Effects of Nanosilver and Heat Treatment on the Pull-Off Strength of Sealer-Clear Finish in Solid Wood Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Nanosilver Impregnation
2.3. Heat Treatment Process
2.4. Pull-Off Adhesion Strength Testing
2.5. Gas Permeability Measurement
2.6. Scanning Electron Microscopy (SEM Imaging)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siau, J.F. Flow in Wood; Syracuse University Press: Syracuse, NY, USA, 1971; p. 131. [Google Scholar]
- Siau, J.F. Transport Processes in Wood; Springer: Berlin/Heidelberg, Germany; GmbH & Co. KG: Berlin, Germany, 2011; p. 248. [Google Scholar]
- Skaar, C. Wood-Water Relations; Springer: Berlin, Germany, 1988; p. 283. [Google Scholar]
- Oltean, L.; Teischinger, A.; Hansmann, C. Influence of Temperature on Cracking and Mechanical Properties of Wood During Wood Drying—A Review. BioResources 2007, 2, 789–811. [Google Scholar]
- Borrega, M.; Karenlampi, P.P. Hygroscopicity of Heat-Treated Norway Spruce (Picea abies) wood. Eur. J. Wood Prod. 2010, 68, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Hering, S.; Keunecke, D.; Niemz, P. Moisture-dependent orthotropic elasticity of beech wood. Wood Sci. Technol. 2012, 46, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Jirouš-Rajkovic, V.; Miklecic, J. Enhancing Weathering Resistance of Wood—A Review. Polymers 2021, 13, 1980. [Google Scholar] [CrossRef] [PubMed]
- Van Blokland, J.; Nasir, V.; Cool, J.; Avramidis, S.; Adamopoulos, S. Machine learning-based prediction of internal checks in weathered thermally modified timber. Constr. Build. Mater. 2021, 281, 122193. [Google Scholar] [CrossRef]
- Jones, D.; Kržišnik, D.; Hočevar, M.; Zagar, A.; Humar, M.; Popescu, C.-M.; Popescu, M.-C.; Brischke, C.; Nunes, L.; Curling, S.F.; et al. Evaluation of the Effect of a Combined Chemical and Thermal Modification of Wood though the Use of Bicine and Tricine. Forests 2022, 13, 834. [Google Scholar] [CrossRef]
- Ilies, A.; Vasile, G. The external western Balkan border of the European Union and its borderland: Premises for building functional transborder territorial systems, in Annales. Ann. Istrian Mediter. Stud. Ser. Hist. Sociol. 2010, 20, 457–469. [Google Scholar]
- Alexandru, I.; Olivier, D.; Ilieş, D.C. The cross-border territorial system in Romanian-Ukrainian Carpathian Area. Elements, mechanisms and structures generating premises for an integrated cross-border territorial system with tourist function. Carp. J. Environ. Sci. 2012, 7, 27–38. [Google Scholar]
- Ilies, A.; Hurley, P.D.; Ilies, D.C.; Baias, S. Tourist animation—A chance adding value to traditional heritage: Case study’s in the Land of Maramures (Romania). Rev. Etnogr. Și Folc. J. Ethnogr. Folk. 2017, 1–2, 131–151. [Google Scholar]
- Hill, C.A.S. Wood Modification—Chemical, Thermal and Other Processes; John Wiley and Sons Ltd.: West Sussex, UK, 2006. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. iForest 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Kamperidou, V. The Biological Durability of Thermally- and Chemically-Modified Black Pine and Poplar Wood against Basidiomycetes and Mold Action. Forests 2019, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Čabalová, I.; Výbohová, E.; Igaz, R.; Kristak, L.; Kačík, F.; Antov, P.; Papadopoulos, A.N. Effect of oxidizing thermal modification on the chemical properties and thermal conductivity of Norway spruce (Picea abies L.) wood. Wood Mater. Sci. Eng. 2021, 17, 366–375. [Google Scholar] [CrossRef]
- Ali, M.; Abdullah, U.H.; Ashaari, Z.; Hamid, N.H.; Hua, L.S. Hydrothermal Modification of Wood: A Review. Polymers 2021, 13, 2612. [Google Scholar] [CrossRef] [PubMed]
- Todaro, L.; Liuzzi, S.; Pantaleo, A.M.; Lo Giudice, V.; Moretti, N.; Stefanizzi, P. Thermo-modified native black poplar (Populus nigra L.) wood as an insulation material. iForests 2021, 14, 268–273. [Google Scholar] [CrossRef]
- Guo, H.; Fuchs, P.; Cabane, E.; Michen, B.; Hagendorfer, H.; Romanyuk, Y.E.; Burgert, I. UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures. Holzforschung 2016, 70, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Awoyemi, L. Determination of Optimum Borate Concentration for Alleviating Strength Loss During Heat Treatment of Wood. Wood Sci. Technol. 2007, 42, 39–45. [Google Scholar] [CrossRef]
