Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar Cells
Abstract
:1. Introduction
2. Working Mechanisms of Perovskite Solar Cells
3. PEDOT:PSS Thin-Film-Based Perovskite Solar Cells
4. PTAA Thin-Film-Based Perovskite Solar Cells
5. P3CT-X Thin-Film-Based Perovskite Solar Cells
6. Understanding of Highly-Efficient Inverted Perovskite Solar Cells
7. Roles of ETL in Inverted Perovskite Solar Cells
8. Challenges and Future Directions in Inverted Perovskite Solar Cells
8.1. PEDOT:PSS-Based Inverted Perovskite Solar Cells
8.2. PTAA-Based Inverted Perovskite Solar Cells
8.3. P3CT-X-Based Inverted Perovskite Solar Cells
8.4. An Ideal Polymer-MTL-Based Inverted Perovskite Solar Cell
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lenz, A.; Kariis, H.; Pohl, A.; Persson, P.; Ojamae, L. The electronic structure and reflectivity of PEDOT:PSS from density functional theory. Chem. Phy. 2011, 384, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.-H.; Hou, Y.-B.; Shi, Q.-M.; Qin, L.-F.; Li, Y.; Zhang, L.; Liu, X.-J.; Teng, F.; Wang, Y.-S.; Xia, R.-D. Polymer solar cells based on a PEDOT:PSS layer spin-coated under the action of an electric field. Chin. Phys. B 2010, 19, 038601. [Google Scholar]
- Chang, S.H.; Chiang, C.-H.; Kao, F.-S.; Tien, C.-L.; Wu, C.-G. Unraveling the enhanced electrical conductivity of PEDOT:PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J. 2014, 6, 8400307. [Google Scholar]
- Xu, B.; Gopalan, S.-A.; Gopalan, A.-I.; Muthuchamy, N.; Lee, K.-P.; Lee, J.-S.; Jiang, Y.; Lee, S.-W.; Kim, S.W.; Kim, J.-S.; et al. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells. Sci. Rep. 2017, 7, 45079. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wang, H.; Hu, Y.H. A review on PEDOT-based counter electrodes for dye-sensitized solar cells. Int. J. Energy Res. 2014, 38, 1099–1111. [Google Scholar] [CrossRef]
- Bourarissa, A.; Gueddim, A.; Bouarissa, N.; Djellali, S. Band structure and optical properties of polyaniline polymer material. Polym. Bull. 2018, 75, 3023–3033. [Google Scholar] [CrossRef]
- Moule, A.J.; Jung, M.-C.; Rochester, C.W.; Tress, W.; LaGrange, D.; Jacobs, I.E.; Mauger, S.A.; Rail, M.D.; Lin, O.; Bilsky, D.J.; et al. Mixed interlayers at the interface between PEDOT:PSS and conjugated polymers provide charge transport control. J. Mater. Chem. C 2015, 3, 2664–2676. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Song, J.; Yin, X.; Su, Z.; Li, Z. Research progress on polymer solar cells based on PEDOT:PSS electrodes. Polymers 2020, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Bejbouji, H.; Vignau, L.; Miane, J.L.; Dang, M.-T.; Oaulim, E.M.; Harmouchi, M.; Mouhsen, A. Polyaniline as hole injection layer on organic photovoltaic cells. Sol. Energy Mater. Sol. Cells 2010, 94, 176–181. [Google Scholar] [CrossRef]
- Dwiveid, G.; Munjal, G.; Bhaskarwar, A.N.; Chaudhary, A. Dye-sensitized solar cells with polyaniline: A review. Inorg. Chem. Commun. 2022, 135, 109087. [Google Scholar] [CrossRef]
