Biotechnological Applications of Nanoencapsulated Essential Oils: A Review
Abstract
:1. Introduction
2. Nanoencapsulation
2.1. Nanoparticles
2.2. Development of Nanoparticles
3. Chemical Composition of Essential Oils
4. Biotechnological Potential of Nanoencapsulated Essential Oils
4.1. Pharmaceutical Applications
4.2. Cosmetic Applications
4.3. Food Applications
4.4. Environmental Applications
Essential Oil | Nanoencapsulation | Biotechnological Potential | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Common Name | Plant Part a | Main Chemical Compounds | Encapsulation Method | Polymer Carrier | Nanoproduct Obtained | Biological ACTIVITY | Application | Industry | Nº |
Piper nigrum | Black pepper | - | β-caryophyllene (28%); limonene (15%); sabinene (11.4%); β-pinene (11%) | Complex Coacervation | Gelatin and sodium alginate | Nanocapsules | - | - | Food | [13] |
Aniba rosaeodora | Rosewood | Leaves | linalool (81.46%); α-terpineol (7.4%); linalool oxide (1.56%) | Ionic gelidificaton- emulsion | Chitosan | Nanoemulsions | Antifungal, anti- aflatoxigenic | Fruit coating | Food | [47] |
Cymbopogon citratus | Lemongrass | Leaves | citral (67.4%); neral (25.6%); geranial (41.8%); β-myrcene (18.1%) | Nano- Precipitation | poly(lactic acid)-PLA | Nanocapsules | Antifungal | Fruit coating | Food | [48] |
Pimpinella anisum | Aniseed | Fruits | anethole (51.02%); estragole (24.75%); fenchone (13.22%) | Ionic gelidification- emulsion | Chitosan | Nanoemulsions | Antioxidant, antifungal, anti- aflatoxigenic | Food Preservative | Food | [49] |
Cymbopogon nardus | Citronella grass | - | citral (62.73%); geranyl acetate (9.53%); geraniol (4.52%) | Ionic gelidification- emulsion | Chitosan | Nanoemulsions | Antioxidant, antifungal, anti- aflatoxigenic | Food Preservative | Food | [52] |
Illicium verum | Star anise | Fruit | anethole (89.12%); estragole (4.85%) | Nano- Precipitation | Chitosan | Nanocapsules | Antioxidant, antifungal, anti- aflatoxigenic | Food Preservative | Food | [53] |
Thymus capitatus | Conehead thyme | Aerial parts | carvacrol (76.1%); y-terpinene (6.7%); β-caryophyllene (2.7%) | Nanoemulsion | - | Nanoemulsions | Antibacterial | Food preservative | Food | [54] |
Kaempferia galanga | Sand ginger | Rhizomes | ethyl-p-methoxycinnamate (59.4%); trans-methyl cinnamate (17.1%); pentadecane (6.9%) | Nanoemulsion | - | Nanoemulsions | Antifungal | Food preservative | Food | [55] |
Cinnamomum tamala | Indian bay leaf | Fruits | linalool (82.64%); caryophyllene oxide (3.1%); terpinen-4-ol (2.88%) | Ionic Gelidification | Chitosan | Nanoemulsions | Antifungal, anti- Aflatoxigenic | Food preservative | Food | [56] |
Foeniculum vulgare | Common fennel | Fruits | anethole (73.27%). fenchone (6.84%); D-limonene (4.39%) | Nano- Precipitation | Chitosan- cinnamic acid | Nanogéis | Antifungal, anti- aflatoxigenic | Food preservative | Food | [57] |
Coriandrum sativum | Coriander | Dried seeds | linalool (65.18%); geranyl acetate (12.06%); α-pinene (4.76%) | Ionic gelidification- emulsion | Chitosan | Nanoemulsions | Antioxidant, antifungal, anti-aflatoxigenic | Food preservative | Food | [58] |
Eugenia caryophyllata | Cloves | Ground aerial part | eugenol (77.2%); eugenyl acetate (8.31%); β-caryophyllene (7.19%) | Ionic gelidification- emulsion | Chitosan | Nanocapsules | Antifungal | Food preservative | Food | [59] |
Eugenia caryophyllata | Cloves | Flower buds | eugenol (73.6%); caryophyllene (9.67%); oleic acid (2.03%) | Nano- precipitation | Chitosan | Nanogels | Antioxidant, antifungal, anti- aflatoxigenic | - | Food | [61] |
Citrus aurantium | Seville orange | Bark | Nano- precipitation | Chitosan | Nanocapsules | Antioxidant | Food preservative | Food | [93] | |
Melaleuca cajuputi | Cajuput | Leaves | α-pinene (49.24%); bornyl acetate (21.07%); camphor (11.70%) | Ionic gelidification | Chitosan | Nanocapsules | Antioxidant | Food preservative | Food | [94] |
Eryngium campestre | Watling Street thistle | Leaves and roots | β-sesquiphellandrene (16.44%); isophytol (12.27%); stigmasterol (10.11%) | Ionic gelidification | Nanochitosan | Nanocapsules | Antioxidant | Food preservative | Food | [95] |
Myristica fragrans | Mace | Dried seeds | myristicin (39.43%); methyleugenol (8.15%); safrole (6.26%) | Nano- precipitation | Chitosan- cinnamic acid | Nanogels | Antioxidant, antifungal, anti- aflatoxigenic | Food preservative | Food | [96] |
Petroselinum crispum | Parsley | Leaves | carvacrol (48.45%); D-limonene (20.80%); cuminaldehyde (15.78%) | Ionic gelidification | Chitosan | Nanoemulsions | Antioxidant, antifungal, anti- aflatoxigenic | Food preservative | Food | [98] |
Ocimum basilicum | Basil | - | eugenol (48.32%); caryophyllene (26.26%); methyl ester (5.78%) | Ionic gelidification- emulsion | Chitosan | Nanocapsules | Antibacterial, Antibiofilm | Food preservative | Food | [99] |
Thymus vulgaris Cymbopogon citratus Cinnamomum spp. Mentha × piperita Eugenia caryophyllata | Thyme, lemongrass, Cinnamon, Peppermint, Cloves | - | Thyme: thymol (21.69%); p-cymene (21.31%); γ-terpinene (13.87%). Lemongrass: β-citral (31.33%); α-citral (14.65%). Cinnamon: eugenol (37.13%); caryophyllene (9.87%). Peppermint: menthol (29.4%); l-menthone (17.97%). Cloves: eugenol (34.42%%); eugenol acetate (24.53%%); caryophyllene (21.30%%). | Nanoemulsion | - | Nanoemulsions | Antifungal, mycotoxin inhibitor | Food preservative | Food | [100] |
Cinnamomum zeylanicum Thymus vulgaris Syzygium aromaticum | Cinnamon, Thyme, Cloves | - | - | Oil in water emulsion | Chitosan | Nanoemulsions | Antioxidant, antimicrobial | Food preservative | Food | [101] |
