Experimental Investigation of Electro-Mechanical Behavior of Silver-Coated Teflon Fabric-Reinforced Nafion Ionic Polymer Metal Composite with Carbon Nanotubes and Graphene Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Nafion 438
2.1.2. Silver Nitrate (AgNO3)
2.1.3. Carbon Nano-Tubes (CNTs)
2.1.4. Graphene
2.2. Methods
2.2.1. Scanning Electron Microscopy (SEM)
2.2.2. Energy Dispersive Spectroscopy (EDS)
2.2.3. X-ray Diffraction (XRD)
2.2.4. Scratch Testing
2.2.5. Hydration Level and Temperature
3. Results and Discussion
3.1. SEM Analysis
3.2. Energy Dispersive Spectroscopy (EDS) Analysis
3.3. XRD
3.4. Scratch Test
3.5. Hydration Test
3.6. Tip Deflection and Tip Force Measurement of the IPMC Membranes
4. Conclusions
- The highest scratch resistance and the lowest COF were observed in the N438 + Ag + Graphene (0.05) and N438 + Ag + CNT (0.05) membranes, which is because the fillers develop high bonding between the matrix and fiber.
- Graphene coating demonstrated the highest water uptake due to the presence of functional groups on its surface (hydrophilic), and because it stores water molecules effectively.
- Tip force and tip deflection were shown to be highest for Graphene (0.05), immediately followed by CNT (0.05) with a small difference, due to the presence of free electron mobility. This indicates that both composites can be used in the application of sensors and actuators.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Yang, X.; Chen, Y.; Wainwright, D.K.; Kenaley, C.P.; Gong, Z.; Liu, Z.; Liu, H.; Guan, J.; Wang, T.; et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2017, 2, eaan8072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Zhang, D.; Zhang, X.; Tian, A. Fabrication and Actuation of Cu-Ionic Polymer Metal Composite. Polymers 2020, 12, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, X.L.; Chee, P.S.; Lim, E.H.; Chong, W.C. Radio-frequency enabled ionic polymer metal composite (IPMC) actuator for drug release application. Smart Mater. Struct. 2018, 28, 015024. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, D.; Zhang, X.; Tian, A. Prediction of the Actuation Property of Cu Ionic Polymer-Metal Composites Based on Backpropagation Neural Networks. ACS Omega 2020, 5, 4067–4074. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.K.; Sreekanth, P.S.R. Mechanical, thermal and rheological properties of thermoplastic polymer nanocom-posite reinforced with nanodiamond, carbon nanotube and graphite nanoplatelets. Adv. Mater. Process. Technol. 2022, 1–11. [Google Scholar]
- Yesaswi, C.S.; Satya, S.K.; Sahu, S.K.; Badgayan, N.D.; Murthy, P.S.R.; Kumar, V.R.; Sreekanth, P.R. Thermal properties of polymer nanocomposites. In Advanced Polymer Nanocomposites; Woodhead Publishing: London, UK, 2022; pp. 99–143. [Google Scholar] [CrossRef]
- Badgayan, N.D.; Sahu, S.K.; Samanta, S.; Sreekanth, P.S.R. Evaluation of dynamic mechanical and thermal behavior of HDPE reinforced with MWCNT/h-BNNP: An attempt to find possible substitute for a metallic knee in transfemoral prosthesis. Int. J. Thermophys. 2019, 40, 1–20. [Google Scholar] [CrossRef]
- Sahu, S.K.; Sreekanth, P.S.R. Artificial Neural Network for Prediction of Mechanical Properties of HDPE Based Nanodiamond Nanocomposite. Polym. Korea 2022, 46, 614–620. [Google Scholar] [CrossRef]
