Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications
Abstract
:1. Introduction
2. Fundamentals of MIPs
2.1. Essential Elements of Molecular Imprinting
2.2. Molecular Imprinting in Drug Delivery
3. MIP Challenges in Transdermal Delivery
4. Basic Characteristics of Hydrogels
5. Mechanism of Controlled Release within Molecular Imprinted Hydrogels
5.1. Stimuli-Responsive MIP Hydrogels
5.1.1. Thermo-Responsive Hydrogels
5.1.2. pH-Responsive Hydrogels
5.1.3. Dual/Multiple-Responsive MIPs
5.1.4. Other-Responsive Hydrogels
6. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Suedee, R. The Use of Molecularly Imprinted Polymers for Dermal Drug Delivery. Pharm. Anal. Acta 2013, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, M.V. Adsorption properties and structure of silica gel. Zhurnal Fiz. Khimii 1931, 2, 799–805. [Google Scholar]
- Wulff, G. REVIEWS Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates—A Way towards Artificial Antibodies. Angew. Chem. Int. Ed. 1995, 34, 1812–1832. [Google Scholar] [CrossRef]
- Mosbach, K. Molecular imprinting. Trends Biochem. Sci. 1994, 19, 9–14. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Rodriguez, M.E.; Villar, P.; Vulfson, E.N. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol. 1995. Available online: https://pubs.acs.org/doi/pdf/10.1021/ja00132a010 (accessed on 24 January 2022).
- Chen, L.; Xu, S.; Li, J. Recent advances in Molecular Imprinting Technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Yan, H.; Row, K.H. Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. Int. J. Mol. Sci. 2006, 7, 155–178. [Google Scholar] [CrossRef] [Green Version]
- Caro, E.; Marcé, R.M.; Borrull, F.; Cormack, P.A.G.; Sherrington, D.C. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. TrAC—Trends Anal. Chem. 2006, 25, 143–154. [Google Scholar] [CrossRef]
- Ramström, O.; Ye, L.; Gustavsson, P.-E. Chiral Recognition by Molecularly Imprinted Polymers in Aqueous Media. Chromatographia 1998, 48, 197–202. [Google Scholar] [CrossRef]
- Martín-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC—Trends Anal. Chem. 2013, 45, 169–181. [Google Scholar] [CrossRef]
- Lai, C.; Wang, M.-M.; Zeng, G.-M.; Liu, Y.-G.; Huang, D.-L.; Zhang, C.; Wang, R.-Z.; Xu, P.; Cheng, M.; Huang, C.; et al. Synthesis of surface molecular imprinted TiO 2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl. Surf. Sci. 2016, 390, 368–376. [Google Scholar] [CrossRef]
- Vasapollo, G.; del Sole, R.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, J.; Nicholls, I.A.; Karube, I.; Mosbach, K. Carbon-Carbon Bond Formation Using Substrate Selective Catalytic Polymers Prepared by Molecular Imprinting: An Artificial Class II Aldolase. J. Org. Chem. 1996, 61, 5414–5417. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Chianella, I.; Larcombe, L.; Piletsky, S.A.; Noble, J.; Porter, R.; Horgan, A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 2011, 40, 1547–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Sellergren, B.; Allender, C.J. Molecularly imprinted polymers: A bridge to advanced drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1733–1741. [Google Scholar] [CrossRef]
- Gladis, J.M.; Rao, T.P. Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration/separation of traces of uranium. Microchim. Acta 2004, 146, 251–258. [Google Scholar] [CrossRef]
- Sellergren, B.; Wieschemeyer, J.; Boos, K.S.; Seidel, D. Imprinted polymers for selective adsorption of cholesterol from gastrointestinal fluids. Chem. Mater. 1998, 10, 4037–4046. [Google Scholar] [CrossRef]
- Huval, C.C.; Chen, X.; Holmes-Farley, S.R.; Mandeville, W.H.; Polomoscanik, S.C.; Sacchiero, R.J.; Dhal, P.K. Molecularly Imprinted Bile Acid Sequestrants: Synthesis and Biological Studies. MRS Proc. 2003, 787, 63. [Google Scholar] [CrossRef]
- Huval, C.C.; Bailey, M.J.; Braunlin, W.H.; Holmes-Farley, S.R.; Mandeville, W.H.; Petersen, J.S.; Polomoscanik, S.C.; Sacchiro, R.J.; Chen, A.X.; Dhal, P.K. Novel cholesterol lowering polymeric drugs obtained by molecular imprinting. Macromolecules 2001, 34, 1548–1550. [Google Scholar] [CrossRef]
