Masking Abilities of Dental Cad/Cam Resin Composite Materials Related to Substrate and Luting Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Optical Investigations
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The underlying dental structure, luting agent, and restoration material have a significant impact on the aesthetic aspect of the restoration.
- The masking ability was the best for Shofu HC and Lava Ultimate, followed by Cerasmart, and significant lower Hyramic and Vita Enamic.
- Warm try-in pastes associated with non-discolored substrates can determine at most perceivable color changes, but associated with dark colored ones can lead to marked color changes.
- For substrates with a darker color, warm try-in pastes lead to marked color changes, but neutral and light try-in pastes at most perceivable, if they are associated with resin composites ceramic materials which proved to have a better masking ability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seyidaliyeva, A.; Rues, S. Color stability of polymer-infiltrated-ceramics compared with lithium disilicate ceramics and composite. J. Esthet. Restor. Dent. 2020, 32, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Coldea, A.; Swain, M.V. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Swain, M. A novel polymer infiltrated ceramic dental material. Dent. Mater. 2011, 27, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Ashtiani, A.H.; Azizian, M. Comparison the degree of enamel wear behavior opposed to polymer-infiltrated ceramic and feldspathic porcelain. Dent. Res. J. 2019, 16, 71–75. [Google Scholar]
- Yin, R.; Kim, Y.K. Comparative evaluation of the mechanical properties of CAD/CAM dental blocks. Odontology 2019, 107, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Song, E.J. In vitro investigation of wear of CAD/CAM polymeric materials against primary teeth. Materials 2017, 10, 1410. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Yu, P. A comparative study on the wear behavior of a polymer infiltrated ceramic network (PICN) material and tooth enamel. Dent. Mater. 2017, 33, 1351–1361. [Google Scholar] [CrossRef]
- Skorulska, A.; Piszko, P. Review on Polymer, Ceramic and Composite Materials for CAD/CAM Indirect Restorations in Dentistry-Application, Mechanical Characteristics and Comparison. Materials 2021, 14, 1592. [Google Scholar] [CrossRef]
- Manziuc, M.M.; Gasparik, C. Color and masking properties of translucent monolithic zirconia before and after glazing. J. Prosthodont. Res. 2021, 65, 303–310. [Google Scholar] [CrossRef]
- Araujo, E.; Perdigao, J. Restorative options for discoloured teeth. In Tooth Whitening; Perdigao, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 257–268. [Google Scholar]
- Zhi, L.; Bortolotto, T. Comparative in vitro wear resistance of CAD/CAM composite resin and ceramic materials. J. Prosthet. Dent. 2016, 115, 199–202. [Google Scholar] [CrossRef]
- Bacchi, A.; Boccardi, S. Substrate masking ability of bilayer and monolithic ceramics used for complete crowns and the effect of association with an opaque resin-based luting agent. J. Prosthodont. Res. 2019, 63, 321–326. [Google Scholar] [CrossRef] [PubMed]
- López-Suárez, C.; Castillo-Oyagüe, R. Fracture load of metal-ceramic, monolithic, and bi-layered zircônia-based posterior fixed dental prosthesis after thermo-mechanical cycling. J. Dent. 2018, 73, 97–104. [Google Scholar] [CrossRef]
- Belli, R.; Wendler, M.; de Ligny, D.; Cicconi, M.R.; Petschelt, A.; Peterlik, H.; Lohbauer, U. Chairside CAD/CAM materials: Part 1: Measurement of elastic constants and microstructural characterization. Dent. Mater. 2017, 33, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Begum, Z.; Chheda, P. Effect of Ceramic Thickness and Luting Agent Shade on the Color Masking Ability of Laminate Veneers. J. Indian Prosthodont. Soc. 2014, 14 (Suppl. 1), 46–50. [Google Scholar] [CrossRef]
- Vichi, A.; Ferrari, M. Influence of ceramic and cement thickness on the masking of various types of opaque posts. J. Prosthet. Dent. 2000, 83, 412–417. [Google Scholar] [CrossRef]
