Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
2.2.1. Phase Solubility Study
2.2.2. Preparation of Binary Inclusion Complexes
2.2.3. Preparation of Ternary Complexes by Kneading Method
2.2.4. Solubility Study
2.2.5. In Vitro Dissolution Studies
2.2.6. Scanning Electron Microscopy (SEM)
2.2.7. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.8. Differential Scanning Calorimetry (DSC)
2.2.9. Powder X-ray Diffraction Study (XRD)
2.3. Statistical Analysis
3. Results and Discussion
3.1. Phase Solubility Study
3.2. Solubility Study of Ternary Complexes
3.3. In Vitro Dissolution Studies
3.4. Scanning Electron Microscopy (SEM)
3.5. Fourier-Transform Infrared Spectroscopy (FTIR)
3.6. Differential Scanning Calorimetry (DSC)
3.7. X-ray Diffractometry (XRD)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnaiah, Y.S. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J. Bioequiv. Bioavailab. 2010, 2, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sahoo, S.K.; Padhee, K.; Kochar, P.; Satapathy, A.; Pathak, N. Review on solubility enhancement techniques for hydrophobic drugs. Pharm. Glob. 2011, 3, 1–7. [Google Scholar]
- Rong, W.T.; Lu, Y.P.; Tao, Q.; Guo, M.; Lu, Y.; Ren, Y. Hydroxypropyl-sulfobutyl-beta-cyclodextrin improves the oral bioavailability of edaravonebymodulating drug e ux pump of enterocytes. J. Pharm. Sci. 2014, 103, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 5, 195727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crupi, V.; Majolino, D.; Mele, A.; Rossi, B.; Trotta, F.; Venuti, V. Modelling the interplay between covalent and physical interactions in cyclodextrin-based hydrogel: Effect of water confinement. Soft Matter. 2013, 9, 6457–6464. [Google Scholar] [CrossRef]
- Ferrati, S.; Nicolov, E.; Bansal, S.; Hosali, S.; Landis, M.; Grattoni, A. Docetaxel/2-hydroxypropyl-cyclodextrin inclusion complex increases docetaxel solubility and release from a nanochannel drug delivery system. Curr. Drug Targets. 2015, 16, 1645–1649. [Google Scholar] [CrossRef]
- Loftsson, T.; Friðriksdóttir, H. The effect of water-soluble polymers on the aqueous solubility and complexing abilities of β-cyclodextrin. Int. J. Pharm. 1998, 163, 115–121. [Google Scholar] [CrossRef]
- Tsai, Y.; Tsai, H.H.; Wu, C.P.; Tsai, F.J. Preparation, characterisation and activity of the inclusion complex of paeonol with β-cyclodextrin. Food Chem. 2010, 120, 837–841. [Google Scholar] [CrossRef]
- Del Vall, E.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Rosas, M.D.; Piqueras, C.M.; Piva, G.K.; Ramírez-Rigo, M.V.; Cardozo Filho, L.; Bucalá, V. Simultaneous formation of inclusion complex and microparticles containing Albendazole and β-Cyclodextrin by supercritical antisolvent co-precipitation. J. CO2 Util. 2021, 47, 101–505. [Google Scholar] [CrossRef]
- Garnero, C.; Zoppi, A.; Genovese, D.; Longhi, M. Studies on trimethoprim: Hydroxypropyl-β-cyclodextrin: Aggregate and complex formation. Carbohydr. Res. 2010, 34, 2550–2556. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Pore, Y.; Dhawale, S.; Burade, K.; Kuchekar, B. Physicochemical characterization of spray dried ternary micro-complexes of cefuroxime axetil with hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2013, 1, 391–401. [Google Scholar] [CrossRef]
- Mura, P.; Faucci, M.T.; Bettinetti, G.P. The influence of polyvinylpyrrolidone on naproxen complexation with hydroxypropyl-cyclodextrin. Eur. J. Pharm. Sci. 2001, 13, 187–194. [Google Scholar] [CrossRef]
