Fabrication of Polyethyleneimine-Functionalized Magnetic Cellulose Nanocrystals for the Adsorption of Diclofenac Sodium from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of MCNC-PEI
2.2.2. Adsorption and Desorption Experiment
2.2.3. Characterization
3. Results
3.1. Preparation Scheme of MCNC-PEI
3.2. Characterization
3.2.1. TEM Analysis
3.2.2. FTIR Analysis
3.2.3. XRD Analysis
3.2.4. VSM
3.2.5. XPS Analysis
3.3. Optimization of Adsorption Conditions
3.4. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acuna, V.; Ginebreda, A.; Mor, J.R.; Petrovic, M.; Sabater, S.; Sumpter, J.; Barcelo, D. Balancing the health benefits and environmental risks of pharmaceuticals: Diclofenac as an example. Environ. Int. 2015, 85, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, J.L.; Ovejero, G.; Rodriguez, A.; Alvarez, S.; Galan, J.; Garcia, J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem. Eng. J. 2014, 240, 443–453. [Google Scholar] [CrossRef]
- Sharma, R.; Kar, P.K.; Dash, S. Efficient adsorption of some substituted styrylpyridinium dyes on silica surface from organic solvent media—Analysis of adsorption-solvation correlation. Colloids Surf. Physicochem. Eng. Asp. 2021, 624, 126847. [Google Scholar] [CrossRef]
- Li, S.; Gan, Y.; Shah, S.J.; Wang, R.; Gong, W.; Wei, R.; Ji, H.; Zhao, Z.; Zhao, Z. Engineering NSAIDs imprinted UiO-66s for markedly enhanced adsorption of coexisting diclofenac sodium and Cu(II) and their synergistic adsorption mechanism. Chem. Eng. J. 2021, 426, 131440. [Google Scholar] [CrossRef]
- Higgins, P.; Siddiqui, S.H.; Kumar, R. Design of novel graphene oxide/halloysite nanotube@polyaniline nanohybrid for the removal of diclofenac sodium from aqueous solution, Environmental Nanotechnology. Monit. Manag. 2022, 17, 100628. [Google Scholar]
- Jean-Rameaux, B.; Brice, T.; Sadou, D.; Jean-Baptiste, T.; Berthelot, S.T.; Elie, A.; Georges, K.Y.; Samuel, L. Multi-functionalized Cellulosic Biomass by Plasma-Assisted Bonding of alpha-Amino Carboxylic Acid to Enhance the Removal of Ibuprofen in Aqueous Solution. J. Polym. Environ. 2021, 29, 1176–1191. [Google Scholar] [CrossRef]
- Fan, L.; Lu, Y.; Yang, L.-Y.; Huang, F.; Ouyang, X.-K. Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core-shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J. Colloid Interface Sci. 2019, 554, 48–58. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, F.; Wei, W.; Gao, H.; Zhang, K.; Zhang, G.; Xu, Y.; Zhang, P. Efficient and fast adsorption of methylene blue dye onto a nanosheet MFI zeolite. J. Solid State Chem. 2021, 295, 121917. [Google Scholar] [CrossRef]
- Wang, K.; Ma, H.; Pu, S.; Yan, C.; Wang, M.; Yu, J.; Wang, X.; Chu, W.; Anatoly, Z. Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water. J. Hazard. Mater. 2019, 362, 160–169. [Google Scholar] [CrossRef]
- Olivera, S.; Muralidhara, H.B.; Venkatesh, K.; Guna, V.K.; Gopalakrishna, K.; Kumar, Y.K. Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review. Carbohydr. Polym. 2016, 153, 600–618. [Google Scholar] [CrossRef]
- Ye, X.; Li, Y.; Lin, H.; Chen, Y.; Liu, M. Lignin-Based Magnetic Nanoparticle Adsorbent for Diclofenac Sodium Removal: Adsorption Behavior and Mechanisms. J. Polym. Environ. 2021, 29, 3401–3411. [Google Scholar] [CrossRef]
- Du, C.; Song, Y.; Shi, S.; Jiang, B.; Yang, J.; Xiao, S. Preparation and characterization of a novel Fe3O4-graphene-biochar composite for crystal violet adsorption. Sci. Total Environ. 2020, 711, 134662. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Wei, Q.; Yang, J.; Yan, L.; Feng, R.; Chen, G.; Du, B.; Li, H. Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 2012, 184, 132–140. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. Adv. Mater. 2021, 33, e2000619. [Google Scholar] [CrossRef]
