Comparative Reinforcement Effect of Achatina fulica Snail Shell Nanoparticles, Montmorillonite, and Kaolinite Nanoclay on the Mechanical and Physical Properties of Greenpoxy Biocomposite
Abstract
:1. Introduction
2. Experimental Details
2.1. Raw Materials
2.2. Procedure for Synthesizing Nano-CaCO3 from Achatina fulica Shell
2.3. Preparation of Nanocomposites
2.4. Testing of Composite Characteristics
2.4.1. Tensile Strength
2.4.2. Hardness Test
2.4.3. Water Absorption
2.4.4. Impact Resistance
2.4.5. Scanning Electron Microscopy
3. Results and Discussion
3.1. Tensile Properties
3.2. Impact Strength
3.3. Hardness Property
3.4. Water Uptake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thenepalli, T.; Jun, A.Y.; Han, C.; Ramakrishna, C.; Ahn, J.W. A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers. Korean J. Chem. Eng. 2015, 32, 1009–1022. [Google Scholar] [CrossRef]
- Xia, C.; Shi, S.Q.; Cai, L. Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites. Compos. Part B Eng. 2015, 78, 138–143. [Google Scholar] [CrossRef]
- Ippolito, F.; Hübner, G.; Claypole, T.; Gane, P. Calcium Carbonate as Functional Filler in Polyamide 12-Manipulation of the Thermal and Mechanical Properties. Processes 2021, 9, 937. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, Y.; Kim, S.R.; Shin, D.G.; Oh, S.C.; Kwon, W.T. Size Effect of CaCO3 Filler on the Mechanical Properties of SMC Composites. In Defect and Diffusion Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 2015; Volume 365, pp. 244–248. [Google Scholar]
- Lapčík, L.; Maňas, D.; Vašina, M.; Lapčíková, B.; Řezníček, M.; Zádrapa, P. High density poly (ethylene)/CaCO3 hollow spheres composites for technical applications. Compos. Part B Eng. 2017, 113, 218–224. [Google Scholar] [CrossRef]
- Patel, V.K.; Dhanola, A. Influence of CaCO3, Al2O3, and TiO2 microfillers on physico-mechanical properties of Luffa cylindrica/polyester composites. Eng. Sci. Technol. Int. J. 2016, 19, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Gbadeyan, O.J. Low friction hybrid nanocomposite material for brake pad application. 2017. Available online: https://openscholar.dut.ac.za/handle/10321/2666 (accessed on 10 October 2021).
- Gbadeyan, O.J.; Kanny, K.; Mohan, T.P. Influence of the multi-walled carbon nanotube and short carbon fibre composition on tribological properties of epoxy composites. Tribol. -Mater. Surf. Interfaces 2017, 11, 59–65. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Puglia, D.; Al-Maadeed, M.A.S.; Kenny, J.M.; Thomas, S. Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’ and ‘nano’ scale. Mater. Sci. Eng. R Rep. 2017, 116, 1–29. [Google Scholar] [CrossRef]
- Kamal, M.M.; Clarke, J.; Ahmad, M.A. Comparison of properties of natural rubber compounds with various fillers. J. Rubber Res. 2009, 12, 27–44. [Google Scholar]
- Mohan, T.; Kanny, K. Thermal, mechanical and physical properties of nanoegg shell particle-filled epoxy nanocomposites. J. Compos. Mater. 2018, 52, 3989–4000. [Google Scholar] [CrossRef]
- Ulkeryildiz, E.; Kilic, S.; Ozdemir, E. Rice-like hollow nano-CaCO3 synthesis. J. Cryst. Growth 2016, 450, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Ulkeryildiz, E.; Kilic, S.; Ozdemir, E. Nano-CaCO3 synthesis by jet flow. Colloids Surf. A Physicochem. Eng. Asp. 2017, 512, 34–40. [Google Scholar] [CrossRef]
- Dadkhah, M.; Salavati-Niasari, M.; Mir, N. Synthesis and Characterization of Nano-Size CaCO3 via Thermal Treatment and Solid State Method. J. Nanostruct. 2011, 1, 153–158. [Google Scholar]
- Balachandran, M.; Devanathan, S.; Muraleekrishnan, R.; Bhagawan, S. Optimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite design. Mater. Des. 2012, 35, 854–862. [Google Scholar] [CrossRef]
- Balachandran, M.; Bhagawan, S. Mechanical, thermal and transport properties of nitrile rubber (NBR)—Nanoclay composites. J. Polym. Res. 2012, 19, 9809. [Google Scholar] [CrossRef]
- Senatov, F.; Kuznetsov, D.; Kaloshkin, S.; Cherdyntsev, V. Obtaining Nanopowders of Metal Oxides from Salts by Means of Mechanochemical Synthesis. Chem. Sustain. Dev. 2009, 17, 631–636. [Google Scholar]
- Oyetunji, A.; Umunakwe, R.; Adewuyi, B.O.; Nwigwe, U.S.; Umunakwe, I.J. Evaluating the properties of nanoparticles of calcium carbonate obtained from the shells of african giant land snails (Achatina achatina) via in situ deposition technique. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2019, 81, 85–94. [Google Scholar]
- Khan, I.; Bhat, A. Micro and nano calcium carbonate filled natural rubber composites and nanocomposites. Nat. Rubber Mater. 2013, 2, 467–487. [Google Scholar]