- Dandawate, P.R.; Vyas, A.; Ahmad, A.; Banerjee, S.; Deshpande, J.; Swamy, K.V.; Sarkar, F.H. Inclusion complex of novel curcumin analogue CDF and -cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm. Res. 2012, 29, 1775–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendran, S.; Sivakumar, M.; Subadevi, R.; Wu, N.L.; Lee, J.Y. Electrochemical investigations on the effect of dispersoid in PVA based solid polymer electrolytes. J. Appl. Polym. Sci. 2007, 103, 3950–3956. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, C.P.; Tanwar, Y.S. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J. Chil. Chem. Soc. 2013, 58, 1553–1557. [Google Scholar] [CrossRef] [Green Version]
- Hussaina, A.; Smith, G.; Karrar, A.K.; Bukhari, N.I.; Nicholas, I.P.; Irina, E. Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients. Eur. J. Pharm. 2018, 123, 395–403. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Fast dissolving oral drug delivery system based on electrospun nanofibrous webs of cyclodextrin/ibuprofen inclusion complex nanofibers. Mol. Pharm. 2019, 16, 4387–4398. [Google Scholar] [CrossRef]
- Pal, A.; Roy, S.; Kumar, A.; Mahmood, S.; Khodapanah, N.; Thomas, S.; Agatemor, C.; Ghosal, K. Physicochemical Characterization, Molecular Docking, and In Vitro Dissolution of Glimepiride–Captisol Inclusion Complexes. ACS Omega 2020, 5, 19968–19977. [Google Scholar] [CrossRef]
- Belica-Pacha, S.; Miłowska, K.; Ionov, M.; Bryszewska, M.; Buczkowski, A.; Budryn, G.; Oracz, J.; Zaczyńska, D.; Wróblewska, A.; Urbaniak, P.; et al. The impact of β-cyclodextrin on biological and chemical properties of mianserin hydrochloride in aqueous solution. J. Mol. Liq. 2020, 314, 113589. [Google Scholar] [CrossRef]
- Gao, S.; Jiang, J.; Li, X.; Ye, F.; Fu, Y.; Zhao, L. Electrospun Polymer-Free Nanofibers Incorporating Hydroxypropyl beta cyclodextrin/Difenoconazole via Supramolecular Assembly for Antifungal Activity. J. Agric. Food Chem. 2021, 69, 5871–5881. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, X.; Yang, G.; Feng, W.; Zong, L.; Zhao, L.; Ye, F.; Fu, Y. Antibacterial perillaldehyde/hydroxypropyl gamma cyclodextrin inclusion complex electrospun polymer-free nanofiber: Improved water solubility, thermostability, and antioxidant activity. Ind. Crops Prod. 2022, 176, 114300. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Gong, T.; Sun, X.; Zhang, Z.R. In vitro and in vivo investigation of dexibuprofen derivatives for CNS delivery. Acta Pharmacol. Sin. 2012, 33, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Eller, J.; Ede, A.; Schaberg, T.; Niederman, M.S.; Mauch, H.; Lode, H. Infective exacerbations of chronic bronchitis: Relation between bacteriologic etiology and lung function. Chest 1998, 113, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Settembre, R. Safety and efficacy of an add-on therapy with curcumin phytosome and piperine and/or lipoic acid in subjects with a diagnosis of peripheral neuropathy treated with dexibuprofen. J. Pain Res. 2013, 6, 497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Houssieny, B.M.; El-Dein, E.Z.; El-Messiry, H.M. Enhancement of solubility of dexibuprofen applying mixed hydrotropic solubilization technique. Drug Discov. Ther. 2014, 8, 178–184. [Google Scholar] [CrossRef]
- Naseem, U.; Shahzeb, K.; Shaimaa, A.; Thirumala, G.; Hani, S.F.; de Marcel, M.; Muhammad, S.; Muhammad, U.M.; Muhammad, S.; Muhammad, K. Dexibuprofen nanocrystals with improved therapeutic performance: Fabrication, characterization, in silico modeling, and in vivo evaluation. Int. J. Nanomed. 2018, 13, 1677–1692. [Google Scholar]
- Munir, R.; Mashood, U.; Asgher, S.; Khan, I.U.; Irfan, M.; Inam, S.; Islam, N.; Ijaz, N.; Hassan, S.F.; Anwar, S.; et al. Solubility and dissolution enhancement of dexibuprofen by inclusion complexation with cyclodextrin. Lat. Am. J. Pharm. 2022, 41, 235–243. [Google Scholar]
- Rajesh, K.; Nair, R.; Rajalakshmi, R.; Latha, P. Inclusion Complex of Dexibuprofen and It’s In Vitro and In Vivo Evaluation. 2011. Available online: https://ijbonline.com/ (accessed on 29 December 2021).
