Potential of Using Amazon Natural Fibers to Reinforce Cementitious Composites: A Review
Abstract
:1. Introduction
Advantages and Disadvantages
2. Anatomy of Amazon Natural Lignocellulosic Fibers (NLFs)
Fiber Type | Density (g/cm3) | Diameter (μm) | Microfibrillar Angle (°) | Water Absorption (%) | Crystallinity (%) | Reference |
---|---|---|---|---|---|---|
Açai | 1.4–1.7 | 110–120 | - | - | - | [52] |
Bamboo | 0.60–1.1 | 10–40 | 2–10 | 145 | 57–62 | [57,73,74] |
Curaua | 1.4 | 26–61 | 15 | 360 | 44–66 | [53,59,75,76,77] |
Guaruman | 0.5–1.1 | 40–60 | 7.3–8.2 | - | 60–67 | [55,78] |
Jute | 1.3–1.5 | 60–110 | 8 | 62 | 71 | [79,80,81,82] |
Piassava | 1.4–1.6 | 200 | 16–35 | 34–108 | 25–29 | [56,59,83,84,85,86] |
Sisal | 1.3–1.5 | 100–300 | 20 | 110–239 | 57 | [53,63,79,83,87] |
3. Interface between Fiber-Matrix
4. Durability, Chemical Degradation and Other Properties
5. Properties of the Composite with Amazon NLFs
6. Practical Applications of Cementitious Composites Reinforced with NLFs
7. Final Remarks
8. Conclusions
- Application of guaruman and piassava fibers in cementitious matrices;
- Application of other alkaline treatments, such as potassium and magnesium hydroxide, on vegetable fibers;
- Standardization of vegetable fiber treatments for application in cementitious matrices;
- Studies of new applicability in composite building materials reinforced with Amazon NLFs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chawla, K.K. Composite Materials: Science and Engineering, 4th ed.; Springer: New York, NY, USA, 2019. [Google Scholar]
- Aisyah, H.A.; Paridah, M.T.; Sapuan, S.M.; Ilyas, R.A.; Khalina, A.; Nurazzi, N.M.; Lee, S.H.; Lee, C.H. A comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers 2021, 13, 471. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 2020, 247, 116683. [Google Scholar] [CrossRef]
- Claramunt, J.; Ventura, H.; Toledo Filho, R.D.; Ardanuy, M. Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cem. Concr. Res. 2019, 119, 64–76. [Google Scholar] [CrossRef]
- Kim, Y.; Park, J. A theory for the free vibration of a laminated composite rectangular plate with holes in aerospace applications. Compos. Struct. 2020, 251, 112571. [Google Scholar] [CrossRef]
- Xie, M.S.; Wang, Z.; Zhang, G.Q.; Yang, C.; Zhang, W.W.; Prashanth, K.G. Microstructure and mechanical property of bimodal-size metallic glass particle-reinforced Al alloy matrix composites. J. Alloys Compd. 2020, 814, 152317. [Google Scholar] [CrossRef]
- He, T.; Lu, T.; Ciftci, N.; Tan, H.; Uhlenwinkel, V.; Nielsch, K.; Scudino, S. Mechanical properties and tribological behavior of aluminum matrix composites reinforced with Fe-based metallic glass particles: Influence of particle size. Powder Technol. 2020, 361, 512–519. [Google Scholar] [CrossRef]
- Vijay V, V.; Shyin, P.P.; Biju, V.M.; Devasia, R. Fabrication and property evaluation of titanium silicide active filler incorporated ceramic matrix composite. Ceram. Int. 2020, 46, 21489–21495. [Google Scholar] [CrossRef]
- Mitts, C.; Naboulsi, S.; Przybyla, C.; Madenci, E. Axisymmetric peridynamic analysis of crack deflection in a single strand ceramic matrix composite. Eng. Fract. Mech. 2020, 235, 107074. [Google Scholar] [CrossRef]
- May, M.; Hallett, S.R. Damage initiation in polymer matrix composites under high-cycle fatigue loading—A question of definition or a material property? Int. J. Fatigue 2016, 87, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Kumar, R.; Chohan, J.S. Polymer matrix composites in 3D printing: A state of art review. Mater. Today Proc. 2019, 33, 1562–1567. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Marvila, M.T.; Barroso, L.d.S.; Zanelato, E.B.; Alexandre, J.; Xavier, G.d.C.; Monteiro, S.N. Effect of granite residue incorporation on the behavior of mortars. Materials 2019, 12, 1449. [Google Scholar] [CrossRef] [Green Version]
- de Azevedo, A.R.G.; Alexandre, J.; Pessanha, L.S.P.; Manhães, R.d.S.T.; de Brito, J.; Marvila, M.T. Characterizing the paper industry sludge for environmentally-safe disposal. Waste Manag. 2019, 95, 43–52. [Google Scholar] [CrossRef]
- Rostami, R.; Zarrebini, M.; Mandegari, M.; Mostofinejad, D.; Abtahi, S.M. A review on performance of polyester fibers in alkaline and cementitious composites environments. Constr. Build. Mater. 2020, 241, 117998. [Google Scholar] [CrossRef]
- Marvila, M.T.; Alexandre, J.; de Azevedo, A.R.G.; Zanelato, E.B. Evaluation of the use of marble waste in hydrated lime cement mortar based. J. Mater. Cycles Waste Manag. 2019, 21, 1250–1261. [Google Scholar] [CrossRef]
