Aromatic Polyimide Membranes with tert-Butyl and Carboxylic Side Groups for Gas Separation Applications—Covalent Crosslinking Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization Methods
2.2. Synthesis of Copolyimides and Preparation of Polymer Films
2.3. Crosslinking by Carboxylic Group Esterification
3. Results and Discussion
3.1. Synthesis of Copolyimides, Preparation of Crosslinked Membranes
3.2. Spectroscopic and Structural Characterization
3.2.1. NMR Spectroscopy
3.2.2. ATR-FTIR Spectroscopy
3.2.3. Elemental Analysis
3.2.4. X-ray Diffraction (WAXS)
3.2.5. Solubility
3.2.6. Thermal Properties
3.2.7. Inherent Viscosity of Homopolymer and Copolyimides
3.2.8. Density and Fractional Free Volume (FFV)
3.2.9. Mechanical Properties
3.3. Gas Separation Properties: Permeability, Selectivity, and Plasticization Study
3.3.1. Permeability and Selectivity of Membranes
3.3.2. Plasticization Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezakazemi, P.M.; Sadrzadeh, M.; Matsuura, T.; Rezakazemi, M.; Sadrzadeh, M.; Matsuura, T. Thermally stable polymers for advanced high-performance gas separation membranes. Prog. Energy Combust. Sci. 2018, 66, 1–41. [Google Scholar] [CrossRef]
- Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective : Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Liang, C.Z.; Chung, T.-S.S.; Lai, J.-Y.Y. A review of polymeric composite membranes for gas separation and energy production. Prog. Polym. Sci. 2019, 97, 101141. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Liu, G.; Qiu, W.; Bhuwania, N.; Chinn, D.; Koros, W.J. Surprising plasticization benefits in natural gas upgrading using polyimide membranes. J. Membr. Sci. 2020, 593, 117430. [Google Scholar] [CrossRef]
- Chang, Y.S.; Kumari, P.; Munro, C.J.; Szekely, G.; Vega, L.F.; Nunes, S.; Dumée, L.F. Plasticization mitigation strategies for gas and liquid filtration membranes—A review. J. Membr. Sci. 2022, 666, 121125. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K.; Yeong, Y.F. Plasticization and Swelling in Polymeric Membranes in CO2 Removal from Natural Gas. Chem. Eng. Technol. 2016, 39, 1604–1616. [Google Scholar] [CrossRef]
- Iulianelli, A.; Drioli, E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Process. Technol. 2020, 206, 106464. [Google Scholar] [CrossRef]
- Wessling, M.; Schoeman, S.; van der Boomgaard, T.; Smolders, C.A. Plasticization of gas separation membranes. Gas Sep. Purif. 1991, 5, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Kadirkhan, F.; Goh, P.S.; Ismail, A.F.; Wan Mustapa, W.N.F.; Halim, M.H.M.; Soh, W.K.; Yeo, S.Y. Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO2/CH4 Applications—A Review. Membranes 2022, 12, 71. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Vu, D.Q.; Koros, W.J.; Miller, S.J. Effect of condensable impurities in CO2/CH4 gas feeds on carbon molecular sieve hollow-fiber membranes. Ind. Eng. Chem. Res. 2003, 42, 1064–1075. [Google Scholar] [CrossRef]
- Sanaeepur, H.; Ebadi Amooghin, A.; Bandehali, S.; Moghadassi, A.; Matsuura, T.; Van der Bruggen, B. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering. Prog. Polym. Sci. 2019, 91, 80–125. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, C.-C.C.; Xu, L.; Cui, L.; Paul, D.R.; Koros, W.J. Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation. Macromolecules 2011, 44, 6046–6056. [Google Scholar] [CrossRef]
