Polyester Nanocapsules for Intravenous Delivery of Artemether: Formulation Development, Antimalarial Efficacy, and Cardioprotective Effects In Vivo
Abstract
:1. Introduction
2. Material and Methods
2.1. Drugs and REAGENTS
2.2. Preparation of Nanocapsules and Intravenous Solution of Artemether
2.3. Nanocapsules Characterization
2.3.1. Hydrodynamic Diameter and Zeta Potential Determination
2.3.2. Atomic Force Microscopy (AFM)
2.3.3. Determination of Artemether Encapsulation
2.3.4. In Vitro Artemether Release from Nanocapsules
2.4. Experimental Animals
Antimalarial efficacy in Plasmodium berghei-Infected Mice
2.5. Determination of Cardiovascular Parameters and Protocols
2.6. Statistical Analysis
3. Results
3.1. Nanocapsules Characterization and ATM Release Rate
3.2. Antimalarial Efficacy in P. berghei-Infected Mice
3.3. Determination of Cardiovascular Effects of ATM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report. Geneva, Switzerland, 2021. License: CC BY-NC-SA 3.0 IGO 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 22 November 2022).
- World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Wells, T.N.C.; Van Huijsduijnen, R.H.; Van Voorhis, W.C. Malaria medicines: A glass half full? Nat. Rev. Drug Discov. 2015, 14, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Santos-Magalhães, N.S.; Mosqueira, V.C.F. Nanotechnology Applied to the Treatment of Malaria. Adv. Drug Deliv. Rev. 2010, 62, 560–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volpe-Zanutto, F.; Ferreira, L.T.; Permana, A.D.; Kirkby, M.; Paredes, A.J.; Vora, L.K.; Bonfanti, A.P.; Charlie-Silva, I.; Raposo, C.; Figueiredo, M.C.; et al. Artemether and lumefantrine dissolving microneedle patches with improved pharmacokinetic performance and antimalarial efficacy in mice infected with Plasmodium yoelii. J. Control Release 2021, 333, 298–315. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.E.; Peh, H.Y.; Chan, T.K.; Wong, W.S.F. Artemisinins: Pharmacological Actions beyond Anti-Malarial. Pharmacol. Ther. 2014, 142, 126–139. [Google Scholar] [CrossRef]
- Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug Repurposing and Human Parasitic Protozoan Diseases. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 95–111. [Google Scholar] [CrossRef] [Green Version]
- van Agtmael, M.A.; Cheng-Qi, S.; Qing, J.X.; Mull, R.; van Boxtel, C.J. Multiple Dose Pharmacokinetics of Artemether in Chinese Patients with Uncomplicated Falciparum Malaria. Int. J. Antimicrob. Agents 1999, 12, 151–158. [Google Scholar] [CrossRef]
- Hien, T.T.; Davis, T.M.E.; Chuong, L.V.; Ilett, K.F.; Sinh, D.X.T.; Phu, N.H.; Agus, C.; Chiswell, G.M.; White, N.J.; Farrar, J. Comparative Pharmacokinetics of Intramuscular Artesunate and Artemether in Patients with Severe Falciparum Malaria. Antimicrob. Agents Chemother. 2004, 48, 4234–4239. [Google Scholar] [CrossRef] [Green Version]
- Medhi, B.; Patyar, S.; Rao, R.S.; Ds, P.B.; Prakash, A. Pharmacokinetic and Toxicological Profile of Artemisinin Compounds: An Update. Pharmacology 2009, 84, 323–332. [Google Scholar] [CrossRef]
- Ameya, R.K.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 2021, 16, 369–384. [Google Scholar]
- Melariri, P.; Kalombo, L.; Nkuna, P.; Dube, A.; Hayeshi, R.; Ogutu, B. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice. Int. J. Nanomed. 2015, 10, 1493–1503. [Google Scholar] [CrossRef] [Green Version]
