Development of Crosslinker-Free Polysaccharide-Lysozyme Microspheres for Treatment Enteric Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Encapsulated Lysozyme Microspheres
2.3. Microsphere Characterization
2.4. Enzymatic Activity of Lysozyme
2.5. In Vitro Digestibility of Lysozyme Microspheres
2.6. Antibacterial Activity
2.7. Cytotoxicity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Optimization of Encapsulation Conditions
3.2. Characterization of CS/CMS-Lysozyme Microspheres
3.3. Enzymatic Activity of the Lysozyme
3.4. In Vitro Release Studies
3.5. Antibacterial Analysis
3.6. Biocompatibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mirsepasi-Lauridsen, H.C.; Vallance, B.A.; Krogfelt, K.A.; Petersen, A.M. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin. Microbiol. Rev. 2019, 32, e00060-18. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Hu, Y.; Song, Q.; Ye, Y.; Gao, L.; Li, P.; Ye, T. Initiated chemical vapor deposition of graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. ACS Appl. Mater. Interfaces 2020, 12, 18978–18986. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Y.; Ge, Y.; Zhu, X.; Pan, J. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front. Microbiol. 2020, 11, 589640. [Google Scholar] [CrossRef]
- Chen, J.; Xu, L.; Zhou, Y.; Han, B. Natural products from actinomycetes associated with marine organisms. Mar. Drugs 2021, 19, 629. [Google Scholar] [CrossRef]
- Chen, W.; Ye, K.; Zhu, X.; Zhang, H.; Si, R.; Chen, J.; Chen, Z.; Song, K.; Yu, Z.; Han, B. Actinomycin X2, an antimicrobial depsipeptide from marine-derived Streptomyces cyaneofuscatus applied as a good natural dye for silk fabric. Mar. Drugs 2021, 20, 16. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, L.; Xu, R.; Lin, G.; Xin, H.; Lv, Z.; Qian, H.; Shi, H. Evaluation of the antibacterial material production in the fermentation of Bacillus amyloliquefaciens-9 from whitespotted bamboo shark (Chiloscylliumplagiosum). Mar. Drugs 2020, 18, 119. [Google Scholar] [CrossRef] [Green Version]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Ragland, S.A.; Criss, A.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoSPathog. 2017, 13, e1006512. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Kovacs-Nolan, J.; Yang, C.; Archbold, T.; Fan, M.Z.; Mine, Y. Hen egg lysozyme attenuates inflammation and modulates local gene expression in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J. Agric. Food Chem. 2009, 57, 2233–2240. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, C.; Jiang, B.; Sun, C.; Middaugh, C. Developing biologics tablets: The effects of compression on the structure and stability of bovine serum albumin and lysozyme. Mol. Pharmaceut. 2019, 16, 1119–1131. [Google Scholar] [CrossRef]
- Yan, C.; Kim, S.R.; Ruiz, D.R.; Farmer, J.R. Microencapsulation for Food Applications: A Review. ACS Appl. Bio. Mater. 2022, 5, 5497–5512. [Google Scholar] [CrossRef]
- Aguanell, A.; Del Pozo, M.L.; Pérez-Martín, C.; Pontes, G.; Bastida, A.; Fernández-Mayoralas, A.; García-Junceda, E.; Revuelta, J. Chitosan sulfate-lysozyme hybrid hydrogels as platforms with fine-tuned degradability and sustained inherent antibiotic and antioxidant activities. Carbohyd. Polym. 2022, 291, 119611. [Google Scholar] [CrossRef]
- Gennari, C.G.; Sperandeo, P.; Polissi, A.; Minghetti, P.; Cilurzo, F. Lysozyme mucoadhesive tablets obtained by freeze-drying. J. Pharm. Sci. 2019, 108, 3667–3674. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Fan, J.; Lee, C.S.; Lee, M. Dual functional lysozyme–chitosan conjugate for tunable degradation and antibacterial activity. ACS Appl. Bio. Mater. 2020, 3, 2334–2343. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Luo, F.; Zhang, Q.; Xu, M.; Chen, X.; Liu, Z.; Xu, H.; Wang, L.; Ye, F.; Zhang, K.; et al. Berberine coated biocomposite hemostatic film based alginate as absorbable biomaterial for wound healing. Int. J. Biol. Macromol. 2022, 209, 1731–1744. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Huang, J.; Jiang, Y.; Hu, Y.; Ye, X.; Liu, D.; Chen, J. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem. 2018, 240, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jin, H.; Razzak, M.A.; Kim, E.J.; Choi, S.S. Crosslinker-free bovine serum albumin-loaded chitosan/alginate nanocomplex for pH-responsive bursting release of oral-administered protein. Biotechnol. Bioprocess Eng. 2022, 27, 40–50. [Google Scholar] [CrossRef]
- Zhang, B.; Tao, H.; Wei, B.; Jin, Z.; Xu, X.; Tian, Y. Characterization of different substitutedcarboxymethyl starch microgels and their interactions with lysozyme. PLoS ONE 2014, 9, e114634. [Google Scholar]