- Menke, S.M.; Ran, N.A.; Bazan, G.C.; Friend, R.H. Understanding energy loss in organic solar cells: Toward a new efficiency regime. Joule 2018, 2, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.X. Organic Solar Cells: Recent progress and challenges. ACS Energy Lett. 2019, 4, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Leblebici, S.Y.; Chen, T.L.; Olalde-Velasco, P.; Yang, W.; Ma, B. Reducing exciton binding energy by increasing thin film permittivity: An effective approach to enhance exciton separation efficiency in organic solar cells. ACS Appl. Mater. Interfaces 2013, 20, 10105–10110. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yi, Y.; Wei, Z. Exciton binding energies of nonfullerene small molecule acceptors: Implication for exciton dissociation driving forces in organic solar cells. J. Phys. Chem. C 2018, 122, 22309–22316. [Google Scholar] [CrossRef]
- Giuliano, G.; Bonasera, A.; Scopelliti, M.; Martino, D.C.; Fiore, T.; Pignataro, B. Boosting the performance of one-step solution-processed perovskite solar cells using a natural monterpene alcohol as a green solvent additive. ACS Appl. Electron. Mater. 2021, 3, 1813–1825. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Chen, H. Two-step sequential deposition of organometal halide perovskite for photovoltaic application. Adv. Funct. Mater. 2017, 27, 1605654. [Google Scholar] [CrossRef]
- Vaynzof, Y. The future of perovskite photovoltaics-thermal evaporation or solution processing? Adv. Energy Mater. 2020, 10, 2003073. [Google Scholar] [CrossRef]
- Ouyang, Z.; Yang, M.; Whitaker, J.B.; Li, D.; van Hest, M.F.A.M. Toward scalable perovskite solar modules using blade coating and rapid thermal processing. ACS Appl. Energy Mater. 2020, 3, 3714–3720. [Google Scholar] [CrossRef]
- Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef]
- Chang, S.H.; Lin, K.-F.; Chiu, K.Y.; Tsai, C.-L.; Cheng, H.-M.; Chen, W.-N.; Chen, S.-H.; Wu, C.-G. Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of PEDOT:PSS hole transport layer. Sol. Energy 2015, 122, 892–899. [Google Scholar] [CrossRef]
- Chen, C.-C.; Chang, S.H.; Chen, L.-C.; Cheng, H.-M.; Wu, W.-T.; Chuang, C.L.; Tseng, Z.-L.; Wu, C.-G. Improving the efficiency of inverted mixed-organic-cation perovskite absorber based photovoltaics by tailing the surface roughness of PEDOT:PSS thin film. Sol. Energy 2016, 135, 445–451. [Google Scholar] [CrossRef]
- Chang, S.H.; Chen, W.-N.; Chen, C.-C.; Yeh, S.-C.; Cheng, H.-M.; Tseng, Z.-L.; Chen, L.-C.; Chiu, K.Y.; Chen, C.-T.; Chen, S.-H.; et al. Manipulating the molecular structure of PEDOT chains through controlling the viscosity of PEDOT:PSS solution to improve photovoltaic performance of CH3NH3PbI3 solar cells. Sol. Energy. Mater. Sol. Cells 2017, 161, 7–13. [Google Scholar] [CrossRef]
- Xia, Y.; Yan, G.; Lin, J. Review on tailoring PEDOT:PSS layer for improved device stability of perovskite solar cells. Nanomaterials 2021, 11, 3119. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-F.; Chang, S.H.; Wang, K.-H.; Chen, H.-M.; Lee, K.-M.; Chen, S.-H.; Wu, C.-G. Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment. Sol. Energy Mater. Sol. Cells 2015, 141, 309–314. [Google Scholar] [CrossRef]
- Chang, S.H.; Lin, K.-F.; Cheng, H.-M.; Chen, C.-C.; Wu, W.-T.; Chen, S.-H.; Wu, C.-G. Influence of organic cations on high-performance CH3NH3PbI3 based photovoltaics. Sol. Energy Mater. Sol. Cells 2016, 145, 375–381. [Google Scholar] [CrossRef]
- Chen, C.-C.; Chang, S.H.; Chen, L.-C.; Cheng, H.-M.; Tseng, Z.-L.; Wu, C.-G. Manipulating multicrystalline grain size in CH3NH3PbI3 thin films for application in photovoltaics. Sol. Energy 2016, 139, 518–523. [Google Scholar] [CrossRef]