Origanum compactum Thymus vulgaris Melaleuca alternifolia Mentha × piperita | Compact oregano, Thyme, Tea tree, Peppermint | - | Oregano: carvacrol (46.37%); thymol (13.70%); p-cymene (13.33%). Thyme: thymol (26.04%); p-cymene (26.36%); y-terpinene (16.69%). Tea tree: terpinen-4-ol (38.4%); γ-terpinene (22.6%). Peppermint: menthol (33.38%); menthone (34.31%) | Nanoemulsion | Chitosan | Nanocapsules | Antifungal | Food storage | Food | [102] |
Zingiber officinale | Ginger | - | - | Nanoemulsion | Carnauba wax, hydroxypropylmethylcellulose | Nanoemulsions | - | Food preservative | Food | [112] |
Salvia rosmarinus | Rosemary | - | - | Nanoemulsion | - | Nanoemulsions | - | - | Food | [113] |
Origanum majorana | Sweet marjorum | - | terpinen-4-ol (28.92%); α-terpineol (16.75%); linalool (11.07%) | Ionic gelidification- emulsion | Chitosan | Nanocapsules | Antioxidant, antifungal, anti- aflatoxigenic | - | Food | [114] |
Myristica fragrans | Nutmeg | Seeds | elemicin (27.08%); myristicin (21.29%); thujanol (18.55%) | Ionic gelidification | Chitosan | Nanoemulsions | Antifungal, anti- Aflatoxigenic | Food preservative | Food | [115] |
Pelargonium graveolens | Rose- scented geranium | Aerial parts | citronelil (19.1%); menthone (16.7%); linalool (15.1%); isomenthone (12.2%) | Oil in water emulsion | Chitosan | Nanogels | Antifungal, anti Aflatoxigenic | - | Food | [116] |
Toddalia asiatica | Orange climber | Leaves | caryophyllene oxide (24.4%); 1.3-hexadiene, 3-ethyl-2,5-dimethyl (24.08%); 1,4,7-cycloundecatriene,1,5,9,9- tetramethyl-Z,Z,Z (9.46%) | Ionic gelidification | Chitosan | Nanocapsules | Antifungal, anti- Aflatoxigenic | - | Food | [117] |
Bunium persicum | Seeds | cuminaldehyde (21.23%); sabinene (14.66%); γ-terpinene (12.49%) | Nanoemulsion | Chitosan- cinnamic acid | Nanogels | Antifungal, anti- aflatoxigenic, cytotoxic | Food preservative | Food | [118] | |
Myrtus communis Mentha pulegium | Common myrtle, Peppermint | Shoots | - | Nanoemulsion | - | Nanoemulsions | Antimicrobial | Food preservative | Food | [119] |
Cinnamomum spp. | Cinnamon | - | - | Nanoemulsion | - | Nano- emulsions | - | - | Food | [120] |
Satureja kermanica | Savory | Leaves | thymol (46.54%); carvacrol (30.54%); γ-terpinene (6.58%) | Nano- precipitation | Chitosan- cinnamic acid | Nanogels | Antifungal | - | Food | [121] |
Cymbopogon martinii | Palmarosa | Leaves | geraniol (19.06%); geraniol (14.84%); geranyl propionate (12.88%) | Nano- precipitation | Chitosan | Nanocapsules | Antifungal | Food preservative | Food | [122] |
Syzygium sp. | Cloves | - | - | Nanoemulsion | Gelatin, pullulan, inulin | Nanoemulsions | Antibacterial | Food preservative | Food | [123] |
Thymus vulgaris | Thyme | - | thymol (43.63%); p-cymene (22.86%); bornyl acetate (8.70%) | Nanoemulsion | - | Nanoemulsions | Antimicrobial | Food preservative | Food | [124] |
Origanum vulgare Thymus capitatus | Oregano Thyme | Aerial parts | thymol (43%); γ-terpinene (15%) and p-cymene (14%) | Nano- precipitation | Poly (ε-caprolactone) | Nanocapsules | Antibacterial | - | Pharmaceutical, food | [71] |
Origanum glandulosum | Oregano | Aerial parts | carvacrol (26.29%); γ-terpinene (23.43%); thymol (19.52%) | High-speed homogenization, high-pressure homogenization | Sodium alginate | Nanocapsules Nanoemulsions | Antioxidant, anticancer | - | Pharmaceutical, food | [80] |
Cinnamomum zeylanicum Thymus vulgaris Schinus molle | Cinnamon, Thyme, Peruvian peppertree | Leaves | - | Ionic gelidification | Chitosan | Nanocapsules | Antimicrobial | - | Pharmaceutical, food | [85] |
Aniba canelilla | Preciosa | Leaves and branches | 1-nitro-2-phenylethane (86.63%); methyleugenol (12.7%); benzaldehyde (0.663%) | Nanoemulsion | - | Nanoemulsions | Anti- Chemotactic | Healing of infected wounds | Pharmaceutical | [46] |
Eugenia caryophyllata | Cloves | Flower buttons | eugenol (89.86%); β-caryophyllene (5.40%) | Ionic gelidification– emulsion | Chitosan | Nanoparticles | Antioxidant, antibacterial | Preservative, Medicine | Pharmaceutical, cosmetic | [60] |
Thymus vulgaris | Thyme | - | thymol (22.10%); p-cymene (21.31%); carvacrol (13.02%) | High-pressure homogenization | Nanoemulsions | Antifungal | Healing of infected wounds | Pharmaceutical | [75] | |
Homalomena pineodora | - | Leaves | - | Ionic gelidification | Chitosan | Nanocapsules | Antimicrobial | Healing of diabetic ulcers | Pharmaceutical | [76] |
Morinda citrifolia | Indian mulberry | Seeds | nordamnacanthal (22.34%); α-copaene (22.96%); α-morenone (20.45%) | Nano- precipitation | Chitosan | Nanocapsules | Anticancer | - | Pharmaceutical | [78] |
Citrus aurantium Citrus limon Citrus sinensis | Seville orange, Lemon, Sweet orange | - | Seville orange: sabinene (15.6%); ɣ-terpinene (6.0%); linalool (5.6%). Sweet orange: α-pinene (3.5%); sabinene (17%); trans-limonene oxide (3.1%). Lemon: trans-p-2,8- menthadien-1-ol (5.0%); cis-limonene oxide (2.6%); trans-limonene oxide (2.3%) | Ionic gelidification | Chitosan | Nanocapsules | Anticancer | - | Pharmaceutical | [79] |
Origanum vulgare Thymus capitatos | Oregano Thyme | Aerial part | - | Ionic gelidification | Chitosan | Nanocapsules | Antimicrobial | Medicine | Pharmaceutical | [81] |
Cinnamomum spp. | Cinnamon | Bark | - | Liposomes, lipid nanoparticles | Sodium alginate | Hybrid composite nanoparticles | Antimicrobial | Medicine | Pharmaceutical | [82] |