- Wang, G.; He, Y.; Wang, H.; Zhang, L.; Yu, Q.; Peng, S.; Wu, X.; Ren, T.; Zeng, Z.; Xue, Q. A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation. Green Chem. 2015, 17, 3093–3099. [Google Scholar] [CrossRef]
- Kankilic, G.B.; Metin, A.U. Phragmites australis as a new cellulose source: Extraction, characterization and adsorption of methylene blue. J. Mol. Liq. 2020, 312, 113313. [Google Scholar] [CrossRef]
- Sabbagh, F.; Muhamad, I.I.; Pa’e, N.; Hashim, Z. Strategies in Improving Properties of Cellulose-Based Hydrogels for Smart Applications. In Cellulose-Based Superabsorbent Hydrogels; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–22. [Google Scholar]
- Elrhman, H.M.A. Synthesis and characterization of core-shell magnetite nanoparticles with modified nano-cellulose for removal of radioactive ions from aqueous solutions. Results Mater. 2020, 8, 100138. [Google Scholar] [CrossRef]
- Khan, A.; Asiri, A.M.; Jawaid, M.; Saba, N. Inamuddin Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites. Carbohydr. Polym. 2020, 239, 116248. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, F.; Wang, N.; Ouyang, X.-k.; Jin, M.-C. Diethylenetriaminepentaacetic Acid (DPTA)-modified Magnetic Cellulose Nanocrystals can Efficiently Remove Pb(II) from Aqueous Solution. J. Polym. Environ. 2021, 1–11. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Q.; Lei, T.; Negulescu, J.I. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem. Eng. J. 2014, 251, 17–24. [Google Scholar] [CrossRef]
- Hu, Z.-H.; Omer, A.M.; Ouyang, X.-K.; Yu, D. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int. J. Biol. Macromol. 2018, 108, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, M.; An, B.; Wu, Z.; Yang, R.; Ma, C.; Huang, Q.; Li, W.; Li, J.; Liu, S. A facile hydrothermal method-fabricated robust and ultralight weight cellulose nanocrystal-based hydro/aerogels for metal ion removal. Environ. Sci. Pollut. Res. 2019, 26, 25583–25595. [Google Scholar] [CrossRef] [PubMed]
- Anushree, C.; Philip, J. Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids Surf. Physicochem. Eng. Asp. 2019, 567, 193–204. [Google Scholar] [CrossRef]
- Hu, D.; Huang, H.; Jiang, R.; Wang, N.; Xu, H.; Wang, Y.-G.; Ouyang, X.-K. Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. J. Hazard. Mater. 2019, 369, 483–493. [Google Scholar] [CrossRef]
- Godiya, C.B.; Kumar, S.; Xiao, Y. Amine functionalized egg albumin hydrogel with enhanced adsorption potential for diclofenac sodium in water. J. Hazard. Mater. 2020, 393, 122417. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fan, L.; Yang, L.-Y.; Huang, F.; Ouyang, X.-K. PEI-modified core-shell/bead-like amino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption. Carbohydr. Polym. 2020, 229, 115459. [Google Scholar] [CrossRef]
- Mohamed, F.A.; Khashaba, P.Y.; El-Wekil, M.M.; Shahin, R.Y. Fabrication of water compatible and biodegradable super-paramagnetic molecularly imprinted nanoparticles for selective separation of memantine from human serum prior to its quantification: An efficient and green pathway. Int. J. Biol. Macromol. 2019, 140, 140–148. [Google Scholar] [CrossRef]
- Lu, J.; Jin, R.-N.; Liu, C.; Wang, Y.-F.; Ouyang, X.-K. Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. Int. J. Biol. Macromol. 2016, 93, 547–556. [Google Scholar] [CrossRef]
- Vatanpour, V.; Jouyandeh, M.; Akhi, H.; Khadem, S.S.M.; Ganjali, M.R.; Moradi, H.; Mirsadeghi, S.; Badiei, A.; Esmaeili, A.; Rabiee, N.; et al. Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere 2022, 290, 133363. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Hou, B.; Hao, C.; Li, X.; Wu, J. Construction of a Lignosulfonate–Lysine Hydrogel for the Adsorption of Heavy Metal Ions. J. Agric. Food Chem. 2020, 68, 3050–3060. [Google Scholar] [CrossRef]