- Tabatabaian, F.; Javadi Sharif, M. The color masking ability of a zirconia ceramic on the substrates with different values. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Rafael, C.F.; Del Pina Luna, M.; Munõz, M.T.; Garbelotto, D.A.; Gustavo, L.; Liebermann, A.; Özcan, M.; Maziero Volpato, C.Â. Optical Factors: Affecting Anterior Esthetics in All-Ceramic Restorations: Two Case Reports. J. Cosmet. Dent. 2017, 33, 56–65. [Google Scholar]
- Turgut, S.; Bagis, B.; Ayaz, E.A. Achieving the desired colour in discoloured teeth, using leucite-based cad-cam laminate Systems. J. Dent. 2014, 42, 68–74. [Google Scholar] [CrossRef]
- Daneshpooy, M.; Pournaghi Azar, F. Color agreement between try-inpaste and resin cement: Effect of thickness and regions of ultra-translucent multilayered zirconia veneers. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 61–67. [Google Scholar] [CrossRef]
- Lee, Y.K. Opalescence of human teeth and dental esthetic restorative materials. Dent. Mater. J. 2016, 35, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Powers, J.M. Influence of opalescence and fluorescence properties on the light transmittance of resin matrix ceramic materials as a function of wavelength. Am. J. Dent. 2006, 19, 283–288. [Google Scholar]
- Lee, Y.K.; Lu, H. Influence of fluorescent and opalescent properties of resin matrix ceramic materialss on the masking effect. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 76, 26–32. [Google Scholar] [CrossRef]
- Tabatabaian, F.; Dalirani, S. Effect of Thickness of Zirconia Ceramic on Its Masking Ability: An In Vitro Study. J. Prosthodont. 2019, 28, 666–671. [Google Scholar] [CrossRef]
- Vichi, A.; Sedda, M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “Augmented translucency” zirconia for CEREC CAD/CAM system. J. Esthet. Restor. Dent. 2016, 28 (Suppl. 1), S32–S39. [Google Scholar] [CrossRef]
- Suputtamongkol, K.; Tulapornchai, C. Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns. J. Adv. Prosthodont. 2013, 5, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Razzoog, M.E. Masking ability of zirconia with and without veneering porcelain. J. Prosthodont. 2013, 22, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaian, F.; Masoomi, F. Effect of three different core materials on masking ability of a zirconia ceramic. J. Dent. 2016, 13, 340–348. [Google Scholar]
- Oh, S.H.; Kim, S.G. Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: In vitro study of color masking ability. J. Adv. Prosthodont. 2015, 7, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinmazisik, G.; Demirbas, B. Influence of dentin and core porcelain thickness on the color of fully sintered zirconia ceramic restorations. J. Prosthet. Dent. 2014, 111, 142–149. [Google Scholar] [CrossRef]
- Son, H.J.; Kim, W.C. Influence of dentin porcelain thickness on layered all-ceramic restoration color. J. Dent. 2010, 38 (Suppl. S2), e71–e77. [Google Scholar] [CrossRef] [PubMed]
- Selz, C.F.; Bogler, J. Veneered anatomically designed zirconia FDPs resulting from digital intraoral scans: Preliminary results of a prospective clinical study. J. Dent. 2015, 43, 1428–1435. [Google Scholar] [CrossRef]
- Pop-Ciutrila, I.S.; Dudea, D. Shade correspondence, color, and translucency differences between human dentine and a CAD/CAM hybrid ceramic system. J. Esthet. Restor. Dent. 2016, 28 (Suppl. 1), S46–S55. [Google Scholar] [CrossRef] [PubMed]
- Salameh, Z.; Tehini, G. Influence of ceramic color and translucency on shade match of CAD/CAM porcelain veneers. Int. J. Esthet. Dent. 2014, 9, 90–97. [Google Scholar] [PubMed]
- Kurklu, D.; Azer, S.S. Porcelain thickness and cement shade effects on the colour and translucency of porcelain veneering materials. J. Dent. 2013, 41, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Skyllouriotis, A.L.; Yamamoto, H.L. Masking properties of ceramics for veneer restorations. J. Prosthet. Dent. 2017, 118, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Kurtulmus-Yilmaz, S.; Cengiz, E. The effect of surface treatments on the mechanical and optical behaviors of CAD/CAM restorative materials. J. Prosthodont. 2019, 28, e496–e503. [Google Scholar] [CrossRef]