Citrus aurantifolia, Citrus hystrix, Citrofortunella microcarpa | Lime, Makrut lime Calamondin | - | - | Spontaneous emulsification | - | Nanoemulsions | Antibacterial | Medicine | Pharmaceutical | [83] |
Poiretia latifolia | Erva de touro | Leaves | trans-dihydrocarvone (15.3–51.2%); carvone (12.3–39.0%); limonene (13.9–29.4%) | Phase inversion | Soy lecithin | Lipossomes, Nanoemulsions | Antifungal, anti- Inflammatory, antioxidant | - | Pharmaceutical | [84] |
Eugenia caryophyllata | Cloves | Aerial parts | - | High shear homogenization and ultrasound | - | Nanoemulsions | Antimicrobial | - | Pharmaceutical | [86] |
Cymbopogon commutatus | Lemongrass | Whole plant | geranial (38.6%); neral (30.3%); geranyl acetate (8.2%) | Ionic gelidification- emulsion | Chitosan | Nanocapsules | Antimicrobial | - | Pharmaceutical | [87] |
Mentha pulegium | Pennyroyal | - | pulegone (72.18%); piperitenone (24.04%); chrysanthenol (0.90%) | Hot melt homogenization | Nanostructured lipid carriers (NLC) | Nanogels | Antimicrobial | Healing of infected wounds | Pharmaceutical, cosmetic | [50] |
Mentha × piperita | Peppermint | Leaves | menthol (39.80%); menthone (19.55%); neomenthol (8.82%) | Nanoemulsion | Nanostructured lipid carriers (NLC) and xanthan gum | Nanogels | Antimicrobial | Healing of infected wounds | Pharmaceutical, cosmetic | [74] |
Cynometra cauliflora | Nam Nam | Leaves, branches, fruits | - | Ionic Gelidification– emulsion | Chitosan | Nanocapsules | Antimicrobial, antioxidant, cytotoxic | Pharmaceutical, cosmetic | [77] | |
Cedrus deodara | Cedar | Sawdust | α-cedarene (32.72%); β-cedarene (12.26%); thujopsene (24.03%) | Nanoemulsion | Modified starch | Nanoemulsions | Antioxidant, antibacterial | Preservative, Medicine | Pharmaceutical, cosmetic | [89] |
Thymus vulgaris Melissa officinalis | Thyme, Lemon balm, Black caraway | - | - | Phase inversion | Sunflower oil | Nanoemulsions | Antioxidant, antibacterial | - | Pharmaceutical, cosmetic | [90] |
Mentha × piperita Camellia sinensis | Peppermint, Green tea | - | - | Nano- precipitation | Chitosan | Nanocapsules | Antimicrobial, antioxidant | - | Pharmaceutical, cosmetic | [91] |
Syzygium aromaticum | Cloves | Flower buds | eugenol (71.92%); β-caryophyllene (22.80%); chavibetol acetate (2.89%) | Intercalation | Bentonite clay and polyvinylpyrrolidone (PVP) | Nano- composites | Cytotoxic, Larvicide | - | Pharmaceutical, environmental | [51] |
Ocimum basilicum | Basil | Leaves | trans-β-guaiene (16.89%); α-cadinol (15.66%); phytol (11.68%) | Nanoemulsion | - | Nanoemulsions | Antioxidant, antibacterial, larvicide | - | Pharmaceutical, environmental | [105] |
Satureja hortensis | Summer savory | Aerial parts | carvacrol (35.2%); γ-terpinene (17.6%); thymol (12.1%) | Ionic gelidification | Chitosan | Nanocapsules | Acaricide | - | Environmental | [107] |
Cymbopogon nardus | Citronella grass | - | - | Ionic gelidification | Chitosan and cellulose | Nanocapsules | Insecticide | Pest control | Environmental | [103] |
Mentha × piperita | Peppermint | Dried leaves | l-menthone (32.27%); menthol (23.47%); α-phellandrene (7.71%) | Ionic Gelidification– emulsion | Chitosan | Nanocapsules | Insecticide | Pest control | Environmental | [104] |
Siparuna guianensis | Negramina | Whole plant | - | Nanoemulsion | Chitosan | Nanocapsules | Larvicide | Pest control | Environmental | [106] |
Cannabis sativa | Marijuana | Aerial parts | (E)-caryophyllene (23.1%); α-pinene (15.8%); myrcene (14.5%) | Nano- precipitation | Alfalfa protein | Nanocapsules | Antioxidant | - | Cosmetic, food | [92] |
Cymbopogon densiflorus | Lemongrass | Leaves | trans-p-mentha-2,8-dien-1-ol (13.13%); cis-p-mentha-2,8- dien-1-ol (17.29%); trans-p-mentha-1(7),8-dien-2-ol (18.99%) | Phase inversion | - | Nanoemulsions | Antioxidant | - | Cosmetic | [125] |
5. Encapsulated EOs versus Non-Encapsulated EOs
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chikezie, P.C.; Ibegbulem, C.O.; Mbagwu, F.N. Bioactive principles from medicinal plants. Res. J. Phytochem. 2015, 9, 88–115. [Google Scholar] [CrossRef] [Green Version]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Fessi, H.; Elaissari, A. Plant oils, from chemical composition to encapsulated form use. Int. J. Pharm. 2021, 601, 120538. [Google Scholar] [CrossRef] [PubMed]
- Maleck, M.; Dutra Dias, T.; Cruz, I.L.S.; Teixeira Serdeiro, M.; Eiras Nascimento, N.; Marins Carraro, V. Essential oils—A brief report. Rev. Eletrônica Teccen. 2021, 14, 43–49. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S. Role of essential oils in food safety, antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Lin, H.J.; Lin, Y.L.; Huang, B.B.; Lin, Y.T.; Li, H.K.; Lu, W.J.; Lin, T.C.; Tsui, Y.C.; Lin, H.T.V. Solid- and vapour-phase antifungal activities of six essential oils and their applications in postharvest fungal control of peach (Prunus persica L. Batsch). LWT 2022, 156, 113031. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Bluma, R.V.; Etcheverry, M.G. Application of essential oils in maize grain: Impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation. Food Microbiol. 2008, 25, 324–334. [Google Scholar] [CrossRef]
- Vergis, J.; Gokulakrishnan, P.; Agarwal, R.K.; Kumar, A. Essential oils as natural food antimicrobial agents: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1320–1323. [Google Scholar] [CrossRef]
- Hasanein, P.; Riahi, H. Antinociceptive and antihyperglycemic effects of Melissa officinalis essential oil in an experimental model of diabetes. Med. Princ. Pract. 2015, 24, 47–52. [Google Scholar] [CrossRef]
- Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 2020, 32, 279–295. [Google Scholar] [CrossRef]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Elaissari, A. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects. Pharmaceutics 2020, 12, 431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, H.; Rhim, J.W.; Cao, J.; Jiang, W. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem. 2022, 367, 130671. [Google Scholar] [CrossRef]
- Bastos, L.P.H.; Vicente, J.; Santos, C.H.C.; Carvalho, M.G.; Garcia-Rojas, E.E. Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocoll. 2020, 102, 105605. [Google Scholar] [CrossRef]
- Giunti, G.; Palermo, D.; Laudani, F.; Algeri, G.M.; Campolo, O.; Palmeri, V. Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Ind. Crops Prod. 2019, 142, 41–48. [Google Scholar] [CrossRef]
- Gonçalves, N.D.; Lima Pena, F.; Sartoratto, A.; Derlamelina, C.; Duarte, M.C.T.; Antunes, A.E.C.; Prata, A.S. Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Res. Int. 2017, 96, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. Chapter 1—An Introduction to nanotechnology. In An Introduction to Green Nanotechnology; Nasrollahzadeh, M., Sajadi, S.M., Sajjadi, M., Issaabadi, Z., Atarod, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 1–27. [Google Scholar]
- Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Singh, B.; Yadav, S.C. Development of biodegradable nanoparticles for delivery of quercetin. Colloid Surf. B. 2010, 80, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnol. 2011, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.S.M.; Rabelo, M.S.; Lima, S.X.; Analf, R.; Tadei, W.P.; Chaves, F.C.M.; Bezerra, J.A.; Biondo, M.M.; Campelo, P.H.; Sanches, E.A. Biodegradable nanoparticles loaded with Lippia alba essential oil, a sustainable alternative for Aedes aegypti larvae control. Eur. Acad. Res. 2020, VII, 6237–6258. [Google Scholar]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid.-Based Complement. Altern. Med. 2014, 14, 651593. [Google Scholar] [CrossRef] [Green Version]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Bizerra, A.; Silva, V. Drug delivery systems: Mechanisms and applications. Rev. Saúde Meio Ambiente 2016, 3, 1–12. [Google Scholar]
- Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Neri-Badang, M.C.; Chakraborty, S. Carbohydrate polymers as controlled release devices for pesticides. J. Carbohydr. Chem. 2019, 38, 67–85. [Google Scholar] [CrossRef]
- Yasmin, R.; Shah, M.; Khan, S.A.; Ali, R. Gelatin nanoparticles: A potential candidate for medical applications. Nanotechnol. Rev. 2017, 6, 191–207. [Google Scholar] [CrossRef]
- Xavier, L.O.; Sganzerla, W.G.; Rosa, G.B.; Rosa, C.G.; Agostinetto, L.; Veeck, A.P.L.; Bretanha, L.C.; Micke, G.A.; Costa, M.D.; Bertoldi, F.C.; et al. Chitosan packaging functionalized with Cinnamodendron dinisii essential oil loaded zein, a proposal for meat conservation. Int. J. Biol. Macromol. 2021, 169, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Campelo, M.S.; Melo, E.O.; Arrais, S.P.; Nascimento, F.B.S.A.; Gramosa, N.V.; Soares, S.A.; Ribeiro, M.E.N.P.; Silva, C.R.; Nobre Júnior, H.V.; Ricardo, N.M.P.S. Clove essential oil encapsulated on nanocarrier based on polysaccharide: A strategy for the treatment of vaginal candidiasis. Colloid Surf. A. 2021, 610, 125732. [Google Scholar] [CrossRef]
- Azevedo, S.G.; Rocha, A.L.F.; Nunes, R.Z.A.; Pinto, C.C.; Ţălu, Ş.; Fonseca Filho, H.D.; Bezerra, J.A.; Lima, A.R.; Guimarães, F.E.G.; Campelo, P.H.; et al. Pulsatile controlled release and stability evaluation of polymeric particles containing Piper nigrum essential oil and preservatives. Materials 2022, 15, 5415. [Google Scholar] [CrossRef]
- Nimesh, S. 2- Methods of nanoparticle preparation. In Woodhead Publishing Series in Biomedicine, Gene Therapy; Ninmesh, S., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 13–42. ISBN 9781907568404. [Google Scholar] [CrossRef]
- Schaffazick, S.R.; Pohlmann, A.R. Characterization and stability study of suspensions of nanocá capsules and polymeric nanospheres containing diclofenac. Acta Farm. Bonaer. 2002, 21, 99–106. [Google Scholar]
- Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Puhl, A.C.; Fagundes, M.; Dos Santos, K.C.; Polikarpov, I.; Silva, M.G.F.; Fernandes, J.B.; Vieira, P.C.; Forim, M.R. Preparation and characterization of polymeric nanoparticles loaded with the flavonoid luteolin, by using factorial design. Int. J. Drug Deliv. 2011, 3, 683–698. [Google Scholar] [CrossRef]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010, 385, 113–142. [Google Scholar] [CrossRef] [PubMed]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Martínez Rivas, C.J.; Tarhini, M.; Badri, W.; Miladi, K.; Greige-Borges, H.; Nazari, Q.A.; Rodrígues, S.A.G.; Román, R.A.; Fessi, H.; Elaissari, A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017, 532, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Risch, S.J.; Reineccius, G. Encapsulation release of food and controlled ingredients. In ACS Symposium Series 590; Comstock, M.J., Ed.; American Chemical Society: New York, NY, USA, 1995; p. 214. [Google Scholar] [CrossRef] [Green Version]
- Corrado, I.; Di Girolamo, R.; Regalado-González, C.; Pezzella, C. Polyhydroxyalkanoates-based nanoparticles as essential oil carriers. Polymers 2022, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Schaffazick, S.R.; Guterres, S.S.; De Lucca Freitas, L.; Pohlmann, A.R. Physicochemical characterization and stability of the polymeric nanoparticle systems for drug administration. Quim. Nova 2003, 26, 726–737. [Google Scholar] [CrossRef]