- Sahebalzamani, H.; Mehrani, K.; Hosseini, H.R.M.; Zare, K. Effect of Cysteine Substitutions on the Structural and Magnetic Properties of Fe3O4–Cysteine/RGO and Fe3O4/RGO–Cysteine Nanocomposites. J. Supercond. Nov. Magn. 2019, 32, 1299–1306. [Google Scholar] [CrossRef]
- Mukherjee, T.; Tobin, M.J.; Puskar, L.; Sani, M.-A.; Kao, N.; Gupta, R.K.; Pannirselvam, M.; Quazi, N. Bhattacharya, Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix. Cellulose 2017, 24, 1717–1729. [Google Scholar] [CrossRef]
- Alves, L.; Medronho, B.; Antunes, F.E.; Fernandez-Garcia, M.P.; Ventura, J.; Araujo, J.P.; Romano, A.; Lindman, B. Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. J. Mol. Liq. 2015, 210, 106–112. [Google Scholar] [CrossRef]
- Rozyyev, V.; Murphy, J.G.; Barry, E.; Mane, A.U.; Sibener, S.J.; Elam, J.W. Vapor-phase grafting of a model aminosilane compound to Al2O3, ZnO, and TiO2 surfaces prepared by atomic layer deposition. Appl. Surf. Sci. 2021, 562, 149996. [Google Scholar] [CrossRef]
- Ramu, A.G.; Yang, D.J.; al Olayan, E.M.; AlAmri, O.D.; Aloufi, A.S.; Almushawwah, J.O.; Choi, D. Synthesis of hierarchically structured T-ZnO-rGO-PEI composite and their catalytic removal of colour and colourless phenolic compounds. Chemosphere 2021, 267, 101397. [Google Scholar] [CrossRef] [PubMed]
- Buruaga-Ramiro, C.; Fernández-Gándara, N.; Cabañas-Romero, L.V.; Valenzuela, S.V.; Pastor, F.I.J.; Diaz, P.; Martinez, J. Lytic polysaccharide monooxygenases and cellulases on the production of bacterial cellulose nanocrystals. Eur. Polym. J. 2022, 163, 110939. [Google Scholar] [CrossRef]
- Bao, X.; Qiang, Z.; Chang, J.-H.; Ben, W.; Qu, J. Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water. J. Environ. Sci. 2014, 26, 962–969. [Google Scholar] [CrossRef]
- Yeamsuksawat, T.; Zhao, H.; Liang, J. Characterization and antimicrobial performance of magnetic Fe3O4@Chitosan@Ag nanoparticles synthesized via suspension technique. Mater. Today Commun. 2021, 28, 102481. [Google Scholar] [CrossRef]
- Pereira, M.B.B.; Franca, D.B.; Araujo, R.C.; Filho, E.C.S.; Rigaud, B.; Fonseca, M.G.; Jaber, M. Amino hydroxyapatite/chitosan hybrids reticulated with glutaraldehyde at different pH values and their use for diclofenac removal. Carbohydr. Polym. 2020, 236, 116036. [Google Scholar] [CrossRef]
- Almeida, H.F.D.; Neves, M.C.; Trindade, T.; Marrucho, I.M.; Freire, M.G. Supported ionic liquids as efficient materials to remove non-steroidal anti-inflammatory drugs from aqueous media. Chem. Eng. J. 2020, 381, 122616. [Google Scholar] [CrossRef]
- Malesic-Eleftheriadou, N.; Evgenidou, E.; Lazaridou, M.; Bikiaris, D.N.; Yang, X.; Kyzas, G.Z.; Lambropoulou, D.A. Simultaneous removal of anti-inflammatory pharmaceutical compounds from an aqueous mixture with adsorption onto chitosan zwitterionic derivative. Colloids Surf. Physicochem. Eng. Asp. 2021, 619, 126498. [Google Scholar] [CrossRef]
- Machado, T.S.; Crestani, L.; Marchezi, G.; Melara, F.; de Mello, J.R.; Dotto, G.L.; Piccin, J.S. Synthesis of glutaraldehyde-modified silica/chitosan composites for the removal of water-soluble diclofenac sodium. Carbohydr. Polym. 2021, 277, 118868. [Google Scholar] [CrossRef]
- Yan, S.; Ren, X.; Zhang, F.; Huang, K.; Feng, X.; Xing, P. Comparative study of Pb2+, Ni2+, and methylene blue adsorption on spherical waste solid-based geopolymer adsorbents enhanced with carbon nanotubes. Sep. Purif. Technol. 2022, 284, 120234. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.S.; Ansari, K.R.; Sorour, A.A.; Quraishi, M.A.; Lgaz, H.; Salghi, R. Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution. Int. J. Biol. Macromol. 2018, 107, 1747–1757. [Google Scholar] [CrossRef]