- Hashemi-Moghaddam, H.; Zavareh, S.; Karimpour, S.; Madanchi, H. Evaluation of molecularly imprinted polymer based on HER2 epitope for targeted drug delivery in ovarian cancer mouse model. React. Funct. Polym. 2017, 121, 82–90. [Google Scholar] [CrossRef]
- Mohebali, A.; Abdouss, M.; Mazinani, S.; Zahedi, P. Synthesis and characterization of poly(methacrylic acid)-based molecularly imprinted polymer nanoparticles for controlled release of trinitroglycerin. Polym. Adv. Technol. 2016, 27, 1164–11716. [Google Scholar] [CrossRef]
- Suedee, R.; Bodhibukkana, C.; Tangthong, N.; Amnuaikit, C.; Kaewnopparat, S.; Srichana, T. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. J. Control. Release 2008, 129, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, P.; Ghaedi, M. Water compatible molecularly imprinted polymer for controlled release of riboflavin as drug delivery system. Eur. Polym. J. 2019, 118, 614–618. [Google Scholar] [CrossRef]
- Hemmati, K.; Masoumi, A.; Ghaemy, M. Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release. Carbohydr. Polym. 2016, 136, 630–640. [Google Scholar] [CrossRef]
- Parisi, O.I.; Ruffo, M.; Scrivano, L.; Malivindi, R.; Vassallo, A.; Puoci, F. Smart bandage based on molecularly imprinted polymers (Mips) for diclofenac controlled release. Pharmaceuticals 2018, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Ruela, A.L.M.; Figueiredo, E.C.; Pereira, G.R. Molecularly imprinted polymers as nicotine transdermal delivery systems. Chem. Eng. J. 2014, 248, 1–8. [Google Scholar] [CrossRef]
- Ruela, A.L.M.; de Figueiredo, E.C.; Carvalho, F.C.; de Araújo, M.B.; Pereira, G.R. Adsorption and release of nicotine from imprinted particles synthesised by precipitation polymerisation: Optimising transdermal formulations. Eur. Polym. J. 2018, 100, 67–76. [Google Scholar] [CrossRef]
- He, S.; Zhang, L.; Bai, S.; Yang, H.; Cui, Z.; Zhang, X.; Li, Y. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. Eur. Polym. J. 2021, 143, 110179. [Google Scholar] [CrossRef]
- Ulbricht, M. Membrane separations using molecularly imprinted polymers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 804, 113–125. [Google Scholar] [CrossRef]
- Sabbagh, F.; Kim, B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2022, 341, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, S.T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 2018, 128, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P. Molecularly imprinted polymers based drug delivery devices: A way to application in modern pharmacotherapy. A review. Mater. Sci. Eng. C 2017, 76, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Gato, K.; Fujii, M.Y.; Hisada, H.; Carriere, J.; Koide, T.; Fukami, T. Molecular state evaluation of active pharmaceutical ingredients in adhesive patches for transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2020, 58, 101800. [Google Scholar] [CrossRef]
- Jeong, W.Y.; Kwon, M.; Choi, H.E.; Kim, K.S. Recent advances in transdermal drug delivery systems: A review. Biomater. Res. 2021, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bodhibukkana, C.; Srichana, T.; Kaewnopparat, S.; Tangthong, N.; Bouking, P.; Martin, G.P.; Suedee, R. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J. Control. Release 2006, 113, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.; Saha, J.; Pass, S.; Byrne, M.E. Transport and structural analysis of molecular imprinted hydrogels for controlled drug delivery. Eur. J. Pharm. Biopharm. 2008, 69, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xu, Y.; Li, Z.; Yan, C.; Mei, K.; Ding, M.; Ding, S.; Guan, P.; Qian, L.; Du, C.; et al. Molecularly Imprinted Materials for Selective Biological Recognition. Macromol. Rapid Commun. 2019, 40, e1900096. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. [CrossRef]
- Peppas, N.A.; Korsmeyer, R.W. Dynamically Swelling Hydrogel in Controlled Release Application Chapter 6 Dynamically Swelling Hydrogels in Controlled Release Applications. 2016. Available online: https://www.researchgate.net/publication/279542219 (accessed on 24 January 2022).