- Grillo, R.; Souza, P.M.S.; Rosa, A.H.; Fraceto, L.F. Nanopartículas poliméricas como sistemas de liberação para herbicidas. In Nanotecnologia, Ciência e Engenharia; Graeff, C., Ed.; Cultura Academica: São Paulo, Brazil, 2012; pp. 83–124. ISBN 9788579833779. [Google Scholar]
- Sahoo, N.; Sahoo, R.K.; Biswas, N.; Guha, A.; Kuotsu, K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int. J. Biol. Macromol. 2015, 81, 317–331. [Google Scholar] [CrossRef]
- Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J. Control Release 2013, 172, 1075–1091. [Google Scholar] [CrossRef]
- Quintanar-Guerrero, D.; Allémann, E.; Fessi, H.; Doelker, E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 1998, 24, 1113–1128. [Google Scholar] [CrossRef]
- Quintanar-Guerrero, D.; Allémann, E.; Doelker, E.; Fessi, H. Preparation and characterization of nanocapsnles from preformed polymers by a new process based on emulsification-diffusion technique. Pharm. Res. 1998, 15, 1056–1062. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems: A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, T.; Carneiro, S.B.; Soares, K.D.; Limberger, R.P.; Apel, M.A.; Veiga-Junior, V.F.; Koester, L.S. Aniba canelilla (Kunth) Mez essential oil-loaded nanoemulsion: Improved stability of the main constituents and in vitro antichemotactic activity. Ind. Crops Prod. 2021, 171, 113949. [Google Scholar] [CrossRef]
- Singh, B.K.; Tiwari, S.; Chaudhari, A.K.; Maurya, A.; Das, S.; Singh, V.K.; Dubey, N.K. Chitosan encompassed Aniba rosaeodora essential oil as innovative green candidate for antifungal and antiaflatoxigenic activity in millets with emphasis on cellular and its mode of action. Front. Microbiol. 2022, 13, 970670. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, G.; Fontanella, G.; Echeverrigaray, S.; Longaray Delamare, A.P.; Fernandes Pauletti, G.; Barcellos, T. Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chem. 2020, 326, 126997. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Dubey, N.K. Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B1 contamination and deterioration of nutritional qualities. Food Chem. 2021, 344, 128574. [Google Scholar] [CrossRef] [PubMed]
- Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent. Colloid Surf. A 2020, 589, 124414. [Google Scholar] [CrossRef]
- Nunes, R.K.V.; Santos, J.S.; Santos, C.P.; Gonsalves, J.K.M.C.; Lira, A.A.M.; Cavalcanti, S.C.H.; Santos, R.L.C.; Sarmento, V.H.V.; Nunes, R.G. Clay/PVP nanocomposites enriched with Syzygium aromaticum essential oil as a safe formulation against Aedes aegypti larvae. Appl. Clay Sci. 2020, 185, 105394. [Google Scholar] [CrossRef]
- Prasad, J.; Das, S.; Maurya, A.; Jain, S.K.; Dwivedy, A.K. Synthesis, characterization and in situ bioefficacy evaluation of Cymbopogon nardus essential oil impregnated chitosan nanoemulsion against fungal infestation and aflatoxin B1 contamination in food system. Int. J. Biol. Macromol. 2022, 205, 240–252. [Google Scholar] [CrossRef]
- Dwivedy, A.K.; Singh, V.K.; Prakash, B.; Dubey, N.K. Nanoencapsulated Illicium verum Hook.f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation. Food Chem. Toxicol. 2018, 111, 102–113. [Google Scholar] [CrossRef]
- Benjemaa, M.; Neves, M.A.; Falleh, H.; Isoda, H.; Ksouri, R.; Nakajima, M. Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability, characterization and antibacterial efficiency monitoring. Ind. Crops Prod. 2018, 113, 414–421. [Google Scholar] [CrossRef]
- Kundu, A.; Mandal, A.; Dutta, A.; Saha, S.; Raina, A.P.; Kumar, R.; Ghosh, A. Nanoemulsification of Kaempferia galanga essential oil: Characterizations and molecular interactions explaining fungal growth suppression. Process Biochem. 2022, 121, 228–239. [Google Scholar] [CrossRef]
- Singh, B.K.; Chaudhari, A.K.; Das, S.; Tiwari, S.; Dubey, N.K. Preparation and characterization of a novel nanoemulsion consisting of chitosan and Cinnamomum tamala essential oil and its effect on shelf-life lengthening of stored millets. Pestic. Biochem. Physiol. 2022, 187, 105214. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pratap Singh, P.; Prakash, B. Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydr. Polym. 2020, 236, 116050. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Upadhyay, N.; Singh, P.; Sharma, S.; Dubey, N.K. Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. Int. J. Biolog. Macromol. 2019, 133, 294–305. [Google Scholar] [CrossRef]
- Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2019, 275, 113–122. [Google Scholar] [CrossRef]
- Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020, 236, 117410. [Google Scholar] [CrossRef]
- Kujur, A.; Kumar, A.; Prakash, B. Elucidation of antifungal and aflatoxin B1 inhibitory mode of action of Eugenia caryophyllata L. essential oil loaded chitosan nanomatrix against Aspergillus flavus. Pestic. Biochem. Physiol. 2021, 172, 104755. [Google Scholar] [CrossRef]
- Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M.R.; Reglero, G. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatogr. A. 2012, 1250, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Craveiro, A.A.; Alencar, J.W.; Matos, F.J.A.; Andrade, C.H.S.; Machado, M.I.L. Essential oils from Brazilian Verbenaceae genus Lippia. J. Nat. Prod. 1981, 44, 598–601. [Google Scholar] [CrossRef]
- Chaar, J.D.S. Analytical and Chemical Studies by Acetylation of Linalool Contained in the Essential Oil of the Species Aniba duckei Kostermans. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2000; 150p. [Google Scholar]