- Wind, J.D.; Paul, D.R.; Koros, W.J. Natural gas permeation in polyimide membranes. J. Membr. Sci. 2004, 228, 227–236. [Google Scholar] [CrossRef]
- Favvas, E.P.; Katsaros, F.K.; Papageorgiou, S.K.; Sapalidis, A.A.; Mitropoulos, A.C. A review of the latest development of polyimide based membranes for CO2 separations. React. Funct. Polym. 2017, 120, 104–130. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, L.; Xiang, D.; Cao, B.; Hosseini, S.; Li, P. Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes 2019, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Nemestóthy, N.; Bakonyi, P.; Lajtai-Szabó, P.; Bélafi-Bakó, K. The impact of various natural gas contaminant exposures on CO2/CH4 separation by a polyimide membrane. Membranes 2020, 10, 324. [Google Scholar] [CrossRef]
- Han, W.; Zhang, C.; Weng, Y. Preparation and research progress of polyimide membranes in gas separation with anti-plasticization property. Sci. Sin. Chim. 2020, 50, 655–668. [Google Scholar] [CrossRef]
- Tiwari, R.R.; Jin, J.; Freeman, B.D.D.; Paul, D.R.R. Physical aging, CO 2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1). J. Membr. Sci. 2017, 537, 362–371. [Google Scholar] [CrossRef]
- Wessling, M.; Huisman, I.; Boomgaard, T.v.d.; Smolders, C.A. Time-dependent permeation of carbon dioxide through a polyimide membrane above the plasticization pressure. J. Appl. Polym. Sci. 1995, 58, 1959–1966. [Google Scholar] [CrossRef]
- Bos, A.; Pünt, I.G.M.; Wessling, M.; Strathmann, H. CO2-induced plasticization phenomena in glassy polymers. J. Membr. Sci. 1999, 155, 67–78. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, Y.; Chung, T.S.; Jiang, J. Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: A combination of experiment and simulation study. Polymer 2010, 51, 4439–4447. [Google Scholar] [CrossRef]
- Scholes, C.A.; Kentish, S.E.; Stevens, G.W. The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture. Energy Procedia 2009, 1, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Bos, A.; Punt, I.G.M.; Wessling, M.; Strathmann, H. Suppression of CO2-plasticization by semiinterpenetrating polymer network formation. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 1547–1556. [Google Scholar] [CrossRef]
- Duthie, X.; Kentish, S.; Powell, C.; Nagai, K.; Qiao, G.; Stevens, G. Operating temperature effects on the plasticization of polyimide gas separation membranes. J. Membr. Sci. 2007, 294, 40–49. [Google Scholar] [CrossRef]
- Swaidan, R.J. Tuning PIM-PI-Based Membranes for Highly Selective Transport of Propylene/Propane. Ph.D. Dissertation, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2016. [Google Scholar]
- Zhou, C. The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging. J. Membr. Sci. 2003, 225, 125–134. [Google Scholar] [CrossRef]
- Xia, J.; Chung, T.S.; Li, P.; Horn, N.R.; Paul, D.R. Aging and carbon dioxide plasticization of thin polyetherimide films. Polymer 2012, 53, 2099–2108. [Google Scholar] [CrossRef]