- Kim, M.-K.; Chung, S.-J.; Lee, M.-H.; Cho, A.-R.; Shim, C.-K. Targeted and sustained delivery of hydrocortisone to normal and stratum corneum-removed skin without enhanced skin absorption using a liposome gel. J. Control. Release 1997, 46, 243–251. [Google Scholar] [CrossRef]
- Zhang, I.; Shung, K.K.; Edwards, D.A. Hydrogels with Enhanced Mass Transfer for Transdermal Drug Delivery. J. Pharm. Sci. 1996, 85, 1312–1316. [Google Scholar] [CrossRef] [PubMed]
- Tahara, K.; Yamamoto, K.; Nishihata, T. Overall mechanism behind matrix sustained release (SR) tablets prepared with hydroxypropyl methylcellulose 2910. J. Control. Release 1995, 35, 59–66. [Google Scholar] [CrossRef]
- Peppas, N.A. Preparation methods and structure of hydrogels. In Hydrogels in Medicine and Pharmacy, 1st ed.; Taylor & Francis Group, LLC: Oxforshire, UK, 1986; Volume 1, pp. 1–26. [Google Scholar]
- Byrne, M.E.; Park, K.; Peppas, N.A. Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 146–161. [Google Scholar] [CrossRef]
- Peppas, N.A.; Colombo, P. Analysis of drug release behavior from swellable polymer carriers using the dimensionality index. J. Control. Release 1997, 45, 35–40. [Google Scholar] [CrossRef]
- Zaffaroni, A. Overview and Evolution of Therapeutic Systems. Ann. N. Y. Acad. Sci. 1991, 618, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 2004, 3, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Cramer, M.P.; Saks, S.R. Translating Safety, Efficacy and Compliance into Economic Value for Controlled Release Dosage Forms. PharmacoEconomics 1994, 5, 482–504. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H.; Zheng, X.; Chen, L. Stimuli-responsive molecularly imprinted polymers: Versatile functional materials. J. Mater. Chem. C 2013, 1, 4406–4422. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; González-Chomón, C.; Concheiro, A. Molecularly Imprinted Hydrogels for Affinity-controlled and Stimuli-responsive Drug Delivery. In Smart Materials for Drug Delivery; Alvarez-Lorenzo, C., Concheiro, A., Eds.; RSC Publishing: London, UK, 2013; Chapter 21; pp. 228–260. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; Guney, O.; Oya, T.; Sakai, Y.; Kobayashi, M.; Enoki, T.; Takeoka, Y.; Ishibashi, T.; Kuroda, K.; Tanaka, K.; et al. Polymer gels that memorize elements of molecular conformation. Macromolecules 2000, 33, 8693–8697. [Google Scholar] [CrossRef]
- Ito, K.; Chuang, J.; Alvarez-Lorenzo, C.; Watanabe, T.; Ando, N.; Grosberg, A.Y. Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting: Experiment and theory. Prog. Polym. Sci. 2003, 28, 1489–1515. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Guo, Q.; Ma, Y.; Yang, H.; Li, B. Thermo-responsive hydrogel layers imprinted with RGDS peptide: A system for harvesting cell sheets. Angew. Chem. Int. Ed. 2013, 52, 6907–6911. [Google Scholar] [CrossRef]
- Pan, G.; Guo, Q.; Cao, C.; Yang, H.; Li, B. Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter 2013, 9, 3840–3850. [Google Scholar] [CrossRef]
- Turan, E.; Özçetin, G.; Caykara, T. Dependence of protein recognition of temperature-sensitive imprinted hydrogels on preparation temperature. Macromol. Biosci. 2009, 9, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jia, X.; Wang, Y.; Zhang, M.; Yang, S.; Guo, J. Thermosensitive molecularly imprinted hydrogel cross-linked with N-malely chitosan for the recognition and separation of BSA. J. Sep. Sci. 2014, 37, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; He, X.-W.; Zhang, W.; Li, W.-Y.; Zhang, Y.-K. Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction. Anal. Chem. 2009, 81, 7206–7216. [Google Scholar] [CrossRef]