- Li, Y.; Meng, L.; Yang, Y.; Xu, G.; Hong, Z.; Chen, Q.; You, J.; Li, G.; Yang, Y.; Li, Y. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.H.; Chiang, C.-C.; Chen, L.-C.; Tien, C.-L.; Cheng, H.-M.; Huang, W.-C.; Lin, H.-Y.; Chen, S.-H.; Wu, C.-G. Unraveling the multifunctional capabilities of PCBM thin films in inverted-type CH3NH3PbI3 based photovoltaics. Sol. Energy Mater. Sol. Cells 2017, 169, 40–46. [Google Scholar] [CrossRef]
- Cho, A.-N.; Park, N.-G. Impact of interfacial layers in perovskite solar cells. ChemSusChem 2017, 10, 3687–3704. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Bi, C.; Huang, H. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Bi, C.; Yuan, Y.; Bai, Y.; Huang, H. Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 2016, 3, 1500301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, X.; Wang, X.; Zhao, L.; Jiu, T.; Fang, J. Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. J. Mater. Chem. A 2015, 3, 15024–15029. [Google Scholar] [CrossRef]
- Li, S.; He, B.; Xu, J.; Lu, H.; Jiang, J.; Zhu, J.; Kan, Z.; Zhu, L.; Wu, F. Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V. Nanoscale 2020, 12, 3686–3691. [Google Scholar] [CrossRef]
- Glowienka, D.; Zhang, D.; Giacomo, F.D.; Najafi, M.; Veenstra, S.; Szmytkowski, J.; Galagan, Y. Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3. Nano Energy 2020, 67, 104186. [Google Scholar] [CrossRef]
- Haddad, J.; Krogmeier, B.; Klingebiel, B.; Kruckemeier, L.; Melhem, S.; Liu, Z.; Hupkes, J.; Mathur, S.; Kirchartz, T. Analyzing interface recombination in lead-halide perovskite solar cells with organic and inorganic hole-transport layers. Adv. Mater. Interfaces 2020, 7, 2000366. [Google Scholar] [CrossRef]
- Raoui, Y.; Ez-Zahraouy, H.; Kazim, S.; Ahmad, S. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. J. Energy Chem. 2021, 54, 822–829. [Google Scholar] [CrossRef]
- Chin, Y.-C.; Daboczi, M.; Henderson, C.; Luke, J.; Kim, J.-S. Suppressing PEDOT:PSS doping-induced interfacial recombination loss in perovskite solar cells. ACS Energy Lett. 2022, 7, 560–568. [Google Scholar] [CrossRef]
- Lee, H.; Rhee, S.; Kim, J.; Lee, C.; Kim, H.J. Surface coverage enhancement of a mixed halide perovskite film by using an UV-ozone treatment. Korean Phys. Soc. 2016, 69, 406–411. [Google Scholar] [CrossRef]
- Lee, K.-M.; Chen, C.-C.; Chen, L.-C.; Chang, S.H.; Chen, K.-S.; Yeh, S.-C.; Chen, C.-T.; Wu, C.-G. Thickness effects of the thermally evaporated C60 thin films on regular-type CH3NH3PbI3 based solar cells. Sol. Energy. Mater. Sol. Cells 2017, 164, 13–18. [Google Scholar] [CrossRef]
- Islam, M.B.; Yanagida, M.; Shirai, Y.; Nabetani, Y.; Miyano, K. NiOx hole transport layer for perovskite solar cells with improved stability and reproducibility. ACS Omega 2017, 2, 2291–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.-K.; Fu, W.-F.; Liu, W.-Q.; Zhang, Z.-Q.; Liu, Y.-J.; Yan, J.-L.; Ye, T.; Yang, W.-T.; Li, H.-Y.; Chen, H.-Z. Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells. Chin. Chem. Lett. 2017, 28, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.; Bai, Y.; Liu, M.; Xia, R.; Hu, Z.; Chen, Z.; Jiang, X.-F.; Huang, F.; Yang, S.; Matsuo, Y.; et al. Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor. Adv. Energy Mater. 2017, 7, 1602333. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Y.; Chen, G.; Wu, Y.; Tu, B.; Liu, F.-Z.; Huang, L.; Na, A.M.C.; Djurisic, A.B.; He, Z. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803872. [Google Scholar] [CrossRef]