- Anwar, A.; Mohammed, B.S.; Wahab, M.A.; Liew, M.S. Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial—A review. Dev. Built Environ. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Huang, B.T.; Li, Q.H.; Xu, S.L.; Zhou, B.M. Tensile fatigue behavior of fiber-reinforced cementitious material with high ductility: Experimental study and novel P-S-N model. Constr. Build. Mater. 2018, 178, 349–359. [Google Scholar] [CrossRef]
- Spasiano, D.; Luongo, V.; Petrella, A.; Alfè, M.; Pirozzi, F.; Fratino, U.; Piccinni, A.F. Preliminary study on the adoption of dark fermentation as pretreatment for a sustainable hydrothermal denaturation of cement-asbestos composites. J. Clean. Prod. 2017, 166, 172–180. [Google Scholar] [CrossRef]
- Hosseinpourpia, R.; Varshoee, A.; Soltani, M.; Hosseini, P.; Ziaei Tabari, H. Production of waste bio-fiber cement-based composites reinforced with nano-SiO 2 particles as a substitute for asbestos cement composites. Constr. Build. Mater. 2012, 31, 105–111. [Google Scholar] [CrossRef]
- He, Z.; Shen, A.; Lyu, Z.; Li, Y.; Wu, H.; Wang, W. Effect of wollastonite microfibers as cement replacement on the properties of cementitious composites: A review. Constr. Build. Mater. 2020, 261, 119920. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Ye, J.; He, F. Setting behavior, mechanical property and biocompatibility of anti-washout wollastonite/calcium phosphate composite cement. Ceram. Int. 2016, 42, 13670–13681. [Google Scholar] [CrossRef]
- Mu, R.; Xue, Y.; Qing, L.; Li, H.; Zhao, Y.; Zhou, J.; Su, J. Preparation and mechanical performance of annularly aligned steel fiber reinforced cement-based composite pipes. Constr. Build. Mater. 2019, 211, 167–173. [Google Scholar] [CrossRef]
- Jang, A.Y.; Lim, S.H.; Kim, D.H.; Yun, H.D.; Lee, G.C.; Seo, S.Y. Strain-Detecting properties of hybrid PE and steel fibers reinforced cement composite (Hy-FRCC) with Multi-Walled carbon nanotube (MWCNT) under repeated compression. Results Phys. 2020, 18, 103199. [Google Scholar] [CrossRef]
- Shettar, M.; Shettigar, P.; Manjunath, M.; Rao, U.S. Study on effect of water soaking conditions on properties and morphology of glass fiber-cement-polyester composites. J. Mater. Res. Technol. 2020, 9, 8697–8704. [Google Scholar] [CrossRef]
- Rovero, L.; Galassi, S.; Misseri, G. Experimental and analytical investigation of bond behavior in glass fiber-reinforced composites based on gypsum and cement matrices. Compos. Part B Eng. 2020, 194, 108051. [Google Scholar] [CrossRef]
- Zhou, Z.; Xie, N.; Cheng, X.; Feng, L.; Hou, P.; Huang, S.; Zhou, Z. Electrical properties of low dosage carbon nanofiber/cement composite: Percolation behavior and polarization effect. Cem. Concr. Compos. 2020, 109, 103539. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Panesar, D.K. Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets. Compos. Part B Eng. 2020, 197, 108063. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Aswin, M.; Beatty, W.H.; Hafiz, M. Longitudinal shear resistance of PVA-ECC composite slabs. Structures 2016, 5, 247–257. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, P.; Wang, J.; Chen, Y. Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 2019, 229, 117068. [Google Scholar] [CrossRef]
- Zukowski, B.; dos Santos Mendonça, Y.G.; de Andrade Silva, F.; Toledo Filho, R.D. Effect of moisture movement on the tensile stress–strain behavior of SHCC with alkali treated curauá fiber. Mater. Struct. Constr. 2020, 53, 49. [Google Scholar] [CrossRef]
- Silva, E.J.; Silva, P.D.; Marques, M.L.; Fornari, C.C.M., Jr.; Garcia, F.C.; Luzardo, F.H.M. Revista Brasileira de Engenharia Agrícola e Ambiental Resistência à compressão de argamassas em função da adição de fibra de coco with the addition of coconut fiber. Rev. Bras. De Eng. Agrícola E Ambient. 2014, 18, 1268–1273. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, I.S.d.; Dweck, J.; Toledo Filho, R.D. Effect of microcrystalline and microfibrillated cellulose on the evolution of hydration of cement pastes by thermogravimetry. J. Therm. Anal. Calorim. 2020, 142, 1413–1428. [Google Scholar] [CrossRef]
- Marinelli, A.L.; Monteiro, M.R.; Ambrósio, J.D.; Branciforti, M.C.; Kobayashi, M.; Nobre, A.D. Desenvolvimento de compósitos poliméricos com fibras vegetais naturais da biodiversidade: Uma contribuição para a sustentabilidade Amazônica. Polimeros 2008, 18, 92–99. [Google Scholar] [CrossRef]