- Shiue, A.; Hu, S.-C.; Chang, S.-M.; Ko, T.-Y.; Hsieh, A.; Chan, A. Adsorption Kinetics and Breakthrough of Carbon Dioxide for the Chemical Modified Activated Carbon Filter Used in the Building. Sustainability 2017, 9, 1533. [Google Scholar] [CrossRef] [Green Version]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of Apparent Pseudo-Second-Order Adsorption Kinetics onto Cellulosic Materials: A Review. Bioresources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Chakraborty, R.; Verma, R.; Asthana, A.; Vidya, S.S.; Singh, A.K. Adsorption of hazardous chromium (VI) ions from aqueous solutions using modified sawdust: Kinetics, isotherm and thermodynamic modelling. Int. J. Environ. Anal. Chem. 2021, 101, 911–928. [Google Scholar] [CrossRef]
- Leshaf, A.; Cherif, H.Z.; Benmansour, K. Adsorption of Acidol Red 2BE-NW Dye from Aqueous Solutions on Carboxymethyl Cellulose/Organo-Bentonite Composite: Characterization, Kinetic and Thermodynamic Studies. J. Polym. Environ. 2019, 27, 1054–1064. [Google Scholar] [CrossRef]
- Rashid, J.; Saleemi, F.; Akram, B.; Wang, L.; Hussain, N.; Xu, M. Facile Synthesis of g-C3N4/MoO3 Nanohybrid for Efficient Removal of Aqueous Diclofenac Sodium. Nanomaterials 2021, 11, 1564. [Google Scholar] [CrossRef]
- Avcu, T.; Uner, O.; Gecgel, U. Adsorptive removal of diclofenac sodium from aqueous solution onto sycamore ball activated carbon—isotherms, kinetics, and thermodynamic study. Surf. Interfaces 2021, 24, 101097. [Google Scholar] [CrossRef]
- Abu-Danso, E.; Bagheri, A.; Bhatnagar, A. Facile functionalization of cellulose from discarded cigarette butts for the removal of diclofenac from water. Carbohydr. Polym. 2019, 219, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.F.; Fernandes, T.; Sacramento, M.; Trindade, T.; Daniel-da-Silva, A.L. Magnetic quaternary chitosan hybrid nanoparticles for the efficient uptake of diclofenac from water. Carbohydr. Polym. 2019, 203, 35–44. [Google Scholar] [CrossRef] [PubMed]
Sample | Experimental Conditions | qm(mg/g) | Main Interaction Mechanisms | Reference | |
---|---|---|---|---|---|
pH | Temperature (°C) | ||||
ZnFe2O4/chitosan | 4.0 | 25 | 10.1 | Hydrogen bonds and electrostatic interactions | [41] |
CS-MEDSP | 4.0 | 40 | 120.0 | Electrostatic interactions | [42] |
Functionalized silica with ionic liquid | 6.7 | 25 | 273.8 | Covalent bonds | [43] |
MCNC-PEI | 4.5 | 25 | 299.93 | Hydrogen bonds and electrostatic interactions | This work |
DS Concentration | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
Δq (mg/g) | k1 (min−1) | R2 | Δq (mg/g) | K2 (g mg−1min−1) | R2 | |
50 mg/L | −0.73 | 0.075 | 0.972 | 6.73 | 1.72 × 10−3 | 0.993 |
100 mg/L | −1.04 | 0.066 | 0.976 | 12.75 | 7.93 × 10−4 | 0.992 |
200 mg/L | −2.67 | 0.058 | 0.991 | 23.98 | 3.57 × 10−4 | 0.993 |
Temperature | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (min−1) | R2 | KF (mg/g) | n (g mg−1min−1) | R2 | |
293.8 K | 297.49 | 0.039 | 0.991 | 38.79 | 2.70 | 0.956 |
298.8 K | 299.93 | 0.044 | 0.995 | 41.49 | 2.75 | 0.933 |
303.8 K | 300.19 | 0.056 | 0.991 | 47.90 | 2.90 | 0.964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Tong, J.; Lan, H.; Pan, D. Fabrication of Polyethyleneimine-Functionalized Magnetic Cellulose Nanocrystals for the Adsorption of Diclofenac Sodium from Aqueous Solutions. Polymers 2022, 14, 720. https://doi.org/10.3390/polym14040720
Zhu X, Tong J, Lan H, Pan D. Fabrication of Polyethyleneimine-Functionalized Magnetic Cellulose Nanocrystals for the Adsorption of Diclofenac Sodium from Aqueous Solutions. Polymers. 2022; 14(4):720. https://doi.org/10.3390/polym14040720
Chicago/Turabian StyleZhu, Xiaoyan, Jiaqi Tong, Hangzhen Lan, and Daodong Pan. 2022. "Fabrication of Polyethyleneimine-Functionalized Magnetic Cellulose Nanocrystals for the Adsorption of Diclofenac Sodium from Aqueous Solutions" Polymers 14, no. 4: 720. https://doi.org/10.3390/polym14040720
APA StyleZhu, X., Tong, J., Lan, H., & Pan, D. (2022). Fabrication of Polyethyleneimine-Functionalized Magnetic Cellulose Nanocrystals for the Adsorption of Diclofenac Sodium from Aqueous Solutions. Polymers, 14(4), 720. https://doi.org/10.3390/polym14040720