- Staudt-Bickel, C.; Koros, W.J. Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. J. Membr. Sci. 1999, 155, 145–154. [Google Scholar] [CrossRef]
- Houben, M.; Kloos, J.; van Essen, M.; Nijmeijer, K.; Borneman, Z. Systematic investigation of methods to suppress membrane plasticization during CO2 permeation at supercritical conditions. J. Membr. Sci. 2022, 647, 120292. [Google Scholar] [CrossRef]
- Balçık, M.; Velioğlu, S.; Tantekin-Ersolmaz, S.B.; Ahunbay, M.G. Can crosslinking improve both CO2 permeability and plasticization resistance in 6FDA–pBAPS/DABA copolyimides? Polymer 2020, 205, 122789. [Google Scholar] [CrossRef]
- Xu, R.; Li, L.; Jin, X.; Hou, M.; He, L.; Lu, Y.; Song, C.; Wang, T. Thermal crosslinking of a novel membrane derived from phenolphthalein-based cardo poly(arylene ether ketone) to enhance CO2/CH4 separation performance and plasticization resistance. J. Membr. Sci. 2019, 586, 306–317. [Google Scholar] [CrossRef]
- Pasichnyk, M.; Semeshko, O.; Kucher, E.; Asaulyuk, T.; Kyiv, V.V.; Hyrlya, L. Assessment of physicomechanical properties of composite films based on a styrene-acrylic polymer, glycidyl ether, and a 3-aminopropyltriethoxysilane compatibilizer. East. Eur. J. Enterp. Technol. 2020, 6, 111–116. [Google Scholar] [CrossRef]
- Friess, K.; Izák, P.; Kárászová, M.; Pasichnyk, M.; Lanč, M.; Nikolaeva, D.; Luis, P.; Jansen, J.C. A Review on Ionic Liquid Gas Separation Membranes. Membranes 2021, 11, 97. [Google Scholar] [CrossRef] [PubMed]
- Babu, V.P.; Kraftschik, B.E.; Koros, W.J. Crosslinkable TEGMC asymmetric hollow fiber membranes for aggressive sour gas separations. J. Membr. Sci. 2018, 558, 94–105. [Google Scholar] [CrossRef]
- Deng, L.; Xue, Y.; Yan, J.; Lau, C.H.; Cao, B.; Li, P. Oxidative crosslinking of copolyimides at sub-Tg temperatures to enhance resistance against CO2-induced plasticization. J. Membr. Sci. 2019, 583, 40–48. [Google Scholar] [CrossRef]
- Narzary, B.B.; Baker, B.C.; Yadav, N.; D’Elia, V.; Faul, C.F.J. Crosslinked porous polyimides: Structure, properties and applications. Polym. Chem. 2021, 12, 6494–6514. [Google Scholar] [CrossRef]
- Kammakakam, I.; Wook Yoon, H.; Nam, S.Y.; Bum Park, H.; Kim, T.H. Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation. J. Membr. Sci. 2015, 487, 90–98. [Google Scholar] [CrossRef]
- Koros, W.J.; Mahajan, R. Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 2001, 181, 141. [Google Scholar] [CrossRef]
- Katarzynski, D.; Pithan, F.; Staudt, C. Pervaporation of multi component aromatic/aliphatic mixtures through copolyimide membranes. Sep. Sci. Technol. 2008, 43, 59–70. [Google Scholar] [CrossRef]
- Pithan, F.; Staudt-Bickel, C. Crosslinked Copolyimide Membranes for Phenol Recovery from Process Water by Pervaporation. Chemphyschem 2003, 4, 967–973. [Google Scholar] [CrossRef]