- Islam, K.N.; Bakar, M.Z.B.A.; Ali, M.E.; Hussein, M.Z.B.; Noordin, M.M.; Loqman, M.Y.; Miah, G.; Wahid, H.; Hashim, U. A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technol. 2013, 235, 70–75. [Google Scholar] [CrossRef]
- Asafa, T.B.; Durowoju, M.O.; Oyewole, A.A.; Solomon, S.O.; Adegoke, R.M.; Aremu, O.J. Potentials of Snailshell as a Reinforcement for Discarded Aluminum Based Materials. Int. J. Adv. Sci. Technol. 2015, 84, 1–8. [Google Scholar] [CrossRef]
- Leelatawonchai, P.; Laonapakul, T. Preparation and characterization of calcium sources from golden apple snail shell for naturally based biomaterials. Adv. Mater. Res. 2014, 931, 370–374. [Google Scholar] [CrossRef]
- Abhulimen, E.; Orumwense, F. Characterization and Development of Asbestos Free Brake Pad, using Snail Shell and Rubber Seed Husk. Afr. J. Eng. Res. 2017, 5, 24–34. [Google Scholar]
- Kolawole, M.; Aweda, A.; Abdulkareem, S. Archachatina Marginata Bio-Shells as Reinforcement Material in Metal Matrix Composites. Int. J. Automot. Mech. Eng. 2017, 14. Available online: https://uilspace.unilorin.edu.ng/handle/20.500.12484/4667 (accessed on 10 October 2021). [CrossRef]
- Syamimi, N.F.; Islam, M.R.; Sumdani, M.G.; Rashidi, N.M. Mechanical and Thermal Properties of Snail Shell Particles-Reinforced Bisphenol-A Bio-Composites. Polym. Bull. 2019, 1–17. Available online: https://link.springer.com/article/10.1007%2Fs00289-019-02878-w (accessed on 10 October 2021).
- Onwubu, S.C.; Vahed, A.; Singh, S.; Kanny, K.M. Physicochemical characterization of a dental eggshell powder abrasive material. J. Appl. Biomater. Funct. Mater. 2017, 15, e341–e346. [Google Scholar] [CrossRef] [PubMed]
- Hincke, M.T.; Nys, Y.; Gautron, J.; Mann, K.; Rodriguez-Navarro, A.B.; McKee, M.D. The eggshell: Structure, composition and mineralization. Front. Biosci. 2012, 17, 1266–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, S.B.; Aigbodion, V.S.; Patrick, S.N. Development of polyester/eggshell particulate composites. Tribol. Ind. 2012, 34, 217. [Google Scholar]
- Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A review of the synthesis and applications of polymer–nanoclay composites. Appl. Sci. 2018, 8, 1696. [Google Scholar] [CrossRef] [Green Version]
- Onuegbu, G.C.; Igwe, I.O. The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene. Mater. Sci. Appl. 2011, 2, 810. [Google Scholar] [CrossRef] [Green Version]
- Gbadeyan, O.J.; Adali, S.; Bright, G.; Sithole, B.; Awogbemi, O. Studies on the mechanical and absorption properties of achatina fulica snail and eggshells reinforced composite materials. Compos. Struct. 2020, 239, 112043. [Google Scholar] [CrossRef]
- Gbadeyan, O.J.; Adali, S.; Bright, G.; Sithole, B.; Onwubu, S. Optimization of Milling Procedures for Synthesizing Nano-CaCO3 from Achatina fulica Shell through Mechanochemical Techniques. J. Nanomater. 2020, 2020, 4370172. [Google Scholar] [CrossRef]
- Gbadeyan, O.J.; Adali, S.; Bright, G.; Sithole, B.; Lekha, P. Mechanical, microstructure, and dynamic mechanical analysis of nano-shell and plant fiber hybrid biocomposite. J. Compos. Mater. 2021, 55, 3345–3358. [Google Scholar] [CrossRef]
- Onwubu, S.C.; Mdluli, P.S.; Singh, S.; Nyembe, S.; Thakur, R. Corrigendum; An In Situ Evaluation of the Protective Effect of Nano Eggshell/Titanium Dioxide against Erosive Acids. J. Int. J. Dent. 2019, 2019, 7209168. [Google Scholar] [CrossRef] [PubMed]
- Gbadeyan, O.J.; Adali, S.; Bright, G.; Sithole, B. The investigation of reinforcement properties of nano-CaCO3 synthesized from Achatina fulica snail shell through mechanochemical methods on epoxy nanocomposites. Nanocomposites 2021, 1–11, just-accepted. [Google Scholar] [CrossRef]
- George, M.; Kochimoolayil, G.E.; Jayadas Narakathra, H. Mechanical and thermal properties of modified kaolin clay/unsaturated polyester nanocomposites. J. Appl. Polym. Sci. 2016, 133, 43245. [Google Scholar] [CrossRef]
- Olusanya, J.; Kanny, K.; Singh, S. Bulk cure study of nanoclay filled epoxy glass fiber reinforced composite material. J. Polym. Eng. 2017, 37, 247–259. [Google Scholar] [CrossRef]
- Weng, Z.; Wang, J.; Senthil, T.; Wu, L. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater. Des. 2016, 102, 276–283. [Google Scholar] [CrossRef]
- Gbadeyan, O.J.; Mohan, T.P.; Kanny, K. Processing and characterization of 3D-printed nanoclay/acrylonitrile butadiene styrene (abs) nanocomposite gear. Int. J. Adv. Manuf. Technol. 2020, 109, 619–627. [Google Scholar] [CrossRef]
- Borkar, S.P.; Kumar, V.S.; Mantha, S.S. Effect of Silica and Calcium Carbonate Fillers on the Properties of Woven Glass Fibre Composites. 2007, 251–253. Available online: https://nopr.niscair.res.in/handle/123456789/350 (accessed on 10 October 2021).