- Guenther, E. The production of essential oils. In The Essential Oils; Guenther, E., Ed.; Krieger Publishing: New York, NY, USA, 1972; pp. 453–454. [Google Scholar]
- Santos, F.J.; Lopes, J.A.D.; Cito, A.G.L.; Oliveira, E.H.; Lima, S.G.; Reis, F.D.A. Composition and biological activity of essential oils from Lippia origanoides HBK. J. Essent. Oil Res. 2004, 16, 504–506. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Chraief, I.; Abedrabba, M.; Bouix, M.; Leveau, J.Y.; Mohammed, H.; Hamdi, M. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 2008, 125, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation, an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films. J. Food Sci. 2011, 76, 164–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Mendiratta, S.K.; Agrawal, R.K.; Sharma, H.; Singh, B.P. Anti-oxidant and anti-microbial properties of mutton nuggets incorporated with blends of essential oils. J. Food Sci. Technol. 2018, 55, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Consoli, G.M.L.; Cafiso, V.; Stefani, S.; Geraci, C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem. 2018, 269, 286–292. [Google Scholar] [CrossRef]
- De Sousa, A.C.; Gattass, C.R.; Alviano, D.S.; Alviano, C.S.; Blank, A.F.; Alves, P.B. Melissa officinalis L. essential oil, antitumoral and antioxidant activities. J. Pharm. Pharmacol. 2004, 56, 677–681. [Google Scholar] [CrossRef]
- Stan, M.S.; Chirila, L.; Popescu, A.; Radulescu, D.M.; Radulescu, D.E.; Dinischiotu, A. Materials essential oil microcapsules immobilized on textiles and certain induced effects. Materials 2019, 12, 2029. [Google Scholar] [CrossRef] [Green Version]
- Ghodrati, M.; Farahpour, M.R.; Hamishehkar, H. Encapsulation of Peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing. Colloid Surf. A 2019, 564, 161–169. [Google Scholar] [CrossRef]
- Moazeni, M.; Davari, A.; Shabanzadeh, S.; Akhtari, J.; Saeed, M.; Mortyeza-Semnani, K.; Abastabar, M.; Nabili, M.; Moghadam, F.H.; Roohi, B.; et al. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. J. Herb. Med. 2021, 28, 100452. [Google Scholar] [CrossRef]
- Rozman, N.A.S.; Yenn, T.W.; Ring, L.C.; Anuar, M.R.; Karim, S.; Kooi, O.S.; Yusof, F.A.M.; Wen-Nee, T.; Sulaiman, B.; Lee, O.M.; et al. Homalomena pineodora essential oil nanoparticle inhibits diabetic wound pathogens. Sci. Rep. 2020, 10, 3307. [Google Scholar] [CrossRef] [Green Version]
- Samling, B.A.; Assim, Z.; Tong, W.Y.; Leong, C.R.; Rashid, S.A.; Kamal, N.N.S.N.M.; Muhamad, M.; Tan, W.M. Cynometra cauliflora essential oils loaded-chitosan nanoparticles: Evaluations of their antioxidant, antimicrobial and cytotoxic activities. Int. J. Biol. Macromol. 2022, 210, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Rajivgandhi, G.; Saravanan, K.; Ramachandran, G.; Li, J.L.; Yin, L.; Quero, F.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Manoharan, N.; et al. Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells. Int. J. Biol. Macromol. 2020, 164, 4010–4021. [Google Scholar] [CrossRef] [PubMed]
- Alipanah, H.; Farjam, M.; Zarenezhad, E.; Roozitalab, G.; Osanloo, M. Chitosan nanoparticles containing limonene and limonene-rich essential oils, potential phytotherapy agents for the treatment of melanoma and breast cancers. BMC Complement. Med. Ther. 2021, 21, 186. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Al-Khalifa, A.R.; Aouf, A.; Boukhebti, H.; Farouk, A. Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum glandulosum Desf. essential oil. Sci. Rep. 2020, 10, 2812. [Google Scholar] [CrossRef] [Green Version]
- Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Malandrino, G.; Cafiso, V.; Stefani, S.; Geraci, C. Molecules oregano and thyme essential oils encapsulated in chitosan nanoparticles as effective antimicrobial agents against foodborne pathogens. Molecules 2021, 26, 4055. [Google Scholar] [CrossRef]
- Yostawonkul, J.; Nittayasut, N.; Phasuk, A.; Junchay, R.; Boonrungsiman, S.; Temisak, S.; Kongsema, M.; Phoolcharoen, W.; Yata, T. Nano/microstructured hybrid composite particles containing Cinnamon oil as an antibiotic alternative against food-borne pathogens. J. Food Eng. 2021, 290, 110209. [Google Scholar] [CrossRef]
- Liew, S.N.; Utra, U.; Alias, A.K.; Tan, T.B.; Tan, C.P.; Yussof, N.S. Physical, morphological and antibacterial properties of lime essential oil nanoemulsions prepared via spontaneous emulsification method. LWT 2020, 128, 162–169. [Google Scholar] [CrossRef]
- Paim, L.F.N.A.; Dalla Lana, D.F.; Giaretta, M.; Danielli, L.J.; Fuentefria, A.M.; Apel, M.A.; Külkamp-Guerreiro, I.C. Poiretia latifolia essential oil as a promising antifungal and anti-inflammatory agent, chemical composition, biological screening, and development of a nanoemulsion formulation. Ind. Crops Prod. 2018, 126, 280–286. [Google Scholar] [CrossRef]
- Barrera-Ruiz, D.G.; Cuestas-Rosas, G.C.; Sánchez-Mariñez, R.I.; Álvarez-Ainza, M.L.; Moreno-Ibarra, G.M.; López-Meneses, A.K.; Plascencia-Jatomea, M.; Cortez-Rocha, M.O. Antibacterial activity of essential oils encapsulated in chitosan nanoparticles. Food Sci. Technol. 2020, 40, 568–573. [Google Scholar] [CrossRef]