- Mosqueira, V.C.F.; Loiseau, P.M.; Bories, C.; Legrand, P.; Devissaguet, J.P.; Barratt, G. Efficacy and Pharmacokinetics of Intravenous Nanocapsule Formulations of Halofantrine in Plasmodium berghei-Infected Mice. Antimicrob. Agents Chemother. 2004, 48, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Leite, E.A.; Grabe-Guimarães, A.; Guimarães, H.N.; Machado-Coelho, G.L.L.; Barratt, G.; Mosqueira, V.C.F. Cardiotoxicity Reduction Induced by Halofantrine Entrapped in Nanocapsule Devices. Life Sci. 2007, 80, 1327–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, G.M.; Roy, J.; Pitta, I.R.; Abdalla, D.S.P.; Grabe-Guimarães, A.; Mosqueira, V.C.F.; Richard, S. Polylactide Nanocapsules Attenuate Adverse Cardiac Cellular Effects of Lyso-7, a Pan-PPAR Agonist/Anti-Inflammatory New Thiazolidinedione. Pharmaceutics 2021, 13, 1521. [Google Scholar] [CrossRef]
- Bulcão, R.P.; Freitas, F.A.; Venturini, C.G.; Dallegrave, E.; Durgante, J.; Göethel, G.; Cerski, C.T.S.; Zielinsky, P.; Pohlmann, A.R.; Guterres, S.S.; et al. Acute and Subchronic Toxicity Evaluation of Poly(ε-Caprolactone) Lipid-Core Nanocapsules in Rats. Toxicol. Sci. 2013, 132, 162–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branquinho, R.T.; Roy, J.; Farah, C.; Garcia, G.M.; Aimond, F.; Le Guennec, J.-Y.; Saude-Guimarães, D.A.; Grabe-Guimaraes, A.; Mosqueira, V.C.F.; de Lana, M.; et al. Biodegradable Polymeric Nanocapsules Prevent Cardiotoxicity of Anti-Trypanosomal Lychnopholide. Sci. Rep. 2017, 7, 44998. [Google Scholar] [CrossRef] [Green Version]
- Garcia, G.M.; Oliveira, L.T.; da Rochia Pitta, I.; de Lima, M.D.C.A.; Vilela, J.M.C.; Andrade, M.S.; Abdalla, D.S.P.; Mosqueira, V.C.F. Improved Nonclinical Pharmacokinetics and Biodistribution of a New PPAR Pan-Agonist and COX Inhibitor in Nanocapsule Formulation. J. Control Release 2015, 209, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Branquinho, R.T.; Pound-Lana, G.; Marques Milagre, M.; Saúde-Guimarães, D.A.; Vilela, J.M.C.; Spangler Andrade, M.; de Lana, M.; Mosqueira, V.C.F. Increased Body Exposure to New Anti-Trypanosomal Through Nanoencapsulation. Sci. Rep. 2017, 7, 8429. [Google Scholar] [CrossRef] [Green Version]
- Mosqueira, V.C.F.; Legrand, P.; Barratt, G. Surface-modified and conventional nanocapsules as novel formulations for parenteral delivery of halofantrine. J. Nanosci. Nanotechnol. 2006, 6, 3193–3202. [Google Scholar] [CrossRef]
- Souza, A.C.M.; Grabe-Guimarães, A.; Cruz, J.D.S.; Santos-Miranda, A.; Farah, C.; Teixeira Oliveira, L.; Lucas, A.; Aimond, F.; Sicard, P.; Mosqueira, V.C.F.; et al. Mechanisms of Artemether Toxicity on Single Cardiomyocytes and Protective Effect of Nanoencapsulation. Br. J. Pharmacol. 2020, 177, 4448–4463. [Google Scholar]
- Souza, A.C.M.; Mosqueira, V.C.F.; Silveira, A.P.A.; Antunes, L.R.; Richard, S.; Guimarães, H.N.; Grabe-Guimarães, A. Reduced cardiotoxicity and increased oral efficacy of artemether polymeric nanocapsules in Plasmodium berghei-infected mice. Parasitology 2018, 145, 1075–1083. [Google Scholar] [CrossRef]
- Attili-Qadri, S.; Karra, N.; Nemirovski, A.; Schwob, O.; Talmon, Y.; Nassar, T.; Benita, S. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. Proc. Natl. Acad. Sci. USA 2013, 110, 17498–17503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Osorno, L.L.; Brandley, A.N.; Maldonado, D.E.; Yiantsos, A.; Mosley, R.J.; Byrne, M.E. Review of Contemporary Self-Assembled Systems for the Controlled Delivery of Therapeutics in Medicine. Nanomaterials 2021, 11, 278. [Google Scholar] [CrossRef]