- Ghareeb, M.M.; Abdulrasool, A.A.; Hussein, A.A.; Noordin, M.I. Kneading technique for preparation of binary solid dispersion of meloxicam with poloxamer 188. AAPS Pharm. Sci. Technol. 2009, 10, 1206–1215. [Google Scholar] [CrossRef]
- Kono, H.; Onishi, K.; Nakamura, T. Characterization and bisphenolA adsorption capacity of -cyclodextrin– carboxymethylcellulose-based hydrogels. Carbohydr. Polym. 2013, 98, 784–792. [Google Scholar] [CrossRef]
- Ribeiro, L.; Loftsson, T.; Ferreira, D.; Veiga, F. Investigation and physicochemical characterization of vinpocetine-sulfobutyl ether-cyclodextrin binary and ternary complexes. Chem. Pharm. Bull. 2003, 51, 914–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, G.M.; Wazir, F.; Zhu, J. Ibuprofen-cyclodextrin inclusion complexes: Evaluation of different complexation methods. J. Med. Sci. 2001, 1, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T.; Connors, K.A. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 1961, 4, 117–212. [Google Scholar]
- Pokharkar, V.; Khanna, A.; Venkatpurwar, V.; Dhar, S.; Mandpe, L. Ternary complexation of carvedilol, β-cyclodextrin and citric acid for mouth-dissolving tablet formulation. Acta Pharm. 2009, 59, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Bramhane, D.M.; Saindane, N.S.; Vavia, P.R. Inclusion complexation of weakly acidic NSAID with β-cyclodextrin: Selection of arginine, an amino acid, as a novel ternary component. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 453–460. [Google Scholar] [CrossRef]
- Jadhav, P.; Petkar, B.; Pore, Y.; Kulkarni, A.; Burade, K. Physicochemical and molecular modeling studies of cefixime–l-arginine–cyclodextrin ternary inclusion compounds. Carbohydr. Polym. 2013, 98, 1317–1325. [Google Scholar] [CrossRef]
- Kreidel, R.N.; Duque, M.D.; Serra, C.H.; Velasco, M.V.; Baby, A.R.; Kaneko, T.M.; Consiglieri, V.O. Dissolution enhancement and characterization of nimodipine solid dispersions with poloxamer 407 or PEG 6000. J. Dispers. Sci. Technol. 2012, 33, 1354–1359. [Google Scholar] [CrossRef]
- Gururaj, A.E.; Belakavadi, M.; Venkatesh, D.A.; Marmé, D.; Salimath, B.P. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem. Biophys. Res. Commun. 2002, 297, 934–942. [Google Scholar] [CrossRef]
- Chutimaworapan, S.; Ritthidej, G.C.; Yonemochi, E.; Oguchi, T.; Yamamoto, K. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev. Ind. Pharm. 2000, 26, 1141–1150. [Google Scholar] [CrossRef]
- Prasanthi, N.L.; Manikiran, S.S.; Sowmya, S.; Anusha, B.; Rao, N.R. Effect of poloxamer 188 on in vitro dissolution properties of antipsychotic solid dispersions. IJPSRR 2011, 10, 15–19. [Google Scholar]