- Fazly, B.S.B.; Khameneh, B.; Namazi, N.; Iranshahi, M.; Davoodi, D.; Golmohammadzadeh, S. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil, the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett. Appl. Microbiol. 2018, 66, 506–513. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J.M. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil, physicochemical, structural, antimicrobial and in-vitro release properties. Int. J. Biol. Macromol. 2021, 192, 1084–1097. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Coelho, C.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. Nanocarriers as active ingredients enhancers in the cosmetic industry—The European and North America regulation challenges. Molecules 2022, 27, 1669. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liu, R.; Zhang, Y.; Guan, X. Characteristics of two cedarwood essential oil emulsions and their antioxidant and antibacterial activities. Food Chem. 2021, 346, 128970. [Google Scholar] [CrossRef]
- Sampaio, C.I.; Bourbon, A.I.; Gonçalves, C.; Pastrana, L.M.; Dias, A.M.; Cerqueira, M.A. Low energy nanoemulsions as carriers of thyme and lemon balm essential oils. LWT 2022, 154, 112748. [Google Scholar] [CrossRef]
- Shetta, A.; Kegere, J.; Mamdouh, W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int. J. Biol. Macromol. 2019, 126, 731–742. [Google Scholar] [CrossRef]
- Hadidi, M.; Rostamabadi, H.; Moreno, A.; Jafari, S.M. Nanoencapsulation of essential oils from industrial hemp (Cannabis sativa L.) by-products into alfalfa protein nanoparticles. Food Chem. 2022, 386, 132765. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S.; Sonnenberg, A. Chitosan nanoparticles-loaded Citrus aurantium essential oil, a novel delivery system for preserving the postharvest quality of Agaricus bisporus. J. Sci. Food Agric. 2018, 98, 5112–5119. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.K.; Das, S.; Singh, B.K.; Kishore Dubey, N. Green facile synthesis of cajuput (Melaleuca cajuputi Powell.) essential oil loaded chitosan film and evaluation of its effectiveness on shelf-life extension of white button mushroom. Food Chem. 2023, 401, 134114. [Google Scholar] [CrossRef]
- Arabpoor, B.; Yousefi, S.; Weisany, W.; Ghasemlou, M. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll. 2021, 111, 106394. [Google Scholar] [CrossRef]
- Yadav, A.; Kujur, A.; Kumar, A.; Singh, P.P.; Prakash, B.; Dubey, N.K. Assessing the preservative efficacy of nanoencapsulated mace essential oil against food borne molds, aflatoxin B1 contamination, and free radical generation. LWT 2019, 108, 429–436. [Google Scholar] [CrossRef]
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Upadhyay, N.; Singh, A.; Dubey, N.K. Antimicrobial activity, anti-aflatoxigenic potential and in situ efficacy of novel formulation comprising of Apium graveolens essential oil and its major component. Pestic. Biochem. Physiol. 2019, 160, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Deepika; Chaudhari, A.K.; Singh, A.; Das, S.; Dubey, N.K. Nanoencapsulated Petroselinum crispum essential oil: Characterization and practical efficacy against fungal and aflatoxin contamination of stored chia seeds. Food Biosci. 2021, 42, 101117. [Google Scholar] [CrossRef]
- Cai, M.; Wang, Y.; Wang, R.; Li, M.; Zhang, W.; Yu, J.; Hua, R. Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil. Int. J. Biol. Macromol. 2022, 202, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions, Impact of oil compositions and processing parameters. Food Chem. 2019, 291, 199–206. [Google Scholar] [CrossRef]
- Sagar, N.A.; Agrawal, R.K.; Singh, R.; Talukder, S.; Kumar, R.R.; Mendiratta, S.K. Quality and shelf life assessment of steam-cooked chicken fingers coated with essential oil nanoemulsions. Food Biosci. 2022, 49, 101902. [Google Scholar] [CrossRef]
- Hossain, F.; Follett, P.; Salmieri, S.; Vu, K.D.; Fraschini, C.; Lacroix, M. Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions. Int. J. Food Microbiol. 2019, 295, 33–40. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Abou-Elseoud, W.S.; Elbehery, H.H.; Hassan, M.L. Chitosan-cellulose nanoencapsulation systems for enhancing the insecticidal activity of citronella essential oil against the cotton leafworm Spodoptera littoralis. Ind. Crops Prod. 2022, 184, 115089. [Google Scholar] [CrossRef]
- Rajkumar, V.; Gunasekaran, C.; Paul, C.A.; Dharmaraj, J. Development of encapsulated peppermint essential oil in chitosan nanoparticles, characterization and biological efficacy against stored-grain pest control. Pestic. Biochem. Physiol. 2020, 170, 104679. [Google Scholar] [CrossRef]
- Sundararajan, B.; Moola, A.K.; Vivek, K.; Kumari, B.D.R. Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb. Pathog. 2018, 125, 475–485. [Google Scholar] [CrossRef]
- Ferreira, T.P.; Haddi, K.; Corrêa, R.F.T.; Zapata, V.L.B.; Piau, T.B.; Souza, L.F.N.; Santos, S.M.G.; Oliveira, E.E.; Jumbo, L.O.V.; Ribeiro, B.M.; et al. Prolonged mosquitocidal activity of Siparuna guianensis essential oil encapsulated in chitosan nanoparticles. PLoS Negl. Trop. Dis. 2019, 13, e0007624. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, Z.; Saber, M.; Akbari, A.; Mahdavinia, G.R. Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari, Tetranychidae). Ecotoxicol. Environ. Saf. 2018, 161, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Clarinval, A.M.; Halleux, J. Classification of biodegradable polymers. In Biodegradable Polymers for Industrial Applications; Smith, R., Ed.; Elsevier: Chennai, India, 2005; pp. 3–31. ISBN 9781855739345. [Google Scholar]
- Brito, G.F.; Agrawal, P.; Araújo, E.M.; Mélo, T.J.A. Biopolymers, biodegradable polymers and green polymers. Rev. Eletrônica Mater. Process. 2011, 2, 127–139. [Google Scholar]
- Polman, E.M.N.; Gruter, G.J.M.; Parsons, J.R.; Tietema, A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Sci. Total Environ. 2021, 753, 141953. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y.; et al. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 1098. [Google Scholar] [CrossRef]