- Roy, J.; Oliveira, L.T.; Oger, C.; Galano, J.-M.; Bultel-Poncé, V.; Richard, S.; Guimaraes, A.G.; Vilela, J.M.C.; Andrade, M.S.; Durand, T.; et al. Polymeric Nanocapsules Prevent Oxidation of Core-Loaded Molecules: Evidence Based on the Effects of Docosahexaenoic Acid and Neuroprostane on Breast Cancer Cells Proliferation. J. Exp. Clin. Cancer Res. 2015, 34, 155–157. [Google Scholar] [CrossRef]
- Prabhu, P.; Suryavanshi, S.; Pathak, S.; Patra, A.; Sharma, S.; Patravale, V. Nanostructured lipid carriers of artemether-lumefantrine combination for intravenous therapy of cerebral malaria. Int. J. Pharm. 2016, 513, 504–517. [Google Scholar] [CrossRef]
- Shakeel, K.; Ahmad, F.J.; Harwansh, R.K.; Rahman, M.A. β-Artemether and Lumefantrine Dual Drug Loaded Lipid Nanoparticles: Physicochemical Characterization, Pharmacokinetic Evaluation and Biodistribution Study. Pharm. Nanotechnol. 2022, 10, 210–219. [Google Scholar] [CrossRef]
- Aditya, N.P.; Patankar, S.; Madhusudhan, B.; Murthy, R.S.R.; Souto, E.B. Arthemeter-Loaded Lipid Nanoparticles Produced by Modified Thin-Film Hydration: Pharmacokinetics, Toxicological and in Vivo Anti-Malarial Activity. Eur. J. Pharm. Sci. 2010, 40, 448–455. [Google Scholar] [CrossRef]
- Classen, W.; Altmann, B.; Gretener, P.; Souppart, C.; Skelton-Stroud, P.; Krinke, G. Differential Effects of Orally versus Parenterally Administered Qinghaosu Derivative Artemether in Dogs. Exp. Toxicol. Pathol. 1999, 51, 507–516. [Google Scholar] [CrossRef]
- White, N.J. Cardiotoxicity of Antimalarial Drugs. Lancet Infect. Dis. 2007, 7, 549–558. [Google Scholar] [CrossRef]
- Moskovitz, J.B.; Hayes, B.D.; Martinez, J.P.; Mattu, A.; Brady, W.J. Electrocardiographic Implications of the Prolonged QT Interval. Am. J. Emerg. Med. 2013, 31, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Pound-Lana, G.; Rabanel, J.-M.; Hildgen, P.; Mosqueira, V.C.F. Functional Polylactide via Ring-Opening Copolymerisation with Allyl, Benzyl and Propargyl Glycidyl Ethers. Eur. Polym. J. 2017, 90, 344–353. [Google Scholar] [CrossRef]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule Formation by Interfacial Polymer Deposition Following Solvent Displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Li, P.; Zhao, L. Developing Early Formulations: Practice and Perspective. Int. J. Pharm. 2007, 341, 1–19. [Google Scholar] [CrossRef]
- César, I.; Pianetti, G. Quantitation of Artemether in Pharmaceutical Raw Material and Injections by High-Performance Liquid Chromatography. Braz. J. Pharm. Sci. 2009, 45, 737–742. [Google Scholar] [CrossRef] [Green Version]
- de Paula, C.S.; Tedesco, A.C.; Primo, F.L.; Vilela, J.M.C.; Andrade, M.S.; Mosqueira, V.C.F. Chloroaluminium Phthalocyanine Polymeric Nanoparticles as Photosensitisers: Photophysical and Physicochemical Characterisation, Release and Phototoxicity in Vitro. Eur. J. Pharm. Sci. 2013, 49, 371–381. [Google Scholar] [CrossRef]
- Yu, M.; Yuan, W.; Li, D.; Schwendeman, A.; Schwendeman, S.P. Predicting drug release kinetics from nanocarriers inside dialysis bags. J. Control Release 2019, 315, 23–30. [Google Scholar] [CrossRef]
- Peters, W.; Li, Z.L.; Robinson, B.L.; Warhurst, D.C. The Chemotherapy of Rodent Malaria, XL. The Action of Artemisinin and Related Sesquiterpenes. Ann. Trop. Med. Parasitol. 1986, 80, 483–489. [Google Scholar] [CrossRef]