- Ibrahim, U.; Ashaari, Z.; Hua, L.S.; Halis, R. Oil-heat treatment of rubberwood for optimum changes in chemical constituents and decay resistance. J. Trop. For. Sci. 2016, 28, 88–96. [Google Scholar]
- Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. Prediction of physical and mechanical properties of thermally modified wood based oncolor change evaluated by means of “group method of data handling” (GMDH) neutral network. Holzforschung 2018, 73, 381–392. [Google Scholar] [CrossRef]
- Awoyemi, L.; Westermark, U. Effects of borate impregnation on the response of wood strength to heat treatment. Wood Sci. Technol. 2005, 39, 484–491. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Enayati, A.; Gholamiyan, H. Effects of nano-silver impregnation on brittleness, physical and mechanical properties of heat-treated hardwoods. Wood Sci. Technol. 2013, 47, 467–480. [Google Scholar] [CrossRef]
- Repellin, V.; Guyonnet, R. Evaluation of heat treated wood swelling by differential scanning calorimetry in relation with chemical composition. Holzforschung 2007, 59, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Yildiz, S.; Gumuskaya, E. The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Build. Environ. 2007, 42, 62–67. [Google Scholar] [CrossRef]
- Keskin, H.; Tekin, A. Abrasion resistance of cellulosic, synthetic, polyurethane, waterborne and acidhardening varnishes used woods. Constr. Build. Mater. 2011, 25, 638–643. [Google Scholar] [CrossRef]
- Cakicier, N.; Korkut, S.; Korkut, D. Varnish layer harrdness, scratch resistance, and glossiness of various wood species as affected by heat treatment. BioResources 2011, 6, 1648–1658. [Google Scholar]
- Atar, M.; Cinar, H.; Dongel, N.; Yalinkilic, A.C. The effect of heat treatment on the pull-off strength of optionally varnished surfaces of five wood materials. BioResources 2015, 10, 7151–7164. [Google Scholar] [CrossRef] [Green Version]
- Pati, R. Molecule for electronics: A myriad of opportunities comes with daunting challenges. J. Nanomater. Mol. Nanotechnol. 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Saber, R.; Shakoori, Z.; Sarkar, S.; Tavoosidana, G.H.; Kharrazi, S.H.; Gill, P. Spectroscopic and microscopic analyses of rod-shaped gold nanoparticles interacting with single-stranded DNA oligonucleotides. IET Nanobiotechnol. 2013, 7, 42–49. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Bayani, S.; Militz, H.; Papadopoulos, A.N. Heat treatment of pine wood: Possible effect of impregnation with silver nanosuspension. Forests 2020, 11, 466. [Google Scholar] [CrossRef] [Green Version]
- Taghiyari, H.R. Effects of heat-treatment on permeability of untreated and nanosilver-impregnated native hardwoods. Maderas-Cienc. Tecnol. 2013, 15, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Taghiyari, H.R.; Esmailpour, A.; Majidi, R.; Hassani, V.; Abdolah Mirzaei, R.; Farajpour Bibalan, O.; Papadopoulos, A.N. The effect of silver and copper nanoparticles as resin fillers on less-studied properties of UF-based particleboards. Wood Mater. Sci. Eng. 2020, 17, 317–327. [Google Scholar] [CrossRef]
- Meijer, M. A review of interfacial aspects in wood coatings: Wetting, surface energy, substrate penetration and adhesion. European Seminar on High Performance Wood Coatings. In Proceedings of the Exterior and Interior Performance, Paris, France, 26–27 April 2004. [Google Scholar]
- De Moura, L.F.; Brito, J.O.; Nolasco, A.M.; Uliana, L.R. Evaluation of coating performance and color stability on thermally rectified Eucalyptus grandis and Pinus caribaea Var. Hondurensis woods. Wood Res. 2013, 58, 231–242. [Google Scholar]
- Nejad, M.; Shafaghi, R.; Ali, H.; Cooper, P. Coating performance on oil-heat treated wood for flooring. BioResources 2013, 8, 1881–1892. [Google Scholar] [CrossRef] [Green Version]
- Sönmez, A.; Budakci, M.; Huseyin, P. The effect of the moisture content of wood on the layer performance of water-borne varnishes. BioResources 2011, 6, 3166–3178. [Google Scholar]