- Hsu, H.-L.; Jiang, B.-H.; Lan, J.-M.; Wu, C.-H.; Jeng, R.-J.; Chen, C.-P. Small molecules with controllable molecular weights passivate surface defects in air-stable p-i-n perovskite solar cells. Adv. Electron. Mater. 2021, 7, 2000870. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Li, C.-W.; Lu, Y.-L.; Wu, M.-S.; Li, H.; Lin, Y.-S.; Lu, C.-W.; Chen, C.-P.; Chang, Y.J. Spherical hole-transporting interfacial layer passivated defect for inverted NiOx-based planar perovskite solar cells with high efficiency of over 20%. ACS Appl. Mater. Interfaces 2021, 13, 6450–6460. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Zhao, Y.; Li, J.; Zhang, X.; Gu, H.; You, J. Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 2021, 52, 393–411. [Google Scholar] [CrossRef]
- Xu, X.; Ma, C.; Cheng, Y.; Xie, Y.-M.; Yi, X.; Gautam, B.; Chen, S.; Li, H.-W.; Lee, C.-S.; So, F.; et al. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. J. Power Sources 2017, 360, 157–165. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Li, H.; Lan, Y.; Zhou, X.; Li, C.; Hu, X.; Song, Y. Patterned wettability surface for competition-driving large-grained perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900838. [Google Scholar] [CrossRef]
- Wang, T.; Xie, M.; Abbasi, S.; Cheng, Z.; Liu, H.; Shen, W. High efficiency perovskite solar cells with tailorable surface wettability by surfactant. J. Power Sources 2020, 448, 227584. [Google Scholar] [CrossRef]
- Chen, L.-C.; Chen, C.-C.; Chang, S.H.; Lee, K.-L.; Tseng, Z.-L.; Chen, S.-H.; Kuo, H.-C. Formation and characterization of preferred oriented perovskite thin films on single-crystalline substrates. Mater. Res. Express 2018, 5, 066403. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Xu, Q.; Wei, H.; Fang, Y.; Wang, Q.; Deng, Y.; Li, T.; Gruverman, A.; Cao, L.; et al. Monolithic integration of hybrid perovskite single crystals with heterogeneous substrate for highly sensitive X-ray imaging. Nat. Photonics 2017, 11, 315–321. [Google Scholar] [CrossRef]
- Pan, L.; Feng, Y.; Kandlakunta, P.; Huang, J.; Cao, L.R. Performance of perovskite CsPbBr3 single crystal detector for gamma-ray detection. IEEE Trans. Nucl. Sci. 2020, 67, 443–449. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Wu, C.-G. Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat. Photonics 2016, 10, 196–200. [Google Scholar] [CrossRef]
- Chen, L.-C.; Tseng, Z.-L.; Huang, J.-K.; Chen, C.-C.; Chang, S.H. Fullerene-based electron transport layers for semi-transparent MAPbI3 perovskite films in planar perovskite solar cells. Coating 2016, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Cui, R.; Huang, H.; Guo, X.; Dong, J.; Yao, H.; Li, Y.; Zhao, D.; Wang, J.; Zhang, J.; et al. Elucidating the mechanisms underlying PCBM enhancement of CH3NH3PbI3 perovskite solar cells using GIXRD and XAFS. J. Mater. Chem. A 2020, 8, 3145–3153. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Lee, E.-C. High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer. J. Mater. Chem. C 2019, 7, 6956–6963. [Google Scholar] [CrossRef]
- Chang, S.H.; Wong, S.-D.; Huang, H.-Y.; Yuan, C.-T.; Wu, J.-R.; Chiang, S.-E.; Tseng, Z.-L.; Chen, S.-H. Effects of the washing-enhanced nucleation process on the material properties and performance of perovskite solar cells. J. Alloys Compd. 2019, 808, 151723. [Google Scholar] [CrossRef]