- Wind, J.D.; Sirard, S.M.; Paul, D.R.; Green, P.F.; Johnston, K.P.; Koros, W.J. Carbon Dioxide-Induced Plasticization of Polyimide Membranes: Pseudo-Equilibrium Relationships of Diffusion, Sorption, and Swelling. Macromolecules 2003, 36, 6433–6441. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.; Ho Li, J.P.; Huang, J.; Yuan, B.; Zhang, C.; Yu, Y.; Yang, Y.; Lee, Y.; Li, T. Engineering plasticization resistant gas separation membranes using metal–organic nanocapsules. Chem. Sci. 2020, 11, 4687–4694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isfahani, A.P.; Ghalei, B.; Wakimoto, K.; Bagheri, R.; Sivaniah, E.; Sadeghi, M. Plasticization resistant crosslinked polyurethane gas separation membranes. J. Mater. Chem. A 2016, 4, 17431–17439. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, W.; Quan, W.; Liu, Y.; Koros, W.J. Fine-tuned thermally cross-linkable 6FDA-based polyimide membranes for aggressive natural gas separation. J. Membr. Sci. 2021, 635, 119474. [Google Scholar] [CrossRef]
- Shao, L.; Chung, T.S.; Goh, S.H.; Pramoda, K.P. Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance. J. Membr. Sci. 2005, 256, 46–56. [Google Scholar] [CrossRef]
- Shao, L.; Chung, T.S.; Goh, S.H.; Pramoda, K.P. The effects of 1,3-cyclohexanebis(methylamine) modification on gas transport and plasticization resistance of polyimide membranes. J. Membr. Sci. 2005, 267, 78–89. [Google Scholar] [CrossRef]
- Wind, J.D.; Staudt-Bickel, C.; Paul, D.R.; Koros, W.J. Solid-State Covalent Cross-Linking of Polyimide Membranes for Carbon Dioxide Plasticization Reduction. Macromolecules 2003, 36, 1882–1888. [Google Scholar] [CrossRef]
- Kim, J.H.; Koros, W.J.; Paul, D.R. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part II. Optical properties. Polymer 2006, 47, 3104–3111. [Google Scholar] [CrossRef]
- Kim, J.H.; Koros, W.J.; Paul, D.R. Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes. Part 2. with crosslinking. J. Membr. Sci. 2006, 282, 32–43. [Google Scholar] [CrossRef]
- Calle, M.; Doherty, C.M.; Hill, A.J.; Lee, Y.M. Cross-Linked Thermally Rearranged Poly(benzoxazole- co -imide) Membranes for Gas Separation. Macromolecules 2013, 46, 8179–8189. [Google Scholar] [CrossRef]
- Calle, M.; Jo, H.J.; Doherty, C.M.; Hill, A.J.; Lee, Y.M. Cross-linked thermally rearranged poly(benzoxazole-co-imide) membranes prepared from ortho-hydroxycopolyimides containing pendant carboxyl groups and gas separation properties. Macromolecules 2015, 48, 2603–2613. [Google Scholar] [CrossRef]
- Kratochvil, A.M.; Koros, W.J. Decarboxylation-Induced Cross-Linking of a Polyimide for Enhanced CO2 Plasticization Resistance. Macromolecules 2008, 41, 7920–7927. [Google Scholar] [CrossRef]
- Wieneke, J.U.; Staudt, C. Thermal stability of 6FDA-(co-)polyimides containing carboxylic acid groups. Polym. Degrad. Stab. 2010, 95, 684–693. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, C.C.; Kincer, M.R.; Koros, W.J. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation. Polymer 2011, 52, 4073–4082. [Google Scholar] [CrossRef]
- Huertas, R.M.; Tena, A.; Lozano, A.E.; de Abajo, J.; de la Campa, J.G.; Maya, E.M. Thermal degradation of crosslinked copolyimide membranes to obtain productive gas separation membranes. Polym. Degrad. Stab. 2013, 98, 743–750. [Google Scholar] [CrossRef]
- Liaw, D.J.; Liaw, B.Y. Synthesis and properties of polyimides derived from 1,4-bis(4-Aminophenoxy)2,5-di-tert-butylbenzene. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 1527–1534. [Google Scholar] [CrossRef]