- Gaylarde, C.C.; Morton, L.H.G.; Loh, K.; Shirakawa, M. Biodeterioration of external architectural paint films—A review. Int. Biodeterior. Biodegrad. 2011, 65, 1189–1198. [Google Scholar] [CrossRef]
- Hazir, E.; Koc, K.H. Evaluation of wood surface coating performance using water based, solvent based and powder coating. Maderas Cienc. Y Tecnol. 2019, 21, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Erdinler, E.S.; Koc, K.H.; Dilik, T.; Hazir, E. Layer thickness performances of coatings on MDF: Polyurethane and cellulosic paints. Maderas Cienc. Y Tecnol. 2019, 21, 317–326. [Google Scholar] [CrossRef]
- Kristýna, Š.; Štěpán, H.; Eliška, O.; Miloš, P.; Hakan, F. Effect of artificial weathering and temperature cycling on the adhesion strength of waterborne acrylate coating systems used for wooden windows. J. Green Build. 2020, 15, 1–14. [Google Scholar] [CrossRef]
- Bansal, R.; Nair, S.; Pandey, K.K. UV resistant wood coating based on zinc oxide and cerium oxide dispersed linseed oil nano-emulsion. Mater. Today Commun. 2022, 30, 103177. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Tjeerdsma, B. Chemical analysis of heat treated softwoods. Holz Als Roh Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Sivonene, H.; Maunu, S.L.; Sundholm, F.; Jämsä, S.; Viitaniemi, P. Magnetic resonance studies of thermally modified wood. Holzforschung 2002, 56, 648–654. [Google Scholar] [CrossRef]
- Naegel, A.; Heisig, M.; Wittum, G.; Turksen, K. Permeability Barrier: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2011; p. 467. ISBN 9781617791901. [Google Scholar]
- Park, C.W.; Youe, W.J.; Kim, S.J.; Han, S.Y.; Park, J.S.; Lee, E.A.; Kwon, G.J.; Kim, Y.S.; Kim, N.H.; Lee, S.H. Effect of lignin plasticization on physico-mechanical properties of lignin/ply(lactic acid) composites. Polymers 2019, 11, 2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, J.; Nardin, M. Theories and mechanism of adhesion. In Handbook of Adhesive Technology; Marcel Dekker: New York, NY, USA, 1994; pp. 19–35. [Google Scholar]
- Cheng, E.; Sun, X. Effects of wood-surface roughness adhesive viscosity and processing pressure on adhesion strength of protein adhesive. J. Adhes. Sci. Technol. 2006, 20, 997–1017. [Google Scholar] [CrossRef]
- Ozdemir, T.; Hiziroglu, S.; Kocapinar, M. Adhesion strength of cellulosic varnish coated wood species as function of their surface roughness. Adv. Mater. Sci. Eng. 2015, 2015, 525496. [Google Scholar] [CrossRef] [Green Version]
- Hakkou, M.; Petrissans, M.; Zoulalian, A.; Gerardin, P. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad.Stabil. 2005, 89, 1–5. [Google Scholar] [CrossRef]
- ASTM D 4541-02; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. Tremco Incorporated: Cuyahoga, OH, USA, 2006.
- Khaydarov, R.A.; Khaydarov, R.R.; Gapurova, O.; Estrin, Y.; Scheper, T. Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res. 2009, 11, 1193–1200. [Google Scholar] [CrossRef]
- Shi, S.H.Q. Diffusion model based on Fick’s second law for the moisture absorption process in wood fiber-based composites: Is it suitable or not? Wood Sci. Technol. 2007, 41, 645–658. [Google Scholar] [CrossRef]
- Hernandez, V.; Avramidis, S.; Navarrete, J. Albino strains of Ophiostoma spp. Fungi effect on radiate pine permeability. Eur. J. Wood Wood Prod. 2012, 70, 551–556. [Google Scholar] [CrossRef]
- Choo, A.C.Y.; Tahir, M.P.; Karimi, A.; Bakar, E.S.; Abdan, K.; Ibrahim, A.; Balkis, F.A.B. Study on the longitudinal permeability of oil palm wood. Ind. Eng. Chem. Res. 2013, 52, 9405–9410. [Google Scholar] [CrossRef] [Green Version]
- Taghiyari, H.R.; Moradi Malek, B. Effect of heat treatment on longitudinal gas and liquid permeability of circular and square-shaped native hardwood specimens. Heat Mass Transf. 2014, 50, 1125–1136. [Google Scholar] [CrossRef]
- USPTO. Gas Permeability Measurement Apparatus. Patent Number 8079249 B2, 20 December 2011. [Google Scholar]
- Ada, R. Cluster analysis and adaptation study for safflower genotypes. Bulg. J. Agricult. Sci. 2013, 19, 103–109. [Google Scholar]