- Awad, D.; Stawarczyk, B. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef]
- Su, Y.; Xin, M.; Chen, X. Effect of CAD-CAM ceramic materials on the color match of veneer restorations. J. Prosthet. Dent. 2021, 126, 255.e1–255.e7. [Google Scholar] [CrossRef]
- Horvath, S.D. Key Parameters of Hybrid Materials for CAD/CAM-Based Restorative Dentistry. Compend. Contin. Educ. Dent. 2016, 37, 638–643. [Google Scholar]
- Alamoush, R.A.; Silikas, N. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed. Res. Int. 2018, 2018, 4893143. [Google Scholar] [CrossRef]
- Johnston, W.M. Review of translucency determinations and applications to dental materials. J. Esthet. Res. Dent. 2014, 26, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Porojan, L.; Vasiliu, R.-D. Surface Characterization and Optical Properties of Reinforced Dental Glass-Ceramics Related to Artificial Aging. Molecules 2020, 25, 3407. [Google Scholar] [CrossRef]
- Shirani, M.; Savabi, O. Comparison of translucency and opalescence among different dental monolithic ceramics. J. Prosthet. Dent. 2021, 126, 446.e1–446.e6. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Wible, E. Long-term effects of seven cleaning methods on light transmittance, surface roughness, and flexural modulus of polyurethane retainer material. Angle Orthod. 2018, 88, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Zhang, N.; Chen, H. Dynamic stress relaxation of orthodontic thermoplastic materials in a simulated oral environment. Dent. Mater. J. 2013, 32, 946–951. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Tri, P.; Prud’homme, R.E. Nanoscale analysis of the photodegradation of Polyester fibers by AFM-IR. J. Photochem. Photobiol. A Chem. 2019, 371, 196–204. [Google Scholar] [CrossRef]
- Biron, M. Thermoplastics and Thermoplastic Composites. In Detailed Accounts of Thermoplastic Resins, 3rd ed.; William Andrew: Kindlington, Oxford, UK, 2018; pp. 203–766. [Google Scholar]
- Porojan, L.; Vasiliu, R.-D. Surface Quality Evaluation of Removable Thermoplastic Dental Appliances Related to Staining Beverages and Cleaning Agents. Polymers 2020, 12, 1736. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Takahashi, H.; Iwasaki, N. Translucency of dental ceramics with different thicknesses. J. Prosthet. Dent. 2013, 110, 14–20. [Google Scholar] [CrossRef]
- Lee, Y.-K. Translucency of human teeth and dental restorative materials and its clinical relevance. J. Biomed. Opt. 2015, 20, 045002. [Google Scholar] [CrossRef]
- Akar, G.C. Effects of surface-finishing protocols on the roughness, color change, and translucency of different ceramic systems. J. Prosthet. Dent. 2014, 112, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Monaco, C.; Arena, A. Effect of prophylactic polishing pastes on roughness and translucency of lithium disilicate ceramic. Int. J. Periodontics Restor. Dent. 2014, 34, e26–e29. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, Y.K. Influence of thermocycling on the optical properties of laboratory resin matrix ceramic materialss and an all-ceramic material. J. Mater. Sci. Mater. Med. 2004, 15, 1221–1226. [Google Scholar] [CrossRef]
- Yu, B.; Ahn, J.S. Measurement of translucency of tooth enamel and dentin. Acta Odontol. Scand. 2009, 67, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Antonson, S.A.; Anusavice, K.J. Contrast ratio of veneering and core ceramics as a function of thickness. Int. J. Prosthodont. 2001, 14, 316–320. [Google Scholar]
- Vasiliu, R.-D.; Porojan, S.D. Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics. Materials 2020, 13, 381. [Google Scholar] [CrossRef] [Green Version]
- Ardu, S.; Feilzer, A.J. Quantitative clinical evaluation of esthetic properties of incisors. Dent. Mater. 2008, 24, 333–340. [Google Scholar] [CrossRef]
- ALGhazali, N.; Laukner, J. An investigation into the effect of trytry-inpastes, uncured and cured resin cements on the overall color of ceramic veneer restorations: An in vitro study. J. Dent. 2010, 38, e78–e86. [Google Scholar] [CrossRef] [Green Version]