- Calle, M.; Lozano, A.E.; de Abajo, J.; de la Campa, J.G.; Álvarez, C. Design of gas separation membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di-tert-butyl side groups. J. Membr. Sci. 2010, 365, 145–153. [Google Scholar] [CrossRef]
- Álvarez, C.; Lozano, Á.E.; Juan-y-Seva, M.; de la Campa, J.G. Gas separation properties of aromatic polyimides with bulky groups. Comparison of experimental and simulated results. J. Membr. Sci. 2020, 602, 117959. [Google Scholar] [CrossRef]
- BIOVIA Dassault Systémes. Biovia Materials Studio, 2017R2; Dassault Systèmes: San Diego, CA, USA, 2017. [Google Scholar]
- Muñoz, D.M.; de la Campa, J.G.; de Abajo, J.; Lozano, A.E. Experimental and Theoretical Study of an Improved Activated Polycondensation Method for Aromatic Polyimides. Macromolecules 2007, 40, 8225–8232. [Google Scholar] [CrossRef]
- Muñoz, D.M.; Calle, M.; de la Campa, J.G.; de Abajo, J.; Lozano, A.E. An Improved Method for Preparing Very High Molecular Weight Polyimides. Macromolecules 2009, 42, 5892–5894. [Google Scholar] [CrossRef]
- Hess, S.; Staudt, C. Variation of esterfication conditions to optimize solid-state crosslinking reaction of DABA-containing copolyimide membranes for gas separations. Desalination 2007, 217, 8–16. [Google Scholar] [CrossRef]
- Eguchi, H.; Kim, D.J.; Koros, W.J. Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation. Polymer 2015, 58, 121–129. [Google Scholar] [CrossRef]
- Katarzynski, D.; Staudt-Bickel, C. Separation of multi component aromatic/aliphatic mixtures by pervaporation with copolyimide membranes. Desalination 2006, 189, 81–86. [Google Scholar] [CrossRef]
- Maya, E.M.; García-Yoldi, I.; Lozano, A.E.; de la Campa, J.G.; de Abajo, J. Synthesis, Characterization, and Gas Separation Properties of Novel Copolyimides Containing Adamantyl Ester Pendant Groups. Macromolecules 2011, 44, 2780–2790. [Google Scholar] [CrossRef]
- Huertas, R.M.; Doherty, C.M.; Hill, A.J.; Lozano, A.E.; de Abajo, J.; de la Campa, J.G.; Maya, E.M. Preparation and gas separation properties of partially pyrolyzed membranes (PPMs) derived from copolyimides containing polyethylene oxide side chains. J. Membr. Sci. 2012, 409–410, 200–211. [Google Scholar] [CrossRef]
- Maya, E.M.; Tena, A.; de Abajo, J.; de la Campa, J.G.; Lozano, A.E. Partially pyrolyzed membranes (PPMs) derived from copolyimides having carboxylic acid groups. Preparation and gas transport properties. J. Membr. Sci. 2010, 349, 385–392. [Google Scholar] [CrossRef]
- Konietzny, R.; Barth, C.; Harms, S.; Raetzke, K.; Koelsch, P.; Staudt, C. Structural investigations and swelling behavior of 6FDA copolyimide thin films. Polym. Int. 2011, 60, 1670–1678. [Google Scholar] [CrossRef]
- Hibshman, C.; Cornelius, C.J.; Marand, E. The gas separation effects of annealing polyimide–organosilicate hybrid membranes. J. Membr. Sci. 2003, 211, 25–40. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Minelli, M.; Oradei, S.; Fiorini, M.; Sarti, G.C. CO2 plasticization effect on glassy polymeric membranes. Polymer 2019, 163, 29–35. [Google Scholar] [CrossRef]
Polymer | Acronym |
---|---|
6FDA-CF3TBAPB | HOMOPOL |
6FDA-[DABA-CF3TBAPB (1/4)] | COPOL-DABA(1/4) |
6FDA-[DABA-CF3TBAPB (1/4)] * | COPOL-CCL(1/4) |
6FDA-[DABA-CF3TBAPB (1/19)] | COPOL-DABA(1/19) |
6FDA-[DABA-CF3TBAPB (1/19)] * | COPOL-CCL(1/19) |
