Enhancement and Evaluation of Interfacial Adhesion between Active Screen Plasma Surface-Functionalised Carbon Fibres and the Epoxy Substrate
Abstract
:1. Introduction
2. Material and Experimental
2.1. Materials
2.2. Active Screen Plasma Treatments
2.3. Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy (XPS)
2.4. Dynamic Vapour Sorption (DVS) Tests
2.5. Single Fibre Push-Out Tests
2.5.1. Sample Preparation
2.5.2. Test Setup
2.5.3. Interpretation of a Typical Load–Displacement Curve
2.5.4. Interfacial Shear Strength (IFSS)
Average Interfacial Shear Stress
Weibull Distribution
3. Results and Discussion
3.1. Surface Morphology and Chemistry of CFs
3.2. Surface Water-Sorption Behaviour
3.3. Interfacial Property of Carbon Fibre-Reinforced Composites
3.3.1. Load–Displacement Curves and Post-Observation of Pushed-Out Fibres
3.3.2. Interfacial Shear Strength
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Clyne, T.W.; Hull, D. An Introduction to Composite Materials, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Semitekolos, D.; Kainourgios, P.; Jones, C.; Rana, A.; Koumoulos, E.P.; Charitidis, C.A. Advanced carbon fibre composites via poly methacrylic acid surface treatment; surface analysis and mechanical properties investigation. Compos. Part B Eng. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Wen, Z.; Qian, X.; Zhang, Y.; Wang, X.; Wang, W.; Song, S. Electrochemical polymerization of carbon fibers and its effect on the interfacial properties of carbon reinforced epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 2019, 119, 21–29. [Google Scholar] [CrossRef]
- Fan, W.; Tian, H.; Wang, H.; Zhang, T.; Yang, X.; Yu, Y.; Meng, X.; Yu, X.; Yuan, L.; Xu, B.; et al. Enhanced interfacial adhesion of aramid fiber III reinforced epoxy composites via low temperature plasma treatment. Polym. Test. 2018, 72, 147–156. [Google Scholar] [CrossRef]
- Lee, E.S.; Lee, C.H.; Chun, Y.S.; Han, C.J.; Lim, D.S. Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites. Compos. Part B Eng. 2017, 116, 451–458. [Google Scholar] [CrossRef]
- Jäger, M.; Zabihi, O.; Ahmadi, M.; Li, Q.; Depalmeanar, A.; Naebe, M. Nano-enhanced interface in carbon fibre polymer composite using halloysite nanotubes. Compos. Part A Appl. Sci. Manuf. 2018, 109, 115–123. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G. Grafting halloysite nanotubes with amino or carboxyl groups onto carbon fiber surface for excellent interfacial properties of silicone resin composites. Polymers 2018, 10, 1171. [Google Scholar] [CrossRef] [Green Version]
- Altay, L.; Bozaci, E.; Atagur, M.; Sever, K.; Tantug, G.S.; Sarikanat, M.; Seki, Y. The effect of atmospheric plasma treatment of recycled carbon fiber at different plasma powers on recycled carbon fiber and its polypropylene composites. J. Appl. Polym. Sci. 2019, 136, 47131. [Google Scholar] [CrossRef]
- Montes-Moran, M.A.; Young, R.J. Raman spectroscopy study of HM carbon fibres: Effect of plasma treatment on the interfacial properties of single fibre/epoxy composites. Carbon 2002, 40, 845–855. [Google Scholar] [CrossRef]
- Wu, G.M. Oxygen plasma treatment of high performance fibers for composites. Mater. Chem. Phys. 2004, 85, 81–87. [Google Scholar] [CrossRef]