- EL-kashif, E.F.; Esmail, S.A.; Elkady, O.A.; Azzam, B.S.; Khattab, A.A. Influence of carbon nanotubes on the properties of friction composite materials. J. Compos. Mater. 2020, 54, 2101–2111. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Sakhuja, R.; Huang, L.; Gyanda, R.; Wang, L.; Jackson, D.C.; Ciaramitaro, D.A.; Bedford, C.D.; Duran, R.S. Effect of filler loading on the mechanical properties of crosslinked 1, 2, 3-triazole polymers. J. Appl. Polym. Sci. 2010, 118, 121–127. [Google Scholar] [CrossRef]
- Ashok, B.; Naresh, S.; Reddy, K.O.; Madhukar, K.; Cai, J.; Zhang, L.; Rajulu, A.V. Tensile and thermal properties of poly (lactic acid)/eggshell powder composite films. Int. J. Polym. Anal. Charact. 2014, 19, 245–255. [Google Scholar] [CrossRef]
- Sethuraman, B.; Subramani, S.P.; Palaniappan, S.K.; Mylsamy, B.; Aruchamy, K. Experimental investigation on dynamic mechanical and thermal characteristics of Coccinia indica fiber reinforced polyester composites. J. Eng. Fibers Fabr. 2020, 15, 1558925020905831. [Google Scholar] [CrossRef] [Green Version]
Snail shell nanoparticles (SS) | Elemental composition | C | O | Ca | _ | _ | _ |
Wt.% | 36.71 | 22.25 | 40.44 | _ | _ | _ | |
Montmorillonite (M) | Elemental composition | O | C | Ca | Al | Te | Nb |
Wt.% | 46.79 | 25.18 | 11.48 | 12.38 | 2.74 | 3.18 | |
Kaolinite (K) | Elemental composition | O | Si | Al | Mg | Sr | Na |
Wt.% | 48.05 | 30.43 | 9.23 | 2.76 | 7.69 | 1.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbadeyan, O.J.; Adali, S.; Bright, G.; Sithole, B. Comparative Reinforcement Effect of Achatina fulica Snail Shell Nanoparticles, Montmorillonite, and Kaolinite Nanoclay on the Mechanical and Physical Properties of Greenpoxy Biocomposite. Polymers 2022, 14, 365. https://doi.org/10.3390/polym14030365
Gbadeyan OJ, Adali S, Bright G, Sithole B. Comparative Reinforcement Effect of Achatina fulica Snail Shell Nanoparticles, Montmorillonite, and Kaolinite Nanoclay on the Mechanical and Physical Properties of Greenpoxy Biocomposite. Polymers. 2022; 14(3):365. https://doi.org/10.3390/polym14030365
Chicago/Turabian StyleGbadeyan, Oluwatoyin Joseph, Sarp Adali, Glen Bright, and Bruce Sithole. 2022. "Comparative Reinforcement Effect of Achatina fulica Snail Shell Nanoparticles, Montmorillonite, and Kaolinite Nanoclay on the Mechanical and Physical Properties of Greenpoxy Biocomposite" Polymers 14, no. 3: 365. https://doi.org/10.3390/polym14030365
APA StyleGbadeyan, O. J., Adali, S., Bright, G., & Sithole, B. (2022). Comparative Reinforcement Effect of Achatina fulica Snail Shell Nanoparticles, Montmorillonite, and Kaolinite Nanoclay on the Mechanical and Physical Properties of Greenpoxy Biocomposite. Polymers, 14(3), 365. https://doi.org/10.3390/polym14030365