- Anwer, M.; Iqbal, M.; Ahmed, M.M.; Aldawsari, M.F.; Ansari, M.N.; Ezzeldin, E.; Khalil, N.Y.; Ali, R. Improving the Solubilization and Bioavailability of Arbidol Hydrochloride by the Preparation of Binary and Ternary β-Cyclodextrin Complexes with Poloxamer 188. Pharmaceuticals 2021, 14, 411. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.; Syed, H.K.; Asghar, S.; Irfan, M.; Almalki, W.H.; Menshawi, S.A.; Khan, I.U.; Shah, P.A.; Khalid, I.; Ahmad, J.; et al. Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal. Polymers 2020, 2, 1564. [Google Scholar] [CrossRef] [PubMed]
- Sapte, S.; Pore, Y. Inclusion complexes of cefuroxime axetil with β-cyclodextrin: Physicochemical characterization, molecular modeling and effect of l-arginine on complexation. J. Pharm. Anal. 2016, 6, 300–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Hussain, A.; Shakeel, F.; Alshehri, A. Stimulatory effects of Soluplus® on flufenamic acid β-cyclodextrin supramolecular complex: Physicochemical characterization and pre-clinical anti-inflammatory assessment. AAPS PharmSciTech 2020, 21, 145. [Google Scholar] [CrossRef]
- Kurniawansyah, I.S.; Gozali, D.; Sopyan, I.; Iqbal, M.; Subarnas, A. Physical study of chloramphenicol in situ gel with base hydroxypropyl methylcellulose and poloxamer 188. J. Pharm. Bioallied Sci. 2019, 11, S547. [Google Scholar] [CrossRef]
- He, C.; Kim, S.W.; Lee, D.S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release 2008, 127, 189–207. [Google Scholar] [CrossRef]
- Kolašinac, N.; Kachrimanis, K.; Homšek, I.; Grujić, B.; Đurić, Z.; Ibrić, S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. Int. J. Pharm. 2012, 436, 161–170. [Google Scholar] [CrossRef]
- Khan, J.; Bashir, S.; Khan, M.A.; Mohammad, M.A.; Isreb, M. Fabrication and characterization of dexibuprofen nanocrystals using microchannel fluidic rector. Drug Des. Devel. Ther. 2018, 12, 2617. [Google Scholar] [CrossRef] [Green Version]
- Venuti, V.; Crupi, V.; Fazio, B.; Majolino, D.; Acri, G.; Testagrossa, B.; Stancanelli, R.; De Gaetano, F.; Gagliardi, A.; Paolino, D.; et al. Physicochemical characterization and antioxidant activity evaluation of idebenone/hydroxypropyl-β-cyclodextrin inclusion complex. Biomolecules 2019, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Rani, K.C.; Winantari, A.N.; Rohman, M.H.; Stephanie, S. Formulation and characterization of the atenolol-β-cyclodextrin-poloxamer 188 ternary inclusion complex with solvent evaporation method. Int. J. Pharm. Res. 2020, 11, 513–522. [Google Scholar]