- Jang, B.Z. Control of interfacial adhesion in continuous carbon and Kevlar fiber reinforced polymer composites. Compos. Sci. Technol. 1992, 44, 333–349. [Google Scholar] [CrossRef]
- Gallo, S.C.; Dong, H. On the fundamental mechanisms of active screen plasma nitriding. Vacuum 2009, 84, 321–325. [Google Scholar] [CrossRef]
- Gallo, S.C.; Charitidis, C.; Dong, H. Surface functionalization of carbon fibers with active screen plasma. J. Vac. Sci. Technol. 2017, 35, 021404. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Li, X.; Semitekolos, D.; Charitidis, C.A.; Dong, H. Enhanced properties of PAN-derived carbon fibres and resulting composites by active screen plasma surface functionalisation. Plasma Process Polym. 2020, 17, 1900252. [Google Scholar] [CrossRef] [Green Version]
- Graupner, N.; Rößler, J.; Ziegmann, G.; Müssig, J. Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: A critical review of pull-out test, microbond test and single fibre fragmentation test results. Compos. Part A Appl. Sci. Manuf. 2014, 63, 133–148. [Google Scholar] [CrossRef]
- Deng, S.; Ye, L.; Mai, Y.W. Measurement of interfacial shear strength of carbon fibre/epoxy composites using a single fibre pull-out test. Adv. Compos. Mater. 1998, 7, 169–182. [Google Scholar] [CrossRef]
- DiFrancia, C.; Ward, T.C.; Claus, R.O. The single-fibre pull-out test. 1: Review and interpretation. Compos. Part A Appl. Sci. Manuf. 1996, 27, 597–612. [Google Scholar] [CrossRef]
- Gallo, S.C.; Li, X.; Zhang, Z.; Charitidis, C.; Dong, H. Viscoelastic response of carbon fibre reinforced polymer during push-out tests. Compos. Part A Appl. Sci. Manuf. 2018, 112, 178–185. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, C.; Zhou, C.; Xu, H.; Jin, X. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique. Appl. Surf. Sci. 2015, 357, 1427–1433. [Google Scholar] [CrossRef]
- Battisti, A.; Esqué-de, O.D.; Ghisleni, R.; Brunner, A.J. Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Compos. Sci. Technol. 2014, 95, 121–137. [Google Scholar] [CrossRef]
- Chandra, N.; Ghonem, H. Interfacial mechanics of push-out tests: Theory and experiments. Compos. Part A Appl. Sci. Manuf. 2001, 32, 575–584. [Google Scholar] [CrossRef]
- Awal, A.; Cescutti, G.; Ghosh, S.B.; Müssig, J. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos. Part A Appl. Sci. Manuf. 2011, 42, 50–56. [Google Scholar] [CrossRef]
- Deng, S.; Ye, L.; Mai, Y.W.; Liu, H.Y. Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests. Compos. Part A Appl. Sci. Manuf. 1998, 29, 423–434. [Google Scholar] [CrossRef]
- Stojcevski, F.; Hilditch, T.B.; Henderson, L.C. A comparison of interfacial testing methods and sensitivities to carbon fiber surface treatment conditions. Compos. Part A Appl. Sci. Manuf. 2019, 118, 293–301. [Google Scholar] [CrossRef]
- Zhang, Z.; Gallo, S.C.; Li, X.; Dong, H.; Dragatogiannis, D.; Charitidis, C.A. Evaluation of the creep behaviour of the carbon fibre in an unidirectional pultruded reinforced composite using nano-indentation technique. Polym. Test. 2019, 80, 106091. [Google Scholar] [CrossRef]
- TEIJIN Carbon Fibre, Properties of Tenax® Filament Yarn. Available online: https://www.teijincarbon.com/products/tenaxr-carbon-fiber/tenaxr-filament-yarn (accessed on 30 January 2022).