- Khakpour, H.; Ayatollahi, M.R.; Akhavan-Safar, A.; da Silva, L.F.M. Mechanical properties of structural adhesives enhanced with natural date palm tree fibers: Effects of length, density and fiber type. Compos. Struct. 2020, 237, 111950. [Google Scholar] [CrossRef]
- Shahinur, S.; Hasan, M. Natural Fiber and Synthetic Fiber Composites: Comparison of Properties, Performance, Cost and Environmental Benefits. Encycl. Renew. Sustain. Mater. 2020, 794–802. [Google Scholar] [CrossRef]
- Zeng, Q.; Lu, Q.; Zhou, Y.; Chen, N.; Rao, J.; Fan, M. Circular development of recycled natural fibers from medium density fiberboard wastes. J. Clean. Prod. 2018, 202, 456–464. [Google Scholar] [CrossRef]
- Liu, K.; Cheng, X.; Zhang, X.; Guo, X.; Zhuang, J. Design of low-density cement optimized by cellulose-based fibre for oil and natural gas wells. Powder Technol. 2018, 338, 506–518. [Google Scholar] [CrossRef]
- Mu, R.; Xing, P.; Yu, J.; Wei, L.; Zhao, Q.; Qing, L.; Zhou, J.; Tian, W.; Gao, S.; Zhao, X.; et al. Investigation on reinforcement of aligned steel fiber on flexural behavior of cement-based composites using acoustic emission signal analysis. Constr. Build. Mater. 2019, 201, 42–50. [Google Scholar] [CrossRef]
- Feng, H.; Li, L.; Zhang, P.; Gao, D.; Zhao, J.; Feng, L.; Sheikh, M.N. Microscopic characteristics of interface transition zone between magnesium phosphate cement and steel fiber. Constr. Build. Mater. 2020, 253, 119179. [Google Scholar] [CrossRef]
- Lima, P.R.L.; Toledo Filho, R.D.; Neumann, R.; Barros, J.A.O. Efeito do envelhecimento acelerado sobre as propriedades de microconcreto reforçado com fibras longas de sisal. Ambient. Construído 2019, 19, 7–20. [Google Scholar] [CrossRef]
- Rodier, L.; da Costa Correia, V.; Savastano, H., Jr. Elaboration of eco-efficient vegetable fibers reinforced cement-based composites using glass powder residue. Cem. Concr. Compos. 2020, 110, 103599. [Google Scholar] [CrossRef]
- Wei, J.; Ma, S.; Thomas, D.G. Correlation between hydration of cement and durability of natural fiber-reinforced cement composites. Corros. Sci. 2016, 106, 1–15. [Google Scholar] [CrossRef]
- Urrea-Ceferino, G.E.; Rempe, N.; dos Santos, V.; Savastano, H., Jr. Definition of optimal parameters for supercritical carbonation treatment of vegetable fiber-cement composites at a very early age. Constr. Build. Mater. 2017, 152, 424–433. [Google Scholar] [CrossRef]
- de Klerk, M.D.; Kayondo, M.; Moelich, G.M.; de Villiers, W.I.; Combrinck, R.; Boshoff, W.P. Durability of chemically modified sisal fibre in cement-based composites. Constr. Build. Mater. 2020, 241, 117835. [Google Scholar] [CrossRef]
- Ardanuy, M.; Claramunt, J.; Toledo Filho, R.D. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015, 79, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Komuraiah, A.; Kumar, N.S.; Prasad, B.D. Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties. Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar] [CrossRef]
- Zimmermann, T.; Pöhler, E.; Geiger, T. Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater. 2004, 6, 754–761. [Google Scholar] [CrossRef]
- Pereira, P.H.F.; De Freitas Rosa, M.; Cioffi, M.O.H.; De Carvalho Benini, K.C.C.; Milanese, A.C.; Voorwald, H.J.C.; Mulinari, D.R. Vegetal fibers in polymeric composites: A review. Polimeros 2015, 25, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Dittenber, D.B.; Gangarao, H.V.S. Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Natural Fibers, Biopolymers, and Biocomposites; Taylor & Francis: Boca Raton, FL, USA, 2005; ISBN 9780203508206. [Google Scholar]
- Azevedo, A.R.G.; Marvila, M.T.; Tayeh, B.A.; Cecchin, D.; Pereira, A.C.; Monteiro, S.N. Technological performance of açaí natural fibre reinforced cement-based mortars. J. Build. Eng. 2021, 33, 101675. [Google Scholar] [CrossRef]
- Poletto, M.; Ornaghi Júnior, H.L.; Zattera, A.J. Native cellulose: Structure, characterization and thermal properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.O.d.; Souza, L.M.S.d.; de Andrade Silva, F. Mechanical autogenous recovery and crack sealing of natural curauá textile reinforced concrete. Constr. Build. Mater. 2020, 235, 117476. [Google Scholar] [CrossRef]
- Azevedo, A.R.G.d.; Lima, T.E.S.d.; Reis, R.H.M.; Oliveira, M.S.; Candido, V.S.; Monteiro, S.N. Guaruman fiber: A promissing reinforcement for cement-based mortars. Submitt. Publ. Case Stud. Constr. Mater. 2022. Available online: https://www.journals.elsevier.com/case-studies-in-construction-materials (accessed on 5 February 2022).