- Hanefeld, P.; Westedt, U.; Wombacher, R.; Kissel, T.; Schaper, A.; Wendorff, J.H.; Greiner, A. Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer−polymer adhesion for stent applications. Biomacromolecules 2006, 7, 2086–2090. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Shi, G.; Chai, L.; Wang, R.; Zhang, G.; Ren, G.; Zhang, S. Choline and PEG dually modified artemether nano delivery system targeting intra-erythrocytic Plasmodium and its pharmacodynamics in vivo. Drug Dev. Ind. Pharm. 2021, 47, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, H.; Zhou, S.; Kuang, X.; Wang, Z.; Liu, H.; Sun, J. Optimization and evaluation of lipid emulsions for intravenous co-delivery of artemether and lumefantrine in severe malaria treatment. Drug Deliv. Res. 2018, 8, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, K.; Raisuddin, S.; Ali, S.; Imam, S.S.; Rahman, M.A.; Jain, G.K.; Ahmad, F.J. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J. Liposome Res. 2017, 29, 35–43. [Google Scholar] [CrossRef]
- Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.-Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and Shape Effects in the Biodistribution of Intravascularly Injected Particles. J. Control Release 2010, 141, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Leite, E.A.; Vilela, J.M.C.; Mosqueira, V.C.F.; Andrade, M.S. Poly-Caprolactone Nanocapsules Morphological Features by Atomic Force Microscopy. Microsc. Microanal. 2005, 11, 48–51. [Google Scholar] [CrossRef]
- Mosqueira, V.C.F.; Leite, E.A.; Barros, C.M.D.; Vilela, J.M.C.; Andrade, M.S. Polymeric Nanostructures for Drug Delivery: Characterization by Atomic Force Microscopy. Microsc. Microanal. 2005, 11 (Suppl. 3), 36–39. [Google Scholar] [CrossRef]
- Mosqueira, V.C.F.; Legrand, P.; Gulik, A.; Bourdon, O.; Gref, R.; Labarre, D.; Barratt, G. Relationship between complement activation, cellular uptake, and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 2001, 22, 2967–2979. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Rostamabadi, H.; Assadpour, E.; Jafari, S.M. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv. Colloid Interface Sci. 2020, 280, 102166. [Google Scholar] [CrossRef]
- Takechi-Haraya, Y.; Ohgita, T.; Demizu, Y.; Saito, H.; Izutsu, K.-I.; Sakai-Kato, K. Current Status and Challenges of Analytical Methods for Evaluation of Size and Surface Modification of Nanoparticle-Based Drug Formulations. AAPS PharmSciTech 2022, 23, 150. [Google Scholar] [CrossRef]
- Ural, M.S.; Dartois, E.; Mathurin, J.; Desmaële, D.; Collery, P.; Dazzi, A.; Deniset-Besseau, A.; Gref, R. Quantification of drug loading in polymeric nanoparticles using AFM-IR technique: A novel method to map and evaluate drug distribution in drug nanocarriers. Analyst 2022, 147, 5564. [Google Scholar] [CrossRef]
- Nguyen, H.K.; Shundo, A.; Xiaobin Liang, X.; Yamamoto, S.; Tanaka, K.; Nakajima, K. Unraveling Nanoscale Elastic and Adhesive Properties at the Nanoparticle/Epoxy Interface Using Bimodal Atomic Force Microscopy. ACS Appl. Mater. Interfaces 2022, 14, 42713–42722. [Google Scholar] [CrossRef]
- Sherief Essa, S.; Jean Michel Rabanel, J.-M.; Hildgen, P. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles. Int. J. Pharm. 2010, 388, 263–273. [Google Scholar] [CrossRef]
- Fermini, B.; Fossa, A.A. The Impact of Drug-Induced QT Interval Prolongation on Drug Discovery and Development. Nat. Rev. Drug Discov. 2003, 2, 439–447. [Google Scholar] [CrossRef] [PubMed]
- EMA ICH E14 (R3) Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs—Questions Answers. Available online: https://www.ema.europa.eu/en/ich-e14-r3-clinical-evaluation-qt-qtc-interval-prolongation-proarrhythmic-potential-non (accessed on 29 October 2022).