- Badgayan, N.D.; Sahu, S.K.; Samanta, S.; Sreekanth, P.R. An insight into mechanical properties of polymer nanocomposites reinforced with multidimensional filler system: A state of art review. Mater. Today Proc. 2020, 24, 422–431. [Google Scholar] [CrossRef]
- Sahu, S.K.; Sreekanth, P.S.R. Multiscale RVE modeling for assessing effective elastic modulus of HDPE based polymer matrix nanocomposite reinforced with nanodiamond. Int. J. Interact. Des. Manuf. 2022, 1–10. [Google Scholar] [CrossRef]
- Wang, C.; Wei, X.; Smith, L.M.; Wang, G.; Zhang, S.; Cheng, H. Mechanical and Rheological Properties of Bamboo Pulp Fiber Reinforced High Density Polyethylene Composites: Influence of Nano CaCO3 Treatment and Manufacturing Process with Different Pressure Ratings. J. Renew. Mater. 2022, 10, 1829–1844. [Google Scholar] [CrossRef]
- Sahu, S.K.; Badgayan, N.D.; Sreekanth, P.S.R. Rheological Properties of HDPE based thermoplastic polymeric nanocomposite reinforced with multidimensional carbon-based nanofillers. Biointerface Res. Appl. Chem. 2022, 12, 5709–5715. [Google Scholar]
- Badgayan, N.D.; Samanta, S.; Sahu, S.K.; Siva, S.V.; Sadasivuni, K.K.; Sahu, D.; Sreekanth, P.R. Tribological behaviour of 1D and 2D nanofiller based high densitypoly-ethylene hybrid nanocomposites: A run-in and steady state phase analysis. Wear 2017, 376–377, 1379–1390. [Google Scholar] [CrossRef]
- Sahu, S.K.; Badgayan, N.D.; Sreekanth, P.S.R. Understanding the influence of contact pressure on the wear per-formance of HDPE/multi-dimensional carbon filler based hybrid polymer nanocomposites. Wear 2019, 438, 102824. [Google Scholar]
- Sreekanth, P.R.; Kanagaraj, S. Influence of multi walled carbon nanotubes reinforcement and gamma irradiation on the wear behaviour of UHMWPE. Wear 2015, 334–335, 82–90. [Google Scholar] [CrossRef]
- Beckingham, B.S.; Lynd, N.A.; Miller, D.J. Monitoring multicomponent transport using in situ ATR FTIR spectroscopy. J. Membr. Sci. 2018, 550, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Kawano, Y.; Wang, Y.; Palmer, R.A.; AuBuchon, S.R. Stress-Strain Curves of Nafion Membranes in Acid and Salt Forms. Polímeros 2002, 12, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Weber, A.Z.; Kusoglu, A. Structure-transport relationship of perfluorosulfonic-acid membranes in different cationic forms. Electrochimica Acta 2016, 220, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Jia, R.; Han, B.; Levi, K.; Hasegawa, T.; Ye, J.; Dauskardt, R.H. Effect of cation contamination and hydrated pressure loading on the mechanical properties of proton exchange membranes. J. Power Sources 2011, 196, 3803–3809. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Kobayashi, Y.; Kuroda, C.S.; Ohira, A. Impact of Heating on the Structure of Perfluorinated Polymer Electrolyte Membranes: A Positron Annihilation Study. Macromol. Chem. Phys. 2011, 212, 708–714. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Wang, L.; Gong, C.; Ding, J.; Huang, C.; Zhang, X.; Zhang, S.; Wang, L.; Bu, W. Polydopa-mine-modified sulfonated polyhedral oligomeric silsesquioxane: An appealing nanofiller to address the trade-off between conductivity and stabilities for proton exchange membrane. J. Membr. Sci. 2020, 596, 117734. [Google Scholar] [CrossRef]