- Majeed, K.; Jawaid, M.; Hassan, A.; Abu Bakar, A.; Abdul Khalil, H.P.S.; Salema, A.A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 2013, 46, 391–410. [Google Scholar] [CrossRef]
- An, X.; Liu, J.; Liu, L.; Zhang, H.; Nie, S.; Cao, H.; Xu, Q.; Liu, H. Improving the flexibility of bamboo mechanical pulp fibers for production of high soft tissue handsheets. Ind. Crops Prod. 2020, 150, 112410. [Google Scholar] [CrossRef]
- Rao, F.; Ji, Y.; Li, N.; Zhang, Y.; Chen, Y.; Yu, W. Outdoor bamboo-fiber-reinforced composite: Influence of resin content on water resistance and mechanical properties. Constr. Build. Mater. 2020, 261, 120022. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Guimarães, J.L.; Wypych, F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1694–1709. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Najeeb, M.I.; Sultan, M.T.H.; Andou, Y.; Shah, A.U.M.; Eksiler, K.; Jawaid, M.; Ariffin, A.H. Characterization of silane treated Malaysian Yankee Pineapple AC6 leaf fiber (PALF) towards industrial applications. J. Mater. Res. Technol. 2020, 9, 3128–3139. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Ravikumar, K.K.; Sukumaran, K.; Mukherjee, P.S.; Pillai, S.G.K.; Kulkarni, A.G. Structure and properties of some vegetable fibres—Part 3 Talipot and palmyrah fibres. J. Mater. Sci. 1986, 21, 57–63. [Google Scholar] [CrossRef]
- Galicia-Aldama, E.; Mayorga, M.; Arteaga-Arcos, J.C.; Romero-Salazar, L. Rheological behaviour of cement paste added with natural fibres. Constr. Build. Mater. 2019, 198, 148–157. [Google Scholar] [CrossRef]
- Mathavan, M.; Sakthieswaran, N.; Ganesh Babu, O. Experimental investigation on strength and properties of natural fibre reinforced cement mortar. Mater. Today Proc. 2020, 37, 1066–1070. [Google Scholar] [CrossRef]
- Akinyemi, A.B.; Omoniyi, E.T.; Onuzulike, G. Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites. Constr. Build. Mater. 2020, 245, 118405. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Degradation of natural fiber in ternary blended cement composites containing metakaolin and montmorillonite. Corros. Sci. 2017, 120, 42–60. [Google Scholar] [CrossRef]
- John, V.M.; Cincotto, M.A.; Sjöström, C.; Agopyan, V.; Oliveira, C.T.A. Durability of slag mortar reinforced with coconut fibre. Cem. Concr. Compos. 2005, 27, 565–574. [Google Scholar] [CrossRef]
- Fernea, R.; Florea, I.; Manea, D.L.; Pǎşcuţǎ, P.; Tǎmaş-Gavrea, D.R. X-ray diffraction study on new organic- natural building materials. Procedia Manuf. 2018, 22, 372–379. [Google Scholar] [CrossRef]
- Ruano, G.; Bellomo, F.; López, G.; Bertuzzi, A.; Nallim, L.; Oller, S. Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Constr. Build. Mater. 2020, 240, 117856. [Google Scholar] [CrossRef]
- Teixeira, R.S.; Santos, S.F.; Christoforo, A.L.; Payá, J.; Savastano, H.; Lahr, F.A.R. Impact of content and length of curauá fibers on mechanical behavior of extruded cementitious composites: Analysis of variance. Cem. Concr. Compos. 2019, 102, 134–144. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Jiang, Z.; Chen, Q. Effect of Waste Paper Fiber on Properties of Cement-based Mortar and Relative Mechanism. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2018, 33, 419–426. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Bhat, I.U.H.; Jawaid, M.; Zaidon, A.; Hermawan, D.; Hadi, Y.S. Bamboo fibre reinforced biocomposites: A review. Mater. Des. 2012, 42, 353–368. [Google Scholar] [CrossRef]
- Rasheed, M.; Jawaid, M.; Parveez, B.; Zuriyati, A.; Khan, A. Morphological, Chemical and Thermal Analysis of Cellulose Nanocrystals Extracted from Bamboo Fibre; Elsevier B.V.: Amsterdam, The Netherlands, 2020; ISBN 6039769696. [Google Scholar]
- Zanelato, E.B.; Alexandre, J.; de Azevedo, A.R.G.; Marvila, M.T. Evaluation of roughcast on the adhesion mechanisms of mortars on ceramic substrates. Mat. Stru. 2019, 52, 300–310. [Google Scholar] [CrossRef]
- Soltan, D.G.; das Neves, P.; Olvera, A.; Savastano, H., Jr.; Li, V.C. Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior. Ind. Crops Prod. 2017, 103, 1–12. [Google Scholar] [CrossRef]
- Tomczak, F.; Satyanarayana, K.G.; Sydenstricker, T.H.D. Studies on lignocellulosic fibers of Brazil: Part III—Morphology and properties of Brazilian curauá fibers. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2227–2236. [Google Scholar] [CrossRef]