- Prabhu, A.A.; Subramanian, V.K.; Rajendiran, N. Excimer formation in inclusion complexes of β-cyclodextrin with salbutamol, sotalol and atenolol: Spectral and molecular modeling studies. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2012, 96, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Subuddhi, U. Cyclodextrin mediated controlled release of naproxen from pH-sensitive chitosan/poly (vinyl alcohol) hydrogels for colon targeted delivery. Ind. Eng. Chem. Res. 2013, 52, 14192–14200. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, B.; Liu, H. Characterization of hydroxypropyl-β-cyclodextrins with different substitution patterns via FTIR, GC–MS, and TG–DTA. Carbohydr. Polym. 2015, 118, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, G.; Yuan, X.; Cai, Z.; Rong, R. Preparation and in vitro evaluation of solid dispersions of total flavones of Hippophae rhamnoides L. Aaps Pharmscitech 2009, 10, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Ghanghas, P.; Jain, S.; Rana, C.; Sanyal, S.N. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. Biomed. Pharmacother. 2016, 78, 239–247. [Google Scholar] [CrossRef]
- Cappello, B.; Carmignani, C.; Iervolino, M.; La Rotonda, M.I.; Saettone, M.F. Solubilization of tropicamide by hydroxypropyl-β-cyclodextrin and water-soluble polymers: In vitro/in vivo studies. Int. J. Pharm. 2001, 213, 75–81. [Google Scholar] [CrossRef]
- Ansari, M.T.; Hussain, A.; Nadeem, S.; Majeed, H.; Saeed-Ul-Hassan, S.; Tariq, I.; Mahmood, Q.; Khan, A.K.; Murtaza, G. Preparation and characterization of solid dispersions of artemether by freeze-dried method. Biomed. Res. Int. 2015, 2015, 109563. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef]
- El-Badry, M.; Hassan, M.A.; Ibrahim, M.A.; Elsaghir, H. Performance of poloxamer 407 as hydrophilic carrier on the binary mixtures with nimesulide. Farmacia 2013, 1, 1137–1150. [Google Scholar]
- Bunjes, H.; Koch, M.H.; Westesen, K. Effect of particle size on colloidal solid triglycerides. Langmuir 2000, 16, 5234–5241. [Google Scholar] [CrossRef]
Concentration of HPβCD (mM/L) | ΔG0 (kcal mol−1) |
---|---|
5 | −0.09 |
10 | −0.12 |
15 | −0.13 |
20 | −0.15 |
Inclusion Complexes | Stability Constant (M−1) | Complexation Efficiency |
---|---|---|
DEX:HPβCD | 928.03 ± 0.1 | 0.65 |
DEX: HPβCD:PXM-188(1:4:2.5%) | 1751.23 ± 0.2 | 0.12 |
DEX: HPβCD:PXM-188(1:4:05%) | 3569.19 ± 1.1 | 0.49 |
DEX: HPβCD:PXM-188(1:4:10%) | 4698.63 ± 0.5 | 2.5 |
DEX: HPβCD:PXM-188(1:4:20%) | 5470.49 ± 0.4 | 3.29 |
DEX: HPβCD:PXM407(1:4:2.5%) | 1573.20 ± 1.0 | 1.1 |
DEX: HPβCD:PXM-407(1:4:05%) | 2610.45 ± 0.6 | 1.83 |
DEX: HPβCD:PXM-407(1:4:10%) | 3854.24 ± 1.0 | 2.7 |
DEX: HPβCD:PXM-407(1:4:20%) | 4825.60 ± 1.5 | 3.38 |
DEX:HPβCD: Hydrophilic Polymers (w/w) | Solubility mg/mL |
---|---|
DEX | 0.062 ± 0.01 |
DEX:HPCD1:1 (PT) | 05.33 ± 0.63 * |
DEX:HP-β-CD1:2 (PT) | 07.83 ± 0.20 * |
DEX:HP-β-CD1:4 (PT) | 10.37 ± 0.38 * |