- Pourzare, K.; Mansourpanah, Y.; Farhadi, S.; Sadrabadi, M.M.H.; Frost, I.; Ulbricht, M. Improving the efficiency of Nafion-based proton exchange membranes embedded with magnetically aligned silica-coated Co3O4 nanoparticles. Solid State Ion. 2020, 351, 115343. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, C.; Wang, M.; Cai, J.; Xu, J.; Xia, C. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation. Nanoscale Res. Lett. 2011, 6, 586. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, H.C. Size-controlled growth of Co3O4 nanocubes. Chem. Mater. 2003, 15, 2829–2835. [Google Scholar] [CrossRef]
- Uzundurukan, A.; Akça, E.S.; Budak, Y.; Devrim, Y. Carbon nanotube-graphene supported bimetallic electrocatalyst for direct borohydride hydrogen peroxide fuel cells. Renew. Energy 2020, 172, 1351–1364. [Google Scholar] [CrossRef]
- Devrim, Y.; Arıca, E.D.; Albostan, A. Graphene based catalyst supports for high temperature PEM fuel cell application. Int. J. Hydrog. Energy 2018, 43, 11820–11829. [Google Scholar] [CrossRef]
- Primo, A.; Esteve-Adell, I.; Coman, S.N.; Candu, N.; Parvulescu, V.I.; Garcia, H. One-Step Pyrolysis Preparation of 1.1. 1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angew. Chem. 2016, 128, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yang, G.; Li, S.; Shen, Q.; Wang, H.; Li, Z.; Zhou, Y.; Ye, W. Effects of Hydration and Temperature on the Microstructure and Transport Properties of Nafion Polyelectrolyte Membrane: A Molecular Dynamics Simulation. Membranes 2021, 11, 695. [Google Scholar] [CrossRef]
- Safronova, E.Y.; Pourcelly, G.; Yaroslavtsev, A.B. The transformation and degradation of Nafion® solutions under ultrasonic treatment. The effect on transport and mechanical properties of the resultant membranes. Polym. Degrad. Stab. 2020, 178, 109229. [Google Scholar] [CrossRef]
- Ye, J.; Yuan, D.; Ding, M.; Long, Y.; Long, T.; Sun, L.; Jia, C. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery. J. Power Sources 2020, 482, 229023. [Google Scholar] [CrossRef]
- Marland, J.R.K.; Moore, F.; Dunare, C.; Tsiamis, A.; Gonzalez-Fernandez, E.; Blair, E.O.; Smith, S.; Terry, J.G.; Murray, A.F.; Walton, A.J. Optimization of Nafion Polymer Electrolyte Membrane Design and Microfabrication. IEEE Trans. Semicond. Manuf. 2020, 33, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Biswal, D.K.; Padhi, P. Experimental investigation on the bending response of multilayered Ag-ionic polymer-metal composite actuator for robotic application. Adv. Mater. Lett. 2018, 9, 544–548. [Google Scholar] [CrossRef]
- Luqman, M.; Anis, A.; Shaikh, H.M.; Al-Zahrani, S.M.; Alam, M.A. Development of a Soft Robotic Bending Actuator Based on a Novel Sulfonated Polyvinyl Chloride–Phosphotungstic Acid Ionic Polymer–Metal Composite (IPMC) Membrane. Membranes 2022, 12, 651. [Google Scholar] [CrossRef]
- Sreekanth, P.R.; Kanagaraj, S. Assessment of bulk and surface properties of medical grade UHMWPE based nanocomposites using Nanoindentation and microtensile testing. J. Mech. Behav. Biomed. Mater. 2013, 18, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Yesaswi, C.S.; Sreekanth, P.S.R. Characterisation of Silver-coated Teflon fabric-reinforced Nafion ionic polymer metal composite with carbon nanotubes and graphene nanoparticles. Iran. Polym. J. 2022, 31, 485–502. [Google Scholar] [CrossRef]
- Chae, K.J.; Choi, M.; Ajayi, F.F.; Park, W.; Chang, I.S.; Kim, I.S. Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells. Energy Fuels 2007, 22, 169–176. [Google Scholar] [CrossRef]