- Reis, R.H.M.; Nunes, L.F.; Oliveira, M.S.; De Veiga, V.F., Jr.; Filho, F.D.C.G.; Pinheiro, M.A.; Candido, V.S.; Monteiro, S.N. Guaruman fiber: Another possible reinforcement in composites. J. Mater. Res. Technol. 2020, 9, 622–628. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.S.; Allamraju, K.V. A review of natural fiber composites [Jute, Sisal, Kenaf]. Mater. Today Proc. 2019, 18, 2556–2562. [Google Scholar] [CrossRef]
- Hussain, T.; Ali, M. Improving the impact resistance and dynamic properties of jute fiber reinforced concrete for rebars design by considering tension zone of FRC. Constr. Build. Mater. 2019, 213, 592–607. [Google Scholar] [CrossRef]
- Nong, G.; Li, P.; Li, Y.; Xing, D.; Zhu, T.; Wu, J.; Gan, W.; Wang, S.; Yin, Y. Preparing tea filter papers with High air permeability from jute fibers for fast leaching. Ind. Crops Prod. 2019, 140, 111619. [Google Scholar] [CrossRef]
- Correia, V.C.; Santos, S.F.; Tonoli, G.H.D.; Savastano, H. Characterization of Vegetable Fibers and Their Application in Cementitious Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; ISBN 9780081027042. [Google Scholar]
- da Costa Garcia Filho, F.; da Luz, F.S.; Oliveira, M.S.; Pereira, A.C.; Costa, U.O.; Monteiro, S.N. Thermal behavior of graphene oxide-coated piassava fiber and their epoxy composites. J. Mater. Res. Technol. 2020, 9, 5343–5351. [Google Scholar] [CrossRef]
- Rebelo, V.; Silva, Y.d.; Ferreira, S.; Toledo Filho, R.; Giacon, V. Effects of mercerization in the chemical and morphological properties of amazon piassava. Polímeros 2019, 29. [Google Scholar] [CrossRef]
- Santos, E.B.C.; Barros, J.J.P.; Moura, D.A.D.; Moreno, C.G.; Fim, F.D.C.; Silva, L.B.D. Rheological and thermal behavior of PHB/piassava fiber residue-based green composites modified with warm water. J. Mater. Res. Technol. 2019, 8, 531–540. [Google Scholar] [CrossRef]
- Thiagamani, S.M.K.; Krishnasamy, S.; Muthukumar, C.; Tengsuthiwat, J.; Nagarajan, R.; Siengchin, S.; Ismail, S.O. Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: Effects of stacking sequences. Int. J. Biol. Macromol. 2019, 140, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Netravali, A.N.; Chabba, S. Composites get greener. Mater. Today 2003, 6, 22–29. [Google Scholar] [CrossRef]
- Methacanon, P.; Weerawatsophon, U.; Sumransin, N.; Prahsarn, C.; Bergado, D.T. Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr. Polym. 2010, 82, 1090–1096. [Google Scholar] [CrossRef]
- Baley, C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness. Composites 2002, 33, 939–948. [Google Scholar] [CrossRef]
- Ban, Y.; Zhi, W.; Fei, M.; Liu, W.; Yu, D.; Fu, T.; Qiu, R. Preparation and performance of cement mortar reinforced by modified bamboo fibers. Polymers 2020, 12, 2650. [Google Scholar] [CrossRef]
- Patel, J.P.; Parsania, P.H. Fabrication and comparative mechanical, electrical and water absorption characteristic properties of multifunctional epoxy resin of bisphenol-C and commercial epoxy-treated and -untreated jute fiber-reinforced composites. Polym. Bull. 2017, 74, 485–504. [Google Scholar] [CrossRef]
- Gupta, M.K.; Srivastava, R.K. Effect of sisal fibre loading on dynamic mechanical analysis and water absorption behaviour of jute fibre epoxy composite. Mater. Today Proc. 2015, 2, 2909–2917. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Lopes, F.P.D.; Barbosa, A.P.; Bevitori, A.B.; Amaral Da Silva, I.L.; Da Costa, L.L. Natural lignocellulosic fibers as engineering materials—An overview. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2011, 42, 2963–2974. [Google Scholar] [CrossRef] [Green Version]
- Chegdani, F.; Takabi, B.; El Mansori, M.; Tai, B.L.; Bukkapatnam, S.T.S. Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites. J. Manuf. Process. 2020, 54, 337–346. [Google Scholar] [CrossRef]
- Wansom, S.; Janjaturaphan, S. Evaluation of fiber orientation in plant fiber-cement composites using AC-impedance spectroscopy. Cem. Concr. Res. 2013, 45, 37–44. [Google Scholar] [CrossRef]
- Lee, J.H.; Hu, J.W.; Kang, J.W. Effects of blades inside a nozzle on the fiber orientation and distribution in fiber-reinforced cement-based materials. Compos. Struct. 2019, 221, 110885. [Google Scholar] [CrossRef]
- Marvila, M.T.; Alexandre, J.; Azevedo, A.R.G.; Zanelato, E.B.; Xavier, G.C.; Monteiro, S.N. Study on the replacement of the hydrated lime by kaolinitic clay in mortars. Adv. Appl. Ceram. 2019, 118, 373–380. [Google Scholar] [CrossRef]