- Chiang, S.-E.; Wu, J.-R.; Cheng, H.-M.; Hsu, C.-L.; Shen, J.-H.; Yuan, C.-T.; Chang, S.H. Origins of the s-shape characteristic in J-V curve of inverted-type perovskite solar cells. Nanotechnology 2020, 31, 115403. [Google Scholar] [CrossRef]
- Zhong, H.; Zhou, R.; Wu, X.; Lin, X.; Wang, Y.; Li, Q.; Zhou, H. Investigation of the s-shaped current-voltage curve in high open-circuit voltage ruddlesden-popper perovskite solar cells. Front. Energy Res. 2021, 9, 689657. [Google Scholar] [CrossRef]
- Liu, X.; Yu, H.; Yan, L.; Dong, Q.; Wan, Q.; Zhou, Y.; Song, B.; Li, Y. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 6230–6237. [Google Scholar] [CrossRef]
- Shibayama, N.; Kanda, H.; Kim, T.W.; Segawa, H.; Ito, S. Design of BCP buffer layer for inverted perovskite solar cells using ideal factor. APL Mater. 2019, 7, 031117. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.H.; Tseng, P.-C.; Chiang, S.-E.; Wu, J.-R.; Chen, Y.-T.; Chen, C.-J.; Yuan, C.-T.; Chen, S.-H. Structural, optical and excitonic properties of MAxCs1-xPb(IxBr1-x)3 alloy thin films and their application in solar cells. Sol. Energy Mater. Sol. Cells 2020, 210, 110478. [Google Scholar] [CrossRef]
- Chiang, S.-E.; Chandel, A.; Thakur, D.; Chen, Y.-T.; Lin, P.-C.; Wu, J.-R.; Cai, K.-B.; Kassou, S.; Yeh, J.-M.; Yuan, C.-T.; et al. On the role of solution-processed bathocuproine in high-efficiency inverted perovskite solar cells. Sol. Energy 2021, 218, 142–149. [Google Scholar] [CrossRef]
- Granas, O.; Vinichenko, D.; Kaxiras, E. Establishing the limits of efficiency of perovskite solar cells form first principles modeling. Sci. Rep. 2016, 6, 36108. [Google Scholar] [CrossRef] [PubMed]
- Pazos-Outon, L.M.; Xiao, T.P.; Yablonovitch, E. Fundamental Efficiency limit of lead iodide perovskite solar cells. J. Phys. Chem. Lett. 2018, 9, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Jacobsson, J.J.; Correa-Baena, J.-P.; Pazoki, M.; Saliba, M.; Schenk, K.; Gratzel, M.; Hagfeldt, A. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 2016, 9, 1706–1724. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Al Sobaie, M.S.; Majeed Khan, M.A.; Bedja, I.M.; Alharbi, F.H.; Nazeeruddin, M.K.; Aldwayyan, A.S. Band-gap tuning of lead halide perovskite using a single step spin-coating deposition process. Mater. Lett. 2016, 164, 498–501. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef]
- Degani, M.; An, Q.; Albaladejo-Siguan, M.; Hofstetter, Y.J.; Cho, C.; Paulus, F.; Grancini, G.; Vaynzof, Y. 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 2020, 7, eabj7930. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazzruddin, M.K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Ray, A.; Jaysankar, M.; Merckx, T.; Bastos, J.P.; Cheyns, D.; Gehlhaar, R.; Poormans, J.; Heremans, P. An interdiffusion method for highly performing cesium/formanidinium double cation perovskites. Adv. Funct. Mater. 2017, 27, 1700920. [Google Scholar] [CrossRef]
- Tripathi, N.; Yanagida, M.; Shirai, Y.; Miyano, K. Improved performance of planar perovskite devices via inclusion of ammonium acid iodide (AAI) derivatives using a two step inter-diffusion process. J. Mater. Chem. C 2019, 7, 3447–3451. [Google Scholar] [CrossRef]