- Chen, Q.; Xiong, K.; Bian, K.; Jin, N.; Wang, B. Preparation and performance of soft actuator based on IPMC with silver electrodes. Front. Mech. Eng. China 2009, 4, 436–440. [Google Scholar] [CrossRef]
- Li, Q.; Spernjak, D.; Zelenay, P.; Kim, Y.S. Micro-crack formation in direct methanol fuel cell electrodes. J. Power Sources 2014, 271, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Ali, F.; Khan, S.; Sheikh, Z.A.; Said, A.; Nawaz, Z.; Ihsanullah, I.; Bilal, M. Novel sulfonated polyimide-nafion nanocomposite membranes: Fabrication, morphology and physiochemical investigations for fuel cell applications. J. Mol. Struct. 2021, 1231, 129940. [Google Scholar] [CrossRef]
- Abdelrazek, E.M.; Abdelghany, A.M.; Badr, S.I.; Morsi, M.A. Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 2018, 7, 419–431. [Google Scholar] [CrossRef]
- Agrawal, A.; Chandrakar, S. Influence of particulate surface treatment on physical, mechanical, thermal, and die-lectric behavior of epoxy/hexagonal boron nitride composites. Polym. Compos. 2020, 41, 1574–1583. [Google Scholar] [CrossRef]
- Larsson, P.L. On plowing frictional behavior during scratch testing: A comparison between experimental and theoret-ical/numerical results. Crystals 2019, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Gottesfeld, S.; Zawodzinski, T.A. Advances in electrochemical science and engineering. In Polymer Electrolyte Fuel Cells; Wiley-VCH: Weinheim, Germany, 1997; Volume 5. [Google Scholar]
- Mohamed, H.; Ito, K.; Kobayashi, Y.; Takimoto, N.; Takeoka, Y.; Ohira, A. Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells. Polymer 2008, 49, 3091–3097. [Google Scholar] [CrossRef]
- Liu, R.; Gong, T.; Zhang, K.; Lee, C. Graphene oxide papers with high water adsorption capacity for air dehumidification. Sci. Rep. 2017, 7, 9761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zulfli, N.H.M.; Abu Bakar, A.; Chow, W.S. Mechanical and water absorption behaviors of carbon nanotube reinforced epoxy/glass fiber laminates. J. Reinf. Plast. Compos. 2013, 32, 1715–1721. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, G.J. Electrical conductivity of carbon nanotube-and graphene-based nanocomposites. In Micromechanics and Nanomechanics of Composite Solids; Springer: Berlin/Heidelberg, Germany, 2017; pp. 123–156. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
Elements | Carbon | Oxygen | Hydrogen | Sulfur | Ash |
---|---|---|---|---|---|
Percentage | 81 | 11 | 7 | <0.8 | <0.2 |
Elements | N438 | N438 + Ag | N438 + Ag + CNT | N438 + Ag + Graphene |
---|---|---|---|---|
C | 21 | 7.24 | 5 | 4.8 |
O | 9.2 | 6.31 | 3.6 | 7.4 |
F | 5.17 | 1.43 | 30.6 | 1.5 |
S | 5.10 | 0 | 0 | 0.53 |
K | 0.76 | 0 | 0 | 0 |
Tl | 12.15 | 0 | 0 | 0 |
Ag | 0 | 85.02 | 60.8 | 85.5 |
Mg | 0 | 0 | 0 | 0.13 |
Al | 0 | 0 | 0 | 0.18 |
Sample | N438 | N438 + Ag | N438 + Ag + CNT (0.01) | N438 + Ag + CNT (0.05) | N438 + Ag + Graphene (0.01) | N438 + Ag + Graphene (0.05) |
---|---|---|---|---|---|---|
Wdry (gm) | 0.0693 | 0.0652 | 0.0544 | 0.0669 | 0.0683 | 0.0721 |
Sample | Temperature °C | 30 | 45 | 60 | 75 | 90 |
---|---|---|---|---|---|---|
N438 | Wwet (gm) | 0.0783 ± 0.0012 | 0.0865 ± 0.0009 | 0.0868 ± 0.0015 | 0.0897 ± 0.0011 | 0.0937 ± 0.0009 |
Water Uptake | 12.987 ± 0.001 | 24.819 ± 0.091 | 25.252 ± 0.089 | 29.437 ± 0.088 | 35.209 ± 0.093 | |