- Dawood, E.T.; Mohammed, W.T.; Plank, J. Performance of sustainable mortar using calcined clay, fly ash, limestone powder and reinforced with hybrid fibers. Case Stud. Const. Mater. 2022, 16, 105698. [Google Scholar] [CrossRef]
- Marvila, M.T.; Rocha, H.A.; de Azevedo, A.R.G.; Colorado, H.A.; Zapata, J.F.; Vieira, C.M.F. Use of natural vegetable fibers in cementitious composites: Concepts and applications. Innov. Infrastruct. Solut. 2021, 6, 180. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Mochalov, A.V.; Pezin, D.N.; Liseitsev, Y.L. Composite Binders for Concretes with Improved Impact Endurance. Inorg. Mater. Appl. Res. 2019, 10, 1177–1184. [Google Scholar] [CrossRef]
- Hervé-Luanco, E. Elastic behavior of composites containing multi-layer coated particles with imperfect interface bonding conditions and application to size effects and mismatch in these composites. Int. J. Solids Struct. 2014, 51, 2865–2877. [Google Scholar] [CrossRef]
- Nohara, L.B.; Kawamoto, A.M.; Takahashi, M.F.K.; Wills, M.; Nohara, E.L.; Rezende, M.C. Síntese de um poli (ácido âmico) para aplicação como interfase em compósitos termoplásticos de alto desempenho. Polímeros 2004, 14, 122–128. [Google Scholar] [CrossRef]
- Wang, D.; Bai, T.; Cheng, W.; Xu, C.; Wang, G.; Cheng, H.; Han, G. Surface modification of bamboo fibers to enhance the interfacial adhesion of epoxy resin-based composites prepared by resin transfer molding. Polymers 2019, 11, 2107. [Google Scholar] [CrossRef] [Green Version]
- Al-Quraishi, K.K.; Wang, M.; Liang, J.; Jia, S.; Kauppila, W.; Wang, J.; Yang, Y. Strengthening the interface between individual aramid fibers and polymer at room and elevated temperatures. Mater. Today Commun. 2020, 24, 101254. [Google Scholar] [CrossRef]
- Ignaczak, W.; Sui, X.M.; Kellersztein, I.; Wagner, H.D.; El Fray, M. The effect of fibre sizing and compatibilizer of polypropylene/poly(butylene terephthalate) blends on the mechanical and interphase properties of basalt fibre reinforced composites. Polym. Int. 2018, 67, 414–421. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, D.; Zheng, J. Construction of electrostatic and π–π interaction to enhance interfacial adhesion between carbon nanoparticles and polymer matrix. J. Appl. Polym. Sci. 2020, 137, 48633. [Google Scholar] [CrossRef]
- Bondarenko, D.O.; Plakhotnikov, K.V.; Kostuk, T.O.; Dedenyova, O.B.; Kalinin, O.A. Physical and chemical research of the microstructure of the cement composite filled with allumosilicate and glass microphases. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012079. [Google Scholar] [CrossRef]
- Belbachir, B.; Benosman, A.S.; Taïbi, H.; Mouli, M.; Senhadji, Y.; Belbachir, M.; Exactes, S.; Chimie, L.D.; Oran, U.; Benbella, A.; et al. Durability of mortars modified by the effect of combining SPA polymers and supplementary cementitious materials Durabilité des mortiers modifiés par l ’ effet de la combinaison de Polymère et des matériaux cimentaires supplémentaires. MATEC Web Conf. 2018, 149, 01091. [Google Scholar] [CrossRef]
- Ogunbode, E.B.; Egba, E.; Olaiju, O.A.; El-nafaty, A.S. Microstructure and Mechanical Properties of Green Concrete Composites Containing Coir Fibre Microstructure and Mechanical Properties of Green Concrete Composites Containing Coir Fibre. Chem. Eng. Trans. 2017, 61, 1879–1884. [Google Scholar] [CrossRef]
- Fediuk, R.; Amran, M.; Klyuev, S.; Klyuev, A. Increasing the Performance of a Fiber-Reinforced Concrete for Protective Facilities. Fibers 2021, 9, 64. [Google Scholar] [CrossRef]
- Casagrande, C.A.; Jochem, L.F.; Onghero, L.; Ricardo de Matos, P.; Repette, W.L.; Gleize, P.J.P. Effect of partial substitution of superplasticizer by silanes in Portland cement pastes. J. Build. Eng. 2020, 29, 101226. [Google Scholar] [CrossRef]
- Bentur, A.; Akers, S.A.S. The microstructure and ageing of cellulose fibre reinforced cement composites cured in a normal environment. Int. J. Cem. Compos. Light. Concr. 1989, 11, 99–109. [Google Scholar] [CrossRef]
- Toledo Filho, R.D.; Silva, F.d.A.; Fairbairn, E.M.R.; Filho, J.d.A.M. Durability of compression molded sisal fiber reinforced mortar laminates. Constr. Build. Mater. 2009, 23, 2409–2420. [Google Scholar] [CrossRef]