- Zhang, Y.; Chi, C.; Huang, X.; Zou, Q.; Li, X.; Chen, L. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract. Carbohyd. Polym. 2017, 171, 242–251. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, S.; Chi, C.; He, Y.; Li, X.; Chen, L.; Miao, S. Tailoring assembly behavior of starches to control insulin release from layer-by-layer assembled colloidal particles. Int. J Biol. Macromol. 2020, 160, 531–537. [Google Scholar] [CrossRef]
- Pooresmaeil, M.; Namazi, H. Developments on carboxymethyl starch-based smart systems as promising drug carriers: A review. Carbohyd. Polym. 2021, 258, 117654. [Google Scholar] [CrossRef] [PubMed]
- Boontawee, R.; Issarachot, O.; Kaewkroek, K.; Wiwattanapatapee, R. Foldable/expandable gastro-retentive films based on starch and chitosan as a carrier for prolonged release of resveratrol. Curr. Pharm. Biotechnol. 2022, 23, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pan, Y.; Chen, H.; Liu, T.; Tao, H.; Tian, Y. Stabilization of starch-based microgel-lysozyme complexes using a layer-by-layer assembly technique. Food Chem. 2017, 214, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Quadrado, R.; Fajardo, A. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arab. J. Chem. 2020, 13, 2183–2194. [Google Scholar] [CrossRef]
- Xu, W.; Jin, W.; Wang, Y.; Li, J.; Huang, K.; Shah, B.; Li, B. Effect of physical interactions on structure of lysozyme in presence of three kinds of polysaccharides. J. Food Sci. Technol. 2018, 55, 3056–3064. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, G.; Panicker, L.; Barick, K. Protein nanoparticle electrostatic interaction: Size dependent counterions induced conformational change of hen egg white lysozyme. Colloids Surf. B 2014, 118, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wawer, J.; Szociński, M.; Olszewski, M.; Piątek, R.; Naczk, M.; Krakowiak, J. Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme. Int. J. Biol. Macromol. 2019, 121, 63–70. [Google Scholar] [CrossRef]
- Dyawanapelly, S.; Mehrotra, P.; Ghosh, G.; Jagtap, D.; Dandekar, P.; Jain, R. How the surface functionalized nanoparticles affect conformation and activity of proteins: Exploring through protein-nanoparticle interactions. Bioorg. Chem. 2019, 82, 17–25. [Google Scholar] [CrossRef]
- Pathomthongtaweechai, N.; Muanprasat, C. Potential applications of chitosan-based nanomaterials to surpass the gastrointestinal physiological obstacles and enhance the intestinal drug absorption. Pharmaceutics 2021, 13, 887. [Google Scholar] [CrossRef]
- Hoffmann, S.; Gorzelanny, C.; Moerschbacher, B.; Goycoolea, F. Physicochemical characterization of FRET-labelled chitosan nanocapsules and model degradation studies. Nanomaterials 2018, 8, 846. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hetjens, L.; Wolter, N.; Li, H.; Shi, X.; Pich, A. Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin. J. Adv. Res. 2023, 43, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Ceron, A.A.; Nascife, L.; Norte, S.; Costa, S.A.; do Nascimento, J.H.O.; Morisso, F.D.P.; Baruque-Ramos, J.; Oliveira, R.C.; Costa, S.M. Synthesis of chitosan-lysozyme microspheres, physicochemical characterization, enzymatic and antimicrobial activity. Int. J. Biol. Macromol. 2021, 185, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, S.; Jin, M.; Han, Q.; Liu, S.; Chen, X.; Han, Y. Enhancing the thermo-stability and anti-bacterium activity of lysozyme by immobilization on chitosan nanoparticles. Int. J. Mol. Sci. 2020, 21, 1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Shi, L.; Ye, T.; Huang, B.; Qin, Y.; Xie, Y.; Ren, X.; Zhao, X. Development of Crosslinker-Free Polysaccharide-Lysozyme Microspheres for Treatment Enteric Infection. Polymers 2023, 15, 1077. https://doi.org/10.3390/polym15051077
Li S, Shi L, Ye T, Huang B, Qin Y, Xie Y, Ren X, Zhao X. Development of Crosslinker-Free Polysaccharide-Lysozyme Microspheres for Treatment Enteric Infection. Polymers. 2023; 15(5):1077. https://doi.org/10.3390/polym15051077
Chicago/Turabian StyleLi, Shuo, Li Shi, Ting Ye, Biao Huang, Yuan Qin, Yongkang Xie, Xiaoyuan Ren, and Xueqin Zhao. 2023. "Development of Crosslinker-Free Polysaccharide-Lysozyme Microspheres for Treatment Enteric Infection" Polymers 15, no. 5: 1077. https://doi.org/10.3390/polym15051077
APA StyleLi, S., Shi, L., Ye, T., Huang, B., Qin, Y., Xie, Y., Ren, X., & Zhao, X. (2023). Development of Crosslinker-Free Polysaccharide-Lysozyme Microspheres for Treatment Enteric Infection. Polymers, 15(5), 1077. https://doi.org/10.3390/polym15051077