- Taghiyari, H.R.; Karimi, A.N.; Parsapajouh, D.; Pourtahmasi, K. Study on the longitudinal gas permeability of juvenile wood and mature wood. Spec. Top. Rev. Porous Media 2010, 1, 31–38. [Google Scholar] [CrossRef]
- Lens, F.; Vos, R.A.; Charrier, G.; van der Niet, T.; Merckx, V.; Baas, P.; Aguirre Gutierrez, J.; Jacobs, B.; Chacon Dória, L.; Smets, E.; et al. Scalariform-to-simple transition in vessel perforation plates triggered by differences in climate during the evolution of Adoxaceae. Ann. Bot. 2016, 118, 1043–1056. [Google Scholar] [CrossRef] [Green Version]
- Ekstedt, J. Studies on the Barrier Properties of Exterior Wood Coatings. Doctoral Thesis, Department of Civil and Architectural Engineering, Division of Building Materials, KTH-Royal Institute of Technology, Stockholm, Sweden, 2002; p. 75. [Google Scholar]
- Taghiyari, H.R.; Samandarpour, A. Effects of nanosilver-impregnation and heat treatment on coating pull-off adhesion strength on solid wood. Drvna Ind. 2015, 66, 321–327. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Esmailpour, A.; Papadopoulos, A. Paint pull-off strength and permeability in nanosilver-impregnated and heat-treated beech wood. Coatings 2019, 9, 723. [Google Scholar] [CrossRef] [Green Version]
- Taghiyari, H.R.; Zolfaghari, H.; Sadeghi, M.E.; Esmailpour, A.; Jaffari, A. Correlation between specific gas permeability and sound absorption coefficient in solid wood. J. Trop. For. Sci. 2014, 26, 92–100. [Google Scholar]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef] [Green Version]
- Čabalová, I.; Kačík, F.; Lagaňa, R.; Výbohová, E.; Bubeníková, T.; Čaňová, I.; Ďurkovič, J. Effect of Thermal Treatment on the Chemical, Physical, and Mechanical Properties of Pedunculate Oak (Quercus robur L.) Wood. BioResources 2018, 13, 157–170. [Google Scholar] [CrossRef]
- Funaoka, M.; Kako, T.; Abe, I. Condensation of lignin during heating of wood. Wood Sci. Technol. 1990, 24, 277–288. [Google Scholar] [CrossRef]
Coating Parts | Solids (%) | Viscosity (25 °C) cP | Density (g/cm3) | Appearance of the Finish in Liquid Form |
---|---|---|---|---|
Sealer | 38 ± 1.5 | 120 ± 15 | 0.98 | Clear |
Clear finish (un-pigmented coating) | 39 ± 1.5 | 80 ± 15 | 0.98 | Clear |
Coding | Description of the Treatment |
---|---|
Control | Specimens with no impregnation ormodification |
Control-NSI | Specimens impregnated with silver nano-suspension |
HT145 | Heat-treated specimens at 145 °C |
NSI-HT145 | Nanosilver-impregnated specimens, heat-treated at 145 °C |
HT185 | Heat-treated specimens at 185 °C |
NSI-HT185 | Nanosilver-impregnated specimens, heat-treated at 185 °C |
Heat Treatment 1 | Beech | Poplar | Fir | |
---|---|---|---|---|
HT at 145 °C | HT | 10.5 (±0.9) 2 | 6.2 (±0.8) | 7.8 (±0.9) |
NSI-HT | 10.6 (±0.9) | 6.3 (±0.6) | 8.1 (±0.6) | |
HT at 185 °C | HT | 11.7 (±0.7) | 7.8 (±0.7) | 9.2 (±0.7) |
NSI-HT | 11.4 (±0.6) | 8.3 (±0.5) | 9.4 (±0.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghiyari, H.R.; Ilies, D.C.; Antov, P.; Vasile, G.; Majidinajafabadi, R.; Lee, S.H. Effects of Nanosilver and Heat Treatment on the Pull-Off Strength of Sealer-Clear Finish in Solid Wood Species. Polymers 2022, 14, 5516. https://doi.org/10.3390/polym14245516
Taghiyari HR, Ilies DC, Antov P, Vasile G, Majidinajafabadi R, Lee SH. Effects of Nanosilver and Heat Treatment on the Pull-Off Strength of Sealer-Clear Finish in Solid Wood Species. Polymers. 2022; 14(24):5516. https://doi.org/10.3390/polym14245516
Chicago/Turabian StyleTaghiyari, Hamid R., Dorina Camelia Ilies, Petar Antov, Grama Vasile, Reza Majidinajafabadi, and Seng Hua Lee. 2022. "Effects of Nanosilver and Heat Treatment on the Pull-Off Strength of Sealer-Clear Finish in Solid Wood Species" Polymers 14, no. 24: 5516. https://doi.org/10.3390/polym14245516
APA StyleTaghiyari, H. R., Ilies, D. C., Antov, P., Vasile, G., Majidinajafabadi, R., & Lee, S. H. (2022). Effects of Nanosilver and Heat Treatment on the Pull-Off Strength of Sealer-Clear Finish in Solid Wood Species. Polymers, 14(24), 5516. https://doi.org/10.3390/polym14245516