- Touze, J.E.; Heno, P.; Fourcade, L.; Deharo, J.C.; Thomas, G.; Bohan, S.; Paule, P.; Riviere, P.; Kouassi, E.; Buguet, A. The Effects of Antimalarial Drugs on Ventricular Repolarization. Am. J. Trop. Med. Hyg. 2002, 67, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Traebert, M.; Dumotier, B. Antimalarial Drugs: QT Prolongation and Cardiac Arrhythmias. Expert Opin. Drug Saf. 2005, 4, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Mosqueira, V.C.; Legrand, P.; Morgat, J.L.; Vert, M.; Mysiakine, E.; Gref, R.; Devissaguet, J.P.; Barratt, G. Biodistribution of Long-Circulating PEG-Grafted Nanocapsules in Mice: Effects of PEG Chain Length and Density. Pharm. Res. 2001, 18, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
Polymer/NCs | ATM mg/mL | Hydrodynamic Diameter (nm) a | Polydispersion Index b | Zeta Potential (mV) | Encapsulation Yield or Drug Loading (%) | Encapsulation Efficiency (%) # |
---|---|---|---|---|---|---|
Blank PCL | 0 | 197.3 ± 0.8 | 0.138 ± 0.01 | −56.2 ± 1.7 | - | - |
ATM-PCL 2 | 2 | 232.1 ± 2.7 * | 0.266 ± 0.03 | −49.3 ± 1.6 * | 98.52 ± 0.3 | 91.81 ± 0.6 |
ATM-PCL 4 | 4 | 243.2 ± 4.7 * | 0.278 ± 0.04 | −41.9 ± 1.3 * | 93.91 ± 0.5 | 80.03 ± 0.7 |
Blank PLA | 0 | 256.7 ± 0.9 | 0.245 ± 0.05 | −46.6 ± 1.3 | - | - |
ATM-PLA | 0.5 | 251.9 ± 0.9 | 0.208 ± 0.07 | −40.8 ± 2.1 | ND | ND |
ATM-PLA | 1 | 301.5 ± 6.5 * | 0.32 ± 0.15 * | −56.2 ± 0.6 * | 90.22 ± 0.4 | 85.81 ± 0.8 |
ATM-PLA | 2 | 328.7 ± 5.7 * | 0.378 ± 0.41 * | −51.9 ± 2.3 * | 87.11 ± 0.5 | 73.3 ± 0.7 |
Blank PEG-PLA | 0 | 222.7 ± 3.4 | 0.17 ± 0,05 | −54.4 ± 3.5 | - | - |
ATM PEG-PLA | 1 | 296.6 ± 1.5 * | 0.22 ± 0.05 | −61.2 ± 1.2 * | 94.5 ± 0.5 | 71.0 ± 2.8 |
ATM PEG-PLA | 2 | 343.5 ± 4.7 * | 0.58 ± 0.08 * | −63.8 ± 4.1 * | 87.9 ± 1.2 | 74.8 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal-Diniz, A.T.; Guimarães, H.N.; Garcia, G.M.; Braga, É.M.; Richard, S.; Grabe-Guimarães, A.; Mosqueira, V.C.F. Polyester Nanocapsules for Intravenous Delivery of Artemether: Formulation Development, Antimalarial Efficacy, and Cardioprotective Effects In Vivo. Polymers 2022, 14, 5503. https://doi.org/10.3390/polym14245503
Vidal-Diniz AT, Guimarães HN, Garcia GM, Braga ÉM, Richard S, Grabe-Guimarães A, Mosqueira VCF. Polyester Nanocapsules for Intravenous Delivery of Artemether: Formulation Development, Antimalarial Efficacy, and Cardioprotective Effects In Vivo. Polymers. 2022; 14(24):5503. https://doi.org/10.3390/polym14245503
Chicago/Turabian StyleVidal-Diniz, Alessandra Teixeira, Homero Nogueira Guimarães, Giani Martins Garcia, Érika Martins Braga, Sylvain Richard, Andrea Grabe-Guimarães, and Vanessa Carla Furtado Mosqueira. 2022. "Polyester Nanocapsules for Intravenous Delivery of Artemether: Formulation Development, Antimalarial Efficacy, and Cardioprotective Effects In Vivo" Polymers 14, no. 24: 5503. https://doi.org/10.3390/polym14245503
APA StyleVidal-Diniz, A. T., Guimarães, H. N., Garcia, G. M., Braga, É. M., Richard, S., Grabe-Guimarães, A., & Mosqueira, V. C. F. (2022). Polyester Nanocapsules for Intravenous Delivery of Artemether: Formulation Development, Antimalarial Efficacy, and Cardioprotective Effects In Vivo. Polymers, 14(24), 5503. https://doi.org/10.3390/polym14245503