Polymer | %C Theoretical/Found | %H Theoretical/Found | %N Theoretical/Found |
---|---|---|---|
COPOL-DABA(1/4) | 58.8/58.7 | 3.1/3.3 | 3.4/3.1 |
COPOL-CCL-(1/4) | 59.1 */58.5 58.9 ** | 3.2 */3.0 3.2 ** | 3.3 */3.0 3.3 ** |
COPOL-DABA(1/19) | 59.3/59.2 | 3.3/3.5 | 3.1/2.9 |
COPOL-CCL-(1/19) | 59.4 */58.3 59.4 ** | 3.3 */3.3 3.4 ** | 3.0 */2.8 3.03 ** |
Polymer | CHCl3 | THF | DMAc | NMP | m-Cresol | Gel Fraction, Gf (%) |
---|---|---|---|---|---|---|
COPOL-DABA(1/4) | + + | + + | + + | + + | + + | 0 |
COPOL-CCL(1/4) | + - | + - | + - | + - | +- | >95 |
COPOL-DABA(1/19) | + + | + + | + + | + + | + + | 0 |
COPOL-CCL(1/19) | + | + | + | + | + | <5 |
Polymer | Tg (°C) | Td (°C) | Rc (%) | ηinh (dL/g) |
---|---|---|---|---|
HOMOPOL | 270 | 490 | 40 | 1.09 |
COPOL-DABA(1/4) | 280 | 375/490 | 47 | 0.69 |
COPOL-CCL(1/4) | 280 | 315/400/480 | 50 | - |
COPOL-DABA(1/19) | 270 | 480 | 49 | 0.66 |
COPOL-CCL(1/19) | 260 | 295/490 | 51 | - |
Polymer | ρ (g/cm3) | FFV |
---|---|---|
HOMOPOL | 1.291 | 0.238 |
COPOL-DABA(1/4) | 1.301 | 0.235 |
COPOL-CCL(1/4) | 1.340 | - |
COPOL-DABA(1/19) | 1.295 | 0.233 |
COPOL-CCL(1/19) | 1.334 | - |
Polymer | Young Modulus (GPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
HOMOPOL | 1.6 ± 0.1 | 91 ± 10 | 9 ± 2 |
COPOL-DABA(1/4) | 1.7 ± 0.2 | 96 ± 18 | 9 ± 1 |
COPOL-CCL-(1/4) | 1.9 ± 0.1 | 75 ± 12 | 5 ± 1 |
COPOLDABA(1/19) | 1.9 ± 0.1 | 105 ± 5 | 10 ± 2 |
COPOL-CCL-(1/19) | 2.1 ± 0.1 | 88 ± 4 | 5.7 ± 0.2 |
Polymer | He | N2 | O2 | CH4 | CO2 | αO2/N2 | αCO2/CH4 |
---|---|---|---|---|---|---|---|
HOMOPOL | 230 | 8.7 | 38 | 6.4 | 150 | 4.3 | 23 |
COPOL-DABA(1/4) | 200 | 6.1 | 30 | 4.5 | 120 | 4.9 | 27 |
COPOL-CCL(1/4) | 180 | 5.4 | 26 | 3.8 | 110 | 4.9 | 29 |
COPOL-DABA(1/19) | 170 | 5.1 | 25 | 3.7 | 100 | 4.8 | 28 |
COPOL-CCL(1/19) | 140 | 3.8 | 19 | 2.7 | 75 | 4.9 | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban, N.; Juan-y-Seva, M.; Aguilar-Lugo, C.; Miguel, J.A.; Staudt, C.; de la Campa, J.G.; Álvarez, C.; Lozano, Á.E. Aromatic Polyimide Membranes with tert-Butyl and Carboxylic Side Groups for Gas Separation Applications—Covalent Crosslinking Study. Polymers 2022, 14, 5517. https://doi.org/10.3390/polym14245517
Esteban N, Juan-y-Seva M, Aguilar-Lugo C, Miguel JA, Staudt C, de la Campa JG, Álvarez C, Lozano ÁE. Aromatic Polyimide Membranes with tert-Butyl and Carboxylic Side Groups for Gas Separation Applications—Covalent Crosslinking Study. Polymers. 2022; 14(24):5517. https://doi.org/10.3390/polym14245517
Chicago/Turabian StyleEsteban, Noelia, Marta Juan-y-Seva, Carla Aguilar-Lugo, Jesús A. Miguel, Claudia Staudt, José G. de la Campa, Cristina Álvarez, and Ángel E. Lozano. 2022. "Aromatic Polyimide Membranes with tert-Butyl and Carboxylic Side Groups for Gas Separation Applications—Covalent Crosslinking Study" Polymers 14, no. 24: 5517. https://doi.org/10.3390/polym14245517
APA StyleEsteban, N., Juan-y-Seva, M., Aguilar-Lugo, C., Miguel, J. A., Staudt, C., de la Campa, J. G., Álvarez, C., & Lozano, Á. E. (2022). Aromatic Polyimide Membranes with tert-Butyl and Carboxylic Side Groups for Gas Separation Applications—Covalent Crosslinking Study. Polymers, 14(24), 5517. https://doi.org/10.3390/polym14245517