- Miranda, M.; Sun, X.; Marín, A.; Santos, L.C.; Plotto, A.; Bai, J.; Assis, O.B.G.; Ferreira, M.D.; Baldwin, E. Nano-and micro-sized carnauba wax emulsions-based coatings incorporated with ginger essential oil and hydroxypropyl methylcellulose on papaya: Preservation of quality and delay of post-harvest fruit decay. Food Chem. X 2022, 13, 100249. [Google Scholar] [CrossRef]
- Martin-Piñero, M.J.; Muñoz, J.; Alfaro-Rodriguez, M.C. Improvement of the rheological properties of rosemary oil nanoemulsions prepared by microfluidization and vacuum evaporation. J. Ind. Eng. Chem. 2020, 91, 340–346. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Das, S.; Prasad, J.; Dwivedy, A.K.; Dubey, N.K. Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food Chem. Toxicol. 2020, 143, 111536. [Google Scholar] [CrossRef]
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Upadhyay, N.; Singh, A.; Dubey, N.K. Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration. Ecotoxicol. Environ. Saf. 2020, 189, 110000. [Google Scholar] [CrossRef]
- Kujur, A.; Kumar, A.; Yadav, A.; Prakash, B. Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. LWT 2020, 130, 109619. [Google Scholar] [CrossRef]
- Roshan, A.B.; Venkatesh, H.N.; Dubey, N.K.; Mohana, D.C. Chitosan-based nanoencapsulation of Toddalia asiatica (L.) Lam. essential oil to enhance antifungal and aflatoxin B1 inhibitory activities for safe storage of maize. Int. J. Biol. Macromol. 2022, 204, 476–484. [Google Scholar] [CrossRef]
- Yadav, A.; Kujur, A.; Kumar, A.; Singh, P.P.; Gupta, V.; Prakash, B. Encapsulation of Bunium persicum essential oil using chitosan nanopolymer: Preparation, characterization, antifungal assessment, and thermal stability. Int. J. Biol. Macromol. 2020, 142, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Ben Jemaa, M.; Neves, M.A.; Isoda, H.; Nakajima, M.; Ksouri, R. Peppermint and Myrtle nanoemulsions: Formulation, stability, and antimicrobial activity. LWT 2021, 152, 112377. [Google Scholar] [CrossRef]
- Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McLandsborough, L.; Julian McClements, D. Optimization of Cinnamon oil nanoemulsions using phase inversion temperature method, impact of oil phase composition and surfactant concentration. J. Colloid Interface Sci. 2018, 514, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, M.; Ahmadyousefi, M.; Alizadeh, H.; Zahedifar, M. Chitosan nanocomposite incorporated Satureja kermanica essential oil and extract: Synthesis, characterization and antifungal assay. Int. J. Biol. Macromol. 2022, 221, 1356–1364. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Nirmal Ghosh, O.S.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Ni, Z.J.; Thakur, K.; Zhang, J.G.; Hu, F.; Wei, Z.J. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int. J. Biol. Macromol. 2021, 181, 528–539. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S. Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. J. Mater. Res. Technol. 2021, 10, 1029–1041. [Google Scholar] [CrossRef]
- Seibert, J.B.; Rodrigues, I.V.; Carneiro, S.P.; Amparo, T.R.; Lanza, J.S.; Frézard, F.J.G.; Souza, G.H.B.; Santos, O.D.H. Seasonality study of essential oil from leaves of Cymbopogon densiflorus and nanoemulsion development with antioxidant activity. Flavour Fragr. J. 2019, 34, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Mukurumbira, A.R.; Shellie, R.A.; Keast, R.; Palombo, E.A.; Jadhav, S.R. Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control 2022, 136, 108883. [Google Scholar] [CrossRef]
- Barros, F.A.P.; Radünz, M.; Scariot, M.A.; Camargo, T.M.; Nunes, C.F.P.; de Souza, R.R.; Gilson, I.K.; Hackbart, H.C.S.; Radünz, L.L.; Oliveira, J.V.; et al. Efficacy of encapsulated and non-encapsulated thyme essential oil (Thymus vulgaris L.) in the control of Sitophilus zeamais and its effects on the quality of corn grains throughout storage. Crop Prot. 2022, 153, e10812. [Google Scholar] [CrossRef]
- Singh, B.K.; Tiwari, S.; Maurya, A.; Kumar, S.; Dubey, N.K. Fungal and mycotoxin contamination of herbal raw materials and their protection by nanoencapsulated essential oils: An overview. Biocatal. Agric. Biotechnol. 2022, 39, 102257. [Google Scholar] [CrossRef]
- Milagres de Almeida, J.; Crippa, B.L.; Martins Alencar de Souza, V.V.; Perez Alonso, V.P.; da Motta Santos Júnior, E.; Picone, C.F.S.; Prata, A.S.; Silva, N.C.C. Antimicrobial action of Oregano, Thyme, Clove, Cinnamon and Black pepper essential oils free and encapsulated against foodborne pathogens. Food Control 2023, 144, 109356. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuquerque, P.M.; Azevedo, S.G.; de Andrade, C.P.; D’Ambros, N.C.d.S.; Pérez, M.T.M.; Manzato, L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers 2022, 14, 5495. https://doi.org/10.3390/polym14245495
Albuquerque PM, Azevedo SG, de Andrade CP, D’Ambros NCdS, Pérez MTM, Manzato L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers. 2022; 14(24):5495. https://doi.org/10.3390/polym14245495
Chicago/Turabian StyleAlbuquerque, Patrícia Melchionna, Sidney Gomes Azevedo, Cleudiane Pereira de Andrade, Natália Corrêa de Souza D’Ambros, Maria Tereza Martins Pérez, and Lizandro Manzato. 2022. "Biotechnological Applications of Nanoencapsulated Essential Oils: A Review" Polymers 14, no. 24: 5495. https://doi.org/10.3390/polym14245495
APA StyleAlbuquerque, P. M., Azevedo, S. G., de Andrade, C. P., D’Ambros, N. C. d. S., Pérez, M. T. M., & Manzato, L. (2022). Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers, 14(24), 5495. https://doi.org/10.3390/polym14245495