- Adrus, N.; Ulbricht, M. Molecularly imprinted stimuli-responsive hydrogels for protein recognition. Polymer 2012, 53, 4359–4366. [Google Scholar] [CrossRef]
- Temtem, M.; Pompeu, D.; Barroso, T.; Fernandes, J.; Simões, P.C.; Casimiro, T.; Rego, A.M.B.D.; Aguiar-Ricardo, A. Development and characterization of a thermoresponsive polysulfone membrane using an environmental friendly technology. Green Chem. 2009, 11, 638–645. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, J.; Ling, Q.; Zhou, Q. Synthesis of macroporous thermosensitive hydrogels: A novel method of controlling pore size. Langmuir 2009, 25, 3249–3254. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, T.; Du, Z.; Wei, Z.; Zhang, J. Recognition ability of temperature responsive molecularly imprinted polymer hydrogels. Soft Matter 2011, 7, 1986–1993. [Google Scholar] [CrossRef]
- Reddy, S.M.; Phan, Q.T.; El-Sharif, H.F.; Govada, L.; Stevenson, D.; Chayen, N.E. Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers. Biomacromolecules 2012, 13, 3959–3965. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hua, Z.; Xu, L.; Huang, Y.; Zhao, M.; Li, Y. Protein-responsive imprinted polymers with specific shrinking and rebinding. J. Mol. Recognit. 2008, 21, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Chauhan, N.; Sharma, V. Design of molecular imprinted hydrogels for controlled release of cisplatin: Evaluation of network density of hydrogels. Ind. Eng. Chem. Res. 2011, 50, 13742–13751. [Google Scholar] [CrossRef]
- Tokuyama, H.; Kanazawa, R.; Sakohara, S. Equilibrium and kinetics for temperature swing adsorption of a target metal on molecular imprinted thermosensitive gel adsorbents. Sep. Purif. Technol. 2005, 44, 152–159. [Google Scholar] [CrossRef]
- Wang, X.-L.; Yao, H.-F.; Li, X.-Y.; Wang, X.; Huang, Y.-P.; Liu, Z.-S. PH/temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs) for drug delivery by frontal polymerization. RSC Adv. 2016, 6, 94038–94047. [Google Scholar] [CrossRef]
- An, K.; Kang, H.; Zhang, L.; Guan, L.; Tian, D. Preparation and properties of thermosensitive molecularly imprinted polymer based on konjac glucomannan and its controlled recognition and delivery of 5-fluorouracil. J. Drug Deliv. Sci. Technol. 2020, 60, 101977. [Google Scholar] [CrossRef]
- Suedee, R.; Jantarat, C.; Lindner, W.; Viernstein, H.; Songkro, S.; Srichana, T. Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. J. Control. Release 2010, 142, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Kanekiyo, Y.; Naganawa, R.; Tao, H. pH-Responsive Molecularly Imprinted Polymers. Angew. Chem. 2003, 115, 3122–3124. [Google Scholar] [CrossRef]
- Wang, C.; Javadi, A.; Ghaffari, M.; Gong, S. A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors. Biomaterials 2010, 31, 4944–4951. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qiu, L.; Sheng, Y.; Sun, Y.; Deng, L.; Li, X.; Bradley, M.; Zhang, R. Biodegradable pH-responsive hydrogels for controlled dual-drug release. J. Mater. Chem. B 2018, 6, 510–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.; Wang, B.; Dai, J.; Dai, X.; Hang, H.; Ou, H.; Yan, Y. Selective recognition of 2,4,5-trichlorophenol by temperature responsive and magnetic molecularly imprinted polymers based on halloysite nanotubes. J. Mater. Chem. 2012, 22, 3360–3369. [Google Scholar] [CrossRef]
- Xu, L.; Pan, J.; Dai, J.; Li, X.; Hang, H.; Cao, Z.; Yan, Y. Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. J. Hazard. Mater. 2012, 233–234, 48–56. [Google Scholar] [CrossRef]