- Bessadok, A.; Marais, S.; Roudesli, S.; Lixon, C.; Métayer, M. Influence of chemical modifications on water-sorption and mechanical properties of Agave fibres. Compos. Part A Appl. Sci. Manuf. 2008, 39, 29–45. [Google Scholar] [CrossRef]
- Medina, M.C.; Molina-Aldareguía, J.M.; González, C.; Melendrez, M.F.; Flores, P.; LLorca, J. Comparison of push-in and push-out tests for measuring interfacial shear strength in nano-reinforced composite materials. J. Compos. Mater. 2016, 50, 1651–1659. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, S.; Lee, E.S.; Lei, L.; Nunna, B.B.; Kuang, L.; Zhang, W. Synthesis of nitrogen-doped graphene catalyst by high-energy wet ball milling for electrochemical systems. Int. J. Energy Res. 2016, 40, 2136–2149. [Google Scholar] [CrossRef]
- Liu, L.; Tan, S.J.; Horikawa, T.; Do, D.D.; Nicholson, D.; Liu, J. Water adsorption on carbon-A review. Adv. Colloid Interface Sci. 2017, 250, 64–78. [Google Scholar] [CrossRef]
- Gallo, S.C.; Dong, H. Effect of microstructure on the plasma surface treatment of carbon fibres. J. Compos. Mater. 2016, 51, 3239–3256. [Google Scholar] [CrossRef] [Green Version]
Diameter (μm) | Strength (GPa) | Modulus (GPa) | Strain (%) | Density (g/cm3) | Sizing Type | Sizing Volume (%) |
---|---|---|---|---|---|---|
7 | 4.7 | 240 | 1.7 | 1.77 | Epoxy | 1.3 |
Sample Code | C 1s (%) | N 1s (%) | O 1s (%) |
---|---|---|---|
Pristine | 81.1 | 1.4 | 17.5 |
ASPN | 81.4 | 3.7 | 14.9 |
ASPAr | 82.4 | 0.9 | 16.7 |
Sample Code | Dry Weight (mg) | Average Water Content (%) | Chemisorption (%) | Physisorption (%) | |
---|---|---|---|---|---|
Adsorption | Desorption | ||||
Pristine | 9.98 | 3.06 | 2.79 | 2.79 | 0.27 |
ASPN | 9.75 | 3.74 | 3.57 | 3.57 | 0.17 |
ASPAr | 10.02 | 4.46 | 4.28 | 4.28 | 0.17 |
ASPN (+60 days) | 9.87 | 3.07 | 2.93 | 2.93 | 0.14 |
ASPAr (+60 days) | 10.02 | 3.37 | 3.23 | 3.14 | 0.14 |
Sample Code | d (μm) | Average IFSS (MPa) | Weibull Modulus (m) | Weibull Scaling Parameter, τ (MPa) | R2 |
---|---|---|---|---|---|
Pristine | 6.76 ± 0.32 | 55 ± 12 | 10.22 | 57 | 93.8 |
ASPN | 6.62 ± 0.25 | 72 ± 9 | 10.36 | 75 | 93.1 |
ASPAr | 6.63 ± 0.28 | 77 ± 10 | 9.80 | 81 | 97.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Li, X.; Giorcelli, M.; Tagliaferro, A.; Charitidis, C.; Dong, H. Enhancement and Evaluation of Interfacial Adhesion between Active Screen Plasma Surface-Functionalised Carbon Fibres and the Epoxy Substrate. Polymers 2022, 14, 824. https://doi.org/10.3390/polym14040824
Liang Y, Li X, Giorcelli M, Tagliaferro A, Charitidis C, Dong H. Enhancement and Evaluation of Interfacial Adhesion between Active Screen Plasma Surface-Functionalised Carbon Fibres and the Epoxy Substrate. Polymers. 2022; 14(4):824. https://doi.org/10.3390/polym14040824
Chicago/Turabian StyleLiang, Yana, Xiaoying Li, Mauro Giorcelli, Alberto Tagliaferro, Costas Charitidis, and Hanshan Dong. 2022. "Enhancement and Evaluation of Interfacial Adhesion between Active Screen Plasma Surface-Functionalised Carbon Fibres and the Epoxy Substrate" Polymers 14, no. 4: 824. https://doi.org/10.3390/polym14040824
APA StyleLiang, Y., Li, X., Giorcelli, M., Tagliaferro, A., Charitidis, C., & Dong, H. (2022). Enhancement and Evaluation of Interfacial Adhesion between Active Screen Plasma Surface-Functionalised Carbon Fibres and the Epoxy Substrate. Polymers, 14(4), 824. https://doi.org/10.3390/polym14040824