- Toledo Filho, R.; Scrivener, K.; England, G.L.; Ghavami, K. Durability of alkali-sensitive sisal and coconut® bres in cement. Cem. Concr. Compos. 2000, 22, 127–143. [Google Scholar] [CrossRef]
- Toledo Filho, R.D.; Ghavami, K.; England, G.L.; Scrivener, K. Development of vegetable fibre-mortar composites of improved durability. Cem. Concr. Compos. 2003, 25, 185–196. [Google Scholar] [CrossRef]
- Wong, K.J.; Yousif, B.F.; Low, K.O. The effects of alkali treatment on the interfacial adhesion of bamboo fibres. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2010, 224, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Alves Fidelis, M.E.; Pereira, T.V.C.; Gomes, O.D.F.M.; De Andrade Silva, F.; Toledo Filho, R.D. The effect of fiber morphology on the tensile strength of natural fibers. J. Mater. Res. Technol. 2013, 2, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Melo Filho, J.D.A.; Silva, F.D.A.; Toledo Filho, R.D. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cem. Concr. Compos. 2013, 40, 30–39. [Google Scholar] [CrossRef]
- de Matos, P.R.; Oliveira, J.C.P.; Medina, T.M.; Magalhães, D.C.; Gleize, P.J.P.; Schankoski, R.A.; Pilar, R. Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production. Constr. Build. Mater. 2020, 262, 120102. [Google Scholar] [CrossRef]
- Azevedo, A.R.; Marvila, M.T.; Zanelato, E.B.; Alexandre, J. Development of mortar for laying and coating with pineapple fibers e revestimento com fibras de abacaxi. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 187–193. [Google Scholar] [CrossRef]
- ACI 544. State-of-the-Art Report on Fiber Reinforced Concrete; 1R-96: New York, NY, USA, 2002. [Google Scholar]
- Correia, V.D.C.; Santos, S.F.; Mármol, G.; Curvelo, A.A.D.S.; Savastano, H. Potential of bamboo organosolv pulp as a reinforcing element in fiber-cement materials. Constr. Build. Mater. 2014, 72, 65–71. [Google Scholar] [CrossRef]
- Azevedo, A.R.G.d.; Klyuev, S.; Marvila, M.T.; Vatin, N.; Alfimova, N.; Lima, T.E.S.d.; Fediuk, R.; Olisov, A. Investigation of the Potential Use of Curauá Fiber for Reinforcing Mortars. Fibers 2020, 8, 69. [Google Scholar] [CrossRef]
- Kesikidou, F.; Stefanidou, M. Natural fiber-reinforced mortars. J. Build. Eng. 2019, 25, 100786. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Lima, T.E.S.d.; Simonassi, N.T.; Ribeiro, M.P.; Garcia Filho, F.C.; Monteiro, S.N. Piassava fiber: A novel reinforcement for cement-based matrix composites. Submitt. Publ. Concil. 2022. Available online: https://clium.org/index.php/edicoes/index (accessed on 3 February 2022).
- Thomas, B.C.; Jose, Y.S. A study on characteristics of sisal fiber and its performance in fiber reinforced concrete. Mater. Today Proc. 2021, 1–5. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Alexandre, J.; Zanelato, E.B.; Marvila, M.T. Influence of incorporation of glass waste on the rheological properties of adhesive mortar. Constr. Build. Mater. 2017, 148, 359–368. [Google Scholar] [CrossRef]
- Toledo Filho, R.D.; Sanjuán, M.A. Effect of low modulus sisal and polypropylene fibre on the free and restrained shrinkage of mortars at early age. Cem. Concr. Res. 1999, 29, 1597–1604. [Google Scholar] [CrossRef]
- Sarsby, R.W. Use of “Limited Life Geotextiles” (LLGs) for basal reinforcement of embankments built on soft clay. Geotext. Geomembranes 2007, 25, 302–310. [Google Scholar] [CrossRef]
- Segetin, M.; Jayaraman, K.; Xu, X. Harakeke reinforcement of soil-cement building materials: Manufacturability and properties. Build. Environ. 2007, 42, 3066–3079. [Google Scholar] [CrossRef]
- Shehata, M.; Navarra, M.; Klement, T.; Lachemi, M.; Schell, H. Use of wet cellulose to cure shotcrete repairs on bridge soffits. Part 1: Field trial and observations. Can. J. Civ. Eng. 2006, 33, 807–814. [Google Scholar] [CrossRef]
- Shehata, M.; Navarra, M.; Klement, T.; Lachemi, M.; Schell, H. Use of wet cellulose to cure shotcrete repairs on bridge soffits. Part 2: Laboratory testing and analysis. Can. J. Civ. Eng. 2006, 33, 815–826. [Google Scholar] [CrossRef]
- Fidelis, M.E.A.; De Andrade Silva, F.; Filho, R.D.T. The influence of fiber treatment on the mechanical behavior of jute textile reinforced concrete. Key Eng. Mater. 2014, 600, 469–474. [Google Scholar] [CrossRef]
- Teixeira, F.P.; de Andrade Silva, F. On the use of natural curauá reinforced cement based composites for structural applications. Cem. Concr. Compos. 2020, 114, 103775. [Google Scholar] [CrossRef]