DEX:HP-β-CD1:8 (PT) | 11.55 ± 1.03 * |
DEX:HP-β-CD 1:1 (KM) | 6.98 ± 0.050 * |
DEX:HP-β-CD 1:2 (KM) | 10.90 ± 0.08 * |
DEX:HP-β-CD 1:4 (KM) | 17.13 ± 0.11 * |
DEX:HP-β-CD 1:8 (KM) | 18.23 ± 0.73 * |
DEX:HP-β-CD1:1 (SE) | 1.65 ± 0.150 * |
DEX:HP-β-CD1:2 (SE) | 1.89 ± 0.040 * |
DEX:HP-β-CD1:4 (SE) | 3.94 ± 0.000 * |
DEX:HP-β-CD1:8 (SE) | 5.04 ± 0.050 * |
DEX: HPβCD:PXM-188 (1:4:2.5%) | 24.83 ± 0.011 *,α |
DEX: HPβCD:PXM-188 (1:4:5,0%) | 30.86 ± 0.011 *,α |
DEX: HPβCD:PXM-188 (1:4:10%) | 40.54 ± 0.011 *,α |
DEX: HPβCD:PXM-188 (1:4:20%) | 42.66 ± 0.011 *,α |
DEX: HPβCD:PXM-407 (1:4:2.5%) | 19.50 ± 0.011 *,α |
DEX: HPβCD:PXM-407 (1:4:5.0%) | 20.48 ± 0.011 *,α |
DEX: HPβCD:PXM-407 (1:4:10%) | 33.34 ± 0.011 *,α |
DEX: HPβCD:PXM-407 (1:4:20%) | 34.88 ± 0.011 *,α |
DEX:HPβCD:POLYMER | DE60 (%) |
---|---|
DEX | 38.76 ± 0.14 |
DEX:HPβCD1:1(PT) | 62.76 ± 0.17 * |
DEX:HPβCD1:2(PT) | 62.90 ± 0.13 * |
DEX:HPβCD1:4(PT) | 62.82 ± 0.12 * |
DEX:HPβCD1:1(KN) | 63.21 ± 0.49 * |
DEX:HPβCD1:2(KN) | 63.56 ± 0.46 * |
DEX:HPβCD1:4(KN) | 62.98 ± 0.73 * |
DEX:HPβCD1:1(SE) | 63.93 ± 0.03 * |
DEX:HPβCD1:2(SE) | 63.35 ± 0.17 * |
DEX:HPβCD1:4(SE) | 63.70 ± 0.77 * |
1: 4 (2.50% PMX-188) | 65.71 ± 0.12 *,α |
1: 4 (05.0% PMX-188) | 66.01 ± 0.17 *,α |
1: 4 (10.0% PMX-188) | 65.85 ± 0.70 *,α |
1: 4 (20.0% PMX-188) | 66.18 ± 0.19 *,α |
1: 4 (2.50% PMX-407) | 65.27 ± 0.02 *,α |
1: 4 (05.0% PMX-407) | 65.80 ± 0.03 *,α |
1: 4 (10.0% PMX-407) | 65.52 ± 0.03 *,α |
1: 4 (20.0% PMX-407) | 64.83 ± 0.01 *,α |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, R.; Hadi, A.; Khan, S.-u.-D.; Asghar, S.; Irfan, M.; Khan, I.U.; Hameed, M.; Inam, S.; Islam, N.; Hassan, S.F.; et al. Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization. Polymers 2022, 14, 579. https://doi.org/10.3390/polym14030579
Munir R, Hadi A, Khan S-u-D, Asghar S, Irfan M, Khan IU, Hameed M, Inam S, Islam N, Hassan SF, et al. Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization. Polymers. 2022; 14(3):579. https://doi.org/10.3390/polym14030579
Chicago/Turabian StyleMunir, Rabia, Abdul Hadi, Salah-ud-Din Khan, Sajid Asghar, Muhammad Irfan, Ikram Ullah Khan, Misbah Hameed, Sana Inam, Nayyer Islam, Shahzadi Filza Hassan, and et al. 2022. "Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization" Polymers 14, no. 3: 579. https://doi.org/10.3390/polym14030579
APA StyleMunir, R., Hadi, A., Khan, S. -u. -D., Asghar, S., Irfan, M., Khan, I. U., Hameed, M., Inam, S., Islam, N., Hassan, S. F., Ishtiaq, M., Akhtar Shah, P., Iqbal, M. S., Khalid Syed, H., Khames, A., & A. S. Abourehab, M. (2022). Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization. Polymers, 14(3), 579. https://doi.org/10.3390/polym14030579