N438 + Ag | Wwet (gm) | 0.0765 ± 0.0011 | 0.0795 ± 0.0014 | 0.0842 ± 0.0009 | 0.0921 ± 0.0098 | 0.0988 ± 0.0015 |
Water Uptake | 17.331 ± 0.005 | 21.932 ± 0.003 | 29.141 ± 0.023 | 41.257 ± 0.015 | 51.533 ± 0.012 | |
N438 + Ag + CNT (0.01) | Wwet (gm) | 0.0645 ± 0.0016 | 0.0654 ± 0.0009 | 0.0760 ± 0.0098 | 0.0843 ± 0.0013 | 0.0916 ± 0.0018 |
Water Uptake | 18.566 ± 0.007 | 20.220 ± 0.002 | 39.705 ± 0.008 | 54.963 ± 0.012 | 68.382 ± 0.009 | |
N438 + Ag + CNT (0.05) | Wwet (gm) | 0.0780 ± 0.0017 | 0.0880 ± 0.0006 | 0.0914 ± 0.0089 | 0.0932 ± 0.0005 | 0.0953 ± 0.0002 |
Water Uptake | 16.591 ± 0.002 | 31.539 ± 0.004 | 36.621 ± 0.013 | 64.312 ± 0.078 | 76.334 ± 0.009 | |
N438 + Ag + Graphene (0.01) | Wwet (gm) | 0.0792 ± 0.0023 | 0.0809 ± 0.0015 | 0.0885 ± 0.0009 | 0.1017 ± 0.0001 | 0.1132 ± 0.0014 |
Water Uptake | 15.959 ± 0.001 | 18.448 ± 0.013 | 29.575 ± 0.016 | 48.909 ± 0.009 | 65.739 ± 0.002 | |
N438 + Ag + Graphene (0.05) | Wwet (gm) | 0.0857 ± 0.0015 | 0.0869 ± 0.0004 | 0.1148 ± 0.0085 | 0.1234 ± 0.0091 | 0.1359 ± 0.0051 |
Water Uptake | 18.862 ± 0.012 | 20.527 ± 0.003 | 59.223 ± 0.001 | 71.151 ± 0.009 | 88.488 ± 0.007 |
Input Voltage (V) | 0.6 | 1.2 | 1.8 | 2 |
---|---|---|---|---|
N438 + Ag | 3.3 mm ± 0.02 | 7.5 mm ± 0.09 | 8.1 mm ± 0.05 | 8.8 mm ± 0.01 |
N438 + Ag + CNT (0.01) | 3.5 mm ± 0.03 | 8.4 mm ± 0.10 | 8.9 mm ± 0.07 | 9.2 mm ± 0.11 |
N438 + Ag + CNT (0.05) | 4.3 mm ± 0.12 | 8.6 mm ± 0.05 | 10.2 mm ± 0.01 | 10.9 mm ± 0.08 |
N438 + Ag + Graphene (0.01) | 3.9 mm ± 0.07 | 8.1 mm ± 0.11 | 8.8 mm ± 0.09 | 9.6 mm ± 0.02 |
N438 + Ag + Graphene (0.05) | 4.2 mm ± 0.03 | 9.3 mm ± 0.05 | 11.6 mm ± 0.07 | 12.1 mm ± 0.01 |
Input Voltage (V) | 0.6 | 1.2 | 1.8 | 2 |
---|---|---|---|---|
N438 + Ag | 1.85 mN | 1.93 mN | 1.95 mN | 1.96 mN |
N438 + Ag + CNT (0.01) | 2.10 mN | 2.63 mN | 2.66 mN | 2.73 mN |
N438 + Ag + CNT (0.05) | 2.17 mN | 2.82 mN | 2.81 mN | 2.83 mN |
N438 + Ag + Graphene (0.01) | 2.05 mN | 2.64 mN | 2.73 mN | 2.74 mN |
N438 + Ag + Graphene (0.05) | 2.30 mN | 3.10 mN | 3.17 mN | 3.18 mN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yesaswi, C.S.; Sahu, S.K.; Sreekanth, P.S.R. Experimental Investigation of Electro-Mechanical Behavior of Silver-Coated Teflon Fabric-Reinforced Nafion Ionic Polymer Metal Composite with Carbon Nanotubes and Graphene Nanoparticles. Polymers 2022, 14, 5497. https://doi.org/10.3390/polym14245497
Yesaswi CS, Sahu SK, Sreekanth PSR. Experimental Investigation of Electro-Mechanical Behavior of Silver-Coated Teflon Fabric-Reinforced Nafion Ionic Polymer Metal Composite with Carbon Nanotubes and Graphene Nanoparticles. Polymers. 2022; 14(24):5497. https://doi.org/10.3390/polym14245497
Chicago/Turabian StyleYesaswi, Ch Sridhar, Santosh Kumar Sahu, and P S Rama Sreekanth. 2022. "Experimental Investigation of Electro-Mechanical Behavior of Silver-Coated Teflon Fabric-Reinforced Nafion Ionic Polymer Metal Composite with Carbon Nanotubes and Graphene Nanoparticles" Polymers 14, no. 24: 5497. https://doi.org/10.3390/polym14245497
APA StyleYesaswi, C. S., Sahu, S. K., & Sreekanth, P. S. R. (2022). Experimental Investigation of Electro-Mechanical Behavior of Silver-Coated Teflon Fabric-Reinforced Nafion Ionic Polymer Metal Composite with Carbon Nanotubes and Graphene Nanoparticles. Polymers, 14(24), 5497. https://doi.org/10.3390/polym14245497