Fiber Type | SCIENTIFIC NAME | Cellulose (%) | Lignin (%) | Hemicellulose (%) | Pectin (%) | Wax (%) | Ash (%) | Moisture Content (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Açai | Euterpe oleracea | 45–47 | 31–34 | 17–20 | - | - | - | 10 | [52] |
Bamboo | Bambusa vulgaris | 33–45 | 20–25 | 21–30 | 13–14 | 1 | 4–5 | 12 | [57,58] |
Curaua | Ananas erectifolius | 71–74 | 9–11 | 21–26 | - | 1–2 | 2–3 | 18 | [53,54] |
Guaruman | Ischnosiphon koem | 39–40 | 10–12 | 40–41 | - | - | 7–9 | 13 | [55] |
Jute | Corchorus capsularis | 45–71 | 12–26 | 14–21 | 1–10 | 1 | 1–2 | 12 | [53,59] |
Piassava | Attalea funifera | 29–32 | 45–48 | 26 | - | - | - | 14 | [56] |
Sisal | Agave sisalana | 65–75 | 8–12 | 10–15 | 2–10 | 1–2 | 1–2 | 11 | [53,59] |
Fiber Type | Tensile Strength (MPa) | Modulus of Elasticity (GPa) | Reference |
---|---|---|---|
Açai | 17.8 | 15.7 | [52] |
Bamboo | 140–800 | 27 | [56,91] |
Curaua | 488–752 | 31.8–64 | [56,75] |
Guaruman | 614 | 21 | [78] |
Jute | 393–773 | 26.5 | [80,92] |
Piassava | 43–79 | 1.36–2.28 | [76] |
Sisal | 511–635 | 9–22 | [80,93] |
Fibers Type | Addition Percentage | Consistency (mm) | Content of Incorporated Air (%) | Water Retention (%) | Tensile Strength (MPa) | Compression Strength (MPa) | Reference |
---|---|---|---|---|---|---|---|
Açai | 1.5% Untreated Fiber | 255 | 7.5 | 95.16 | 1.13 | 3.72 | [52] |
3% Untreated Fiber | 228.33 | 7.9 | 94.41 | 1.03 | 4.02 | ||
5% Untreated Fiber | 218 | 8.4 | 93.37 | 0.97 | 3.83 | ||
1.5% Treated Fiber | 211 | 7.3 | 95.61 | 1.54 | 3.84 | ||
3% Treated Fiber | 222.45 | 7.7 | 95.11 | 1.76 | 4.23 | ||
5% Treated Fiber | 207 | 8.2 | 95.07 | 1.42 | 3.94 | ||
Bamboo | 6% | - | - | - | 6.4 ± 0.9 | - | [123] |
8% | - | - | - | 7.5 ± 0.1 | - | ||
10% | - | - | - | 6.8 ± 1.4 | - | ||
12% | - | - | - | 5.8 ± 1.5 | - | ||
Curaua | 1% Untreated fiber | 257.23 ± 2.33 | 8.23 ± 0.31 | 95.46 ± 1.08 | 3.1 ± 0.1 | 4.4 ± 0.15 | [124] |
2% Untreated fiber | 253.21 ± 1.67 | 8.25 ± 0.20 | 97.42 ± 0.65 | 3.0 ± 0.2 | 4.25 ± 0.1 | ||
3% Untreated fiber | 249.44 ± 1.80 | 8.98 ± 0.18 | 98.89 ± 0.81 | 2.9 ± 0.2 | 4.2 ± 0.15 | ||
1% Treated fiber | 261.22 ± 0.97 | 7.92 ± 0.27 | 92.34 ± 0.33 | 3.7 ± 0.2 | 6.8 ± 0.4 | ||
2% Treated fiber | 257.54 ± 2.01 | 7.84 ± 0.35 | 94.45 ± 0.67 | 3.9 ± 0.17 | 7.0 ± 0.2 | ||
3% Treated fiber | 254.23 ± 2.12 | 7.80 ± 0.24 | 95.67 ± 0.56 | 3.9 ± 0.2 | 7.0 ± 0.15 | ||
Guaruman | 2.5% Untreated fiber | 249.87 | 7.9 | 94.56 | - | - | [55] |
5% Untreated fiber | 252.43 | 8.5 | 93.4 | - | - | ||
7.5% Untreated fiber | 209.87 | 8.8 | 92.7 | - | - | ||
2.5% Treated fiber | 262.48 | 7.7 | 95.2 | - | - | ||
5% Treated fiber | 246.74 | 8.15 | 94.98 | - | - | ||
7.5% Treated fiber | 215.63 | 8.3 | 94.24 | - | - | ||
Jute | 1.5% | - | - | - | 5.71 | 56.45 | [125] |
Piassava | 2% Untreated fiber | 257.6 | 8.1 | 94.96 | - | - | [126] |
5% Untreated fiber | 246.4 | 8.7 | 93.8 | - | - | ||
2% Treated fiber | 260.2 | 7.9 | 95.37 | - | - | ||
5% Treated fiber | 248.9 | 8.3 | 94.46 | - | - | ||
Sisal | 1% Treated Fiber | - | - | - | 2.25 | 21 | [127] |
1% Treated Fiber | - | - | - | 2.75 | 18 | ||
1.5% Treated Fiber | - | - | - | 2.6 | 16 | ||
2% Treated Fiber | - | - | - | 2.4 | 19 | ||
2.6% Treated Fiber | - | - | - | 1.8 | 19.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, T.E.S.; de Azevedo, A.R.G.; Marvila, M.T.; Candido, V.S.; Fediuk, R.; Monteiro, S.N. Potential of Using Amazon Natural Fibers to Reinforce Cementitious Composites: A Review. Polymers 2022, 14, 647. https://doi.org/10.3390/polym14030647
de Lima TES, de Azevedo ARG, Marvila MT, Candido VS, Fediuk R, Monteiro SN. Potential of Using Amazon Natural Fibers to Reinforce Cementitious Composites: A Review. Polymers. 2022; 14(3):647. https://doi.org/10.3390/polym14030647
Chicago/Turabian Stylede Lima, Thuany E. S., Afonso R. G. de Azevedo, Markssuel T. Marvila, Verônica S. Candido, Roman Fediuk, and Sergio N. Monteiro. 2022. "Potential of Using Amazon Natural Fibers to Reinforce Cementitious Composites: A Review" Polymers 14, no. 3: 647. https://doi.org/10.3390/polym14030647
APA Stylede Lima, T. E. S., de Azevedo, A. R. G., Marvila, M. T., Candido, V. S., Fediuk, R., & Monteiro, S. N. (2022). Potential of Using Amazon Natural Fibers to Reinforce Cementitious Composites: A Review. Polymers, 14(3), 647. https://doi.org/10.3390/polym14030647