- Li, X.; Zhang, B.; Li, W.; Lei, X.; Fan, X.; Tian, L.; Zhang, H.; Zhang, Q. Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosens. Bioelectron. 2014, 51, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, J.; Song, X.; Liu, J.; Lu, H.; Chen, L. Photonic and magnetic dual responsive molecularly imprinted polymers: Preparation, recognition characteristics and properties as a novel sorbent for caffeine in complicated samples. Anal. Methods 2013, 5, 124–133. [Google Scholar] [CrossRef]
- Gao, F.-X.; Ma, X.-T.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Smart surface imprinting polymer nanospheres for selective recognition and separation of glycoprotein. Colloids Surf. A Physicochem. Eng. Asp. 2013, 433, 191–199. [Google Scholar] [CrossRef]
- Fang, L.; Chen, S.; Guo, X.; Zhang, Y.; Zhang, H. Azobenzene-containing molecularly imprinted polymer microspheres with photo- and thermoresponsive template binding properties in pure aqueous media by atom transfer radical polymerization. Langmuir 2012, 28, 9767–9777. [Google Scholar] [CrossRef]
- Hua, Z.; Chen, Z.; Li, Y.; Zhao, M. Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin. Langmuir 2008, 24, 5773–5780. [Google Scholar] [CrossRef]
- Lin, F.; Chen, J.; Lee, M.; Lin, B.; Wang, J. Multi-Responsive Ibuprofen-Imprinted Core-Shell Nanocarriers for Specific Drug Recognition and Controlled Release. ACS Appl. Nano Mater. 2020, 3, 1147–1152. [Google Scholar] [CrossRef]
- Miyata, T. Preparation of smart soft materials using molecular complexes. Polym. J. 2010, 42, 277–289. [Google Scholar] [CrossRef]
- Miyata, T.; Hayashi, T.; Kuriu, Y.; Uragami, T. Responsive behavior of tumor-marker-imprinted hydrogels using macromolecular cross-linkers. J. Mol. Recognit. 2012, 25, 336–343. [Google Scholar] [CrossRef]
Type of Polymer | Template | Responsive Element | Application | Reference |
---|---|---|---|---|
Thermo/Magnetic | 2,4,5-Trichlorophenol | NIPAAm, Fe3O4 | Selective separation and enrichment fields | [74] |
Sulfamethazine | NIPAAm, γ-Fe3O4 | Separation, drug release, protein recognition | [75] | |
BSA | NIPAAm, Fe3O4 | Chromatographic separation, solid-phase extraction, drug delivery. Medical diagnosis and biosensors | [76] | |
Photo/Magnetic | Caffeine | Fe3O4, MPABA | Trace caffeine analysis | [77] |
pH/Thermo | Ovalbumin | NIPAAm, boronic acid | Chemical sensing and biosensing | [78] |
Thermo/Photo | 2,4-D | Azobenzene, NIPAAm | Separation, extraction, assays, drug delivery, and bioanalytical analysis | [79] |
Thermo/Salt | BSA | NIPAAm, NaCl | Solid-phase extraction, sensors, and protein delivery agents | [80] |
Thermo/Salt/Bio-molecule | Lysozyme or Cytochrome 4 | NIPAAm, NaCl, Bio-molecule | Non-protein acetous receptor | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lusina, A.; Cegłowski, M. Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications. Polymers 2022, 14, 640. https://doi.org/10.3390/polym14030640
Lusina A, Cegłowski M. Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications. Polymers. 2022; 14(3):640. https://doi.org/10.3390/polym14030640
Chicago/Turabian StyleLusina, Aleksandra, and Michał Cegłowski. 2022. "Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications" Polymers 14, no. 3: 640. https://doi.org/10.3390/polym14030640
APA StyleLusina, A., & Cegłowski, M. (2022). Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications. Polymers, 14(3), 640. https://doi.org/10.3390/polym14030640