CrossRef]
- Reid, M.S.; Vilalobos, M.; Cranston, E.D. Benchmarking cellulose nanocrystals: From the laboratory to industrial production. Langmuir 2017, 33, 1583–1598. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.P.; Morse, T. Method for Producing Functionalised Nanocrystalline Cellulose and Functionalized Nanocrystalline Cellulose Thereby Produced. U.S. Patent 20,170,260,298, 2017. (Application Granted 28 August 2008). [Google Scholar]
- Made in Quebec: The Sky Is the Limit for Nanocrystals. Available online: https://www.mcgill.ca/innovation/article/made-quebec/made-quebec-sky-limit-nanocrystals (accessed on 18 September 2022).
- Capron, I.; Rojas, O.J.; Bordes, R. Behaviour of nanocelluloses at interfaces. Curr. Opin. Colloid Interface Sci. 2017, 29, 83–95. [Google Scholar] [CrossRef]
- Gaillard, T.; Roché, M.; Honorez, C.; Jumeau, M.; Balan, A.; Jedrzejczyk, C.W.; Drenckhan, W. Controlled foam generation using cyclic diphasic flows through a constriction. Int. J. Multiph. Flow 2017, 96, 173–187. [Google Scholar] [CrossRef]
- Drenckham, W.; Saint-Jalmes, A. The science of foaming. Adv. Colloid Interface Sci. 2015, 222, 228–259. [Google Scholar] [CrossRef]
- Calabrese, V.; Haward, S.J.; Shen, A.Q. Effects of shearing and extensional flows on the alignment of colloidal rods. Macromolecules 2021, 54, 4176–4185. [Google Scholar] [CrossRef]
- Delepierre, G.; Vanderfleet, O.M.; Niinivaara, E.; Zakani, B.; Cranston, E. Benchmarking cellulose nanocrystals Part II: New industrially produced materials. Langmuir 2021, 37, 8393–8409. [Google Scholar] [CrossRef]
- Traykov, T.T.; Manev, E.D.; Ivanov, I.B. Hydrodynamics of thin liquid films. Experimental investigation of the effect of surfactants on the drainage of emulsion films. Int. J. Multiph. Flow 1977, 3, 485–494. [Google Scholar] [CrossRef]
- Bhamla, M.S.; Chai, C.; Alvarez-Valenzuela, M.A.; Tajuelo, J.; Fuller, G.G. Interfacial mechanisms for stability of surfactant-laden films. PLoS ONE 2017, 12, e0175753. [Google Scholar] [CrossRef]
- Schulze-Schlarmann, J.; Buchavzov, N.; Stubenrauch, C. A disjoining pressure study of foam films stabilised by tetradecyl trimethyl ammonium bromide C14TAB. Soft Matter 2006, 2, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Tchoukov, P.; Mileva, E.; Exerowa, D. Drainage time peculiarities of foam films from amphiphilic solutions. Colloids Surf. A Physicochem. Eng. Asp. 2004, 238, 19–25. [Google Scholar] [CrossRef]
- Yeung, A.; Zhang, L. Shear effects in interfacial rheology and their implications on oscillating pendant drop experiments. Langmuir 2006, 22, 693–701. [Google Scholar] [CrossRef]
- Nagel, M.; Tervoort, T.A.; Vermant, J. From drop-shape analysis to stress-fitting elastometry. Adv. Colloid Interface Sci. 2017, 247, 33–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, N.A.; Marinova, K.G.; Gurkov, T.D.; Danov, K.D.; Kralchevsky, P.A.; Stoyanov, S.D.; Blijdenstein, T.B.; Arnau-dov, L.N.; Pelan, E.G.; Lips, A. Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatation-al elasticity and relaxation times. J. Colloid Interface Sci. 2012, 376, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Mikhailovskaya, A.; Chatzigiannakis, E.; Renggli, D.; Vermant, J.; Monteux, C. From individual liquid films to macro-scopic foam dynamics: A comparison between polymers and a nonionic surfactant. Langmuir 2022, 38, 10768–10780. [Google Scholar] [CrossRef] [PubMed]
- Garrett, P.R. Defoaming: Antifoams and mechanical methods. Curr. Opin. Colloid Interface Sci. 2015, 20, 81–91. [Google Scholar] [CrossRef]
- Zafar, A.; Melendez, R.; Geib, S.J.; Hamilton, A.D. Hydrogen bond controlled aggregation of guanidinium-carboxylate derivatives in the solid state. Tetrahedron 2002, 58, 683–690. [Google Scholar]
Surface Tension [mN/m] | |||
---|---|---|---|
LAE Concentration [mM] | LAE | LAE–cCNC | LAE–sCNC |
0.075 | 60 ± 0.5 | 55 ± 1 | 46 ± 1 |
0.15 | 51 ± 0.5 | 38 ± 1 | 43 ± 1 |
0.35 | 32 ± 0.5 | 33 ± 1 | 36 ± 1 |
Size [nm] (PDI) | Zeta Potential [mV] | Size [nm] (PDI) | Zeta Potential [mV] | |
---|---|---|---|---|
cCNC | sCNC | |||
Pure nanocrystals | 77 (0.44) | −38 ± 5 | 96 (0.63) | −44 ± 5 |
CNC-LAE 0.075 mM | 94 (0.40) | −38 ± 5 | 105 (0.51) | −47 ± 5 |
CNC-LAE 0.15 mM | 75 (0.42) | −33 ± 5 | 77 (0.52) | −50 ± 5 |
CNC-LAE 0.35 mM | 120 (0.40) | −29.5 ± 5 | 187 (0.82) | −45 ± 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czakaj, A.; Chatzigiannakis, E.; Vermant, J.; Krzan, M.; Warszyński, P. The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability. Polymers 2022, 14, 5402. https://doi.org/10.3390/polym14245402
Czakaj A, Chatzigiannakis E, Vermant J, Krzan M, Warszyński P. The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability. Polymers. 2022; 14(24):5402. https://doi.org/10.3390/polym14245402
Chicago/Turabian StyleCzakaj, Agnieszka, Emmanouil Chatzigiannakis, Jan Vermant, Marcel Krzan, and Piotr Warszyński. 2022. "The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability" Polymers 14, no. 24: 5402. https://doi.org/10.3390/polym14245402
APA StyleCzakaj, A., Chatzigiannakis, E., Vermant, J., Krzan, M., & Warszyński, P. (2022). The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability. Polymers, 14(24), 5402. https://doi.org/10.3390/polym14245402