- Vaz, E.C.; Vaz, M.M. Resin Cement: Correspondence with Try-inPaste and Influence on the Immediate Final Color of Veneers. J. Prosthodont. 2019, 28, e74–e81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, W.; Jiang, T. Evaluation of the esthetic effect of resin cements and try-in pastes on ceromer veneers. J. Dent. 2010, 38 (Suppl. S2), e87–e94. [Google Scholar] [CrossRef]
- Vaz, E.; Vaz, M. Try-inPastes Versus Resin Cements: A Color Comparison. Compend. Contin. Educ. Dent. 2016, 37, e1–e5. [Google Scholar]
- Rigoni, P.; Amaral, F.L.B.D. Color agreement between nanofluorapatite ceramic discs associated with try-inpastes and with resin cements. Braz. Oral Res. 2012, 26, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Chen, X. Agreement of Try-In Pastes and the Corresponding Luting Composites on the Final Color of Ceramic Veneers. J. Prosthodont. 2014, 23, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Mourouzis, P.; Koulaouzidou, E. Color match of luting composites and try-inpastes: The impact on the final color of CAD/CAM lithium disilicate restorations. Int. J. Esthet. Dent. 2018, 13, 98–109. [Google Scholar] [PubMed]
- Kandil, B.S.M.; Hamdy, A.M. Effect of ceramic translucency and luting cement shade on the color masking ability of laminate veneers. Dent. Res. J. 2019, 16, 193–199. [Google Scholar]
- Dai, S.; Chen, C. Choice of resin cement shades for a high-translucency zirconia product to mask dark, discolored or metal substrates. J. Adv. Prosthodont. 2019, 11, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Chen, X. The effect of ceramic thickness and resin cement shades on the color matching of ceramic veneers in discolored teeth. Odontology 2017, 105, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Azer, S.S.; Rosenstiel, S.F. Effect of substrate shades on the color of ceramic laminate veneers. J. Prosthet. Dent. 2011, 106, 179–183. [Google Scholar] [CrossRef]
- Della Bona, A.; Pecho, O.E. Colour parameters and shade correspondence of CAD-CAM ceramic systems. J. Dent. 2015, 43, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Kim, S.H. Effect of polishing and glazing on the color and spectral distribution of monolithic zirconia. J. Adv. Prosthodont. 2013, 5, 296–304. [Google Scholar] [CrossRef] [Green Version]
Material | Type | Monomer | Filler |
---|---|---|---|
Vita Enamic HT [E] VITA Zahnfabrik, Bad Säckingen, Germany | Resin composites materials material | UDMA, TEGDMA | Feldspar ceramic enriched with aluminum oxide 86% |
Lava Ultimate HT [L] 3M ESPE, Seefeld, Germany | CAD/CAM composite resin | Bis-GMA, UDMA, Bis-EMA, TEGDMA | SiO2, ZrO2, aggregated ZrO2/SiO2 cluster 80% |
Cerasmart HT [C] GC Corporation, Tokyo, Japan | CAD/CAM composite resin | Bis-MEPP, UDMA, DMA | Silica, barium glass 71% |
Shofu HC HT [S] Shofu, Kyoto, Japan | CAD/CAM composite resin | UDMA, TEGDMA | Silica, silicate, zirconium silicate 61% |
Hyramic HT [H] Upcera, Liaoning, China | CAD/CAM composite resin | - | Inorganic Filler 55–85% |
NBS Units | Color Changes |
---|---|
0.0–0.5 | extremely slight change |
0.5–1.5 | slight change |
1.5–3.0 | perceivable |
3.0–6.0 | marked change |
6.0–12.0 | extremely marked change |
12.0 or more | change to another color |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porojan, L.; Vasiliu, R.D.; Porojan, S.D. Masking Abilities of Dental Cad/Cam Resin Composite Materials Related to Substrate and Luting Material. Polymers 2022, 14, 364. https://doi.org/10.3390/polym14030364
Porojan L, Vasiliu RD, Porojan SD. Masking Abilities of Dental Cad/Cam Resin Composite Materials Related to Substrate and Luting Material. Polymers. 2022; 14(3):364. https://doi.org/10.3390/polym14030364
Chicago/Turabian StylePorojan, Liliana, Roxana Diana Vasiliu, and Sorin Daniel Porojan. 2022. "Masking Abilities of Dental Cad/Cam Resin Composite Materials Related to Substrate and Luting Material" Polymers 14, no. 3: 364. https://doi.org/10.3390/polym14030364
APA StylePorojan, L., Vasiliu, R. D., & Porojan, S. D. (2022). Masking Abilities of Dental Cad/Cam Resin Composite Materials Related to Substrate and Luting Material. Polymers, 14(3), 364. https://doi.org/10.3390/polym14030364