- Chang, S.H.; Huang, W.-C.; Chen, C.-C.; Chen, S.-H.; Wu, C.-G. Effects of anti-solvent (iodobenzene) volume on the formation of CH3NH3PbI3 thin films and their application in photovoltaic cells. Appl. Surf. Sci. 2018, 445, 24–29. [Google Scholar] [CrossRef]
- Li, C.-Y.; Liao, Y.-S.; Thakur, D.; Chandel, A.; Chiang, S.-E.; Wu, J.-R.; Lee, P.-H.; Tsai, C.-L.; Yang, C.-C.; Zhong, Y.-L.; et al. Anti-solvent mixture-mediated reduction of photocurrent hysteresis in high-impurity perovskite precursor based MAPbI3 solar cells. Sol. Energy 2021, 2014, 86–92. [Google Scholar] [CrossRef]
- Chandel, A.; Wu, J.-R.; Thakur, D.; Kassou, S.; Chaing, S.-E.; Cheng, K.-R.; Li, C.-Y.; Yen, Y.-S.; Chen, S.-H.; Chang, S.H. Improvement of interfacial contact for efficient PCBM/MAPbI3 planar heterojunction solar cells with a binary antisolvent mixture treatment. Nanotechnology 2021, 32, 485401. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lin, H.-Y.; Chiang, K.-M.; Tsai, W.-L.; Huang, Y.-C.; Tsao, C.-S.; Lin, H.-W. All-vaccum-deposition stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Adv. Mater. 2017, 29, 1605290. [Google Scholar] [CrossRef]
- Rob, M.; Gil-Escrig, L.; Al-Ashouri, A.; Tockhorn, P.; Jost, M.; Rech, B.; Albrecht, S. Co-evaporated p-i-n perovskite solar cells beyond 20% efficiency: Impact of substrate temperature and hole-transport layer. ACS Appl. Mater. Interfaces 2020, 12, 39261–39272. [Google Scholar]
- Abzieher, T.; Feeney, T.; Schackmar, F.; Donie, Y.J.; Hossain, I.M.; Schwenzer, J.A.; Hellmann, T.; Mayer, T.; Powalla, M.; Paetzold, U.W. From groundwork to efficient solar cells: On the importance of the substrate material in co-evaporated perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2104482. [Google Scholar] [CrossRef]
- Leguy, A.M.A.; Azarhoosh, P.; Alonso, M.I.; Campoy-Quiles, M.; Weber, O.J.; Yao, J.; Bryant, D.; Weller, M.T.; Nelson, J.; Walsh, A.; et al. Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale 2016, 8, 6317–6327. [Google Scholar] [CrossRef] [Green Version]
- El-Ghtami, H.; Laref, A.; Laref, S. Electronic and optical behaviors of methylammonium and formamidinium lead trihalide perovskite materials. J. Mater. Sci. Mater. Electron. 2019, 30, 711–720. [Google Scholar] [CrossRef]
- Chang, J.; Chen, H.; Yuan, H.; Wang, B.; Chen, X. The mixing effect of organic cations on the structural, electronic and optical properties of FAxMA1-xPbI3 perovskites. Phys. Chem. Chem. Phys. 2018, 20, 941–950. [Google Scholar] [CrossRef]
- Chang, S.H.; Lin, K.-F.; Chiang, C.-H.; Chen, S.-H.; Wu, C.-G. Plasmonic structure enhanced exciton generation at the interface between the perovskite absorber and copper nanoparticles. Sci. World J. 2014, 2014, 128414. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Sun, S.; Yan, Y.; Zhang, L.; Hou, R.; Tian, F.; Qin, G.G. Refractive index and extinction coefficient of NH2CH=NH2PbI3 perovskite photovoltaic material. J. Phys. Condens. Matter. 2017, 29, 245702. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.-L. Formation of cubic perovskite alloy containing the ammonium cation of 2D perovskite for high performance solar cells with improved stability. RSC Asv. 2021, 11, 32590. [Google Scholar] [CrossRef]
- Yang, Z.; Surrente, A.; Galkowski, K.; Bruyant, N.; Maude, D.K.; Haghighirad, A.A.; Snaith, H.J.; Plochocka, P.; Nicholas, R.J. Unraveling the exciton binding energy and the dielectric constant in single-crystal methylammonium lead triiodide perovskite. J. Phys. Chem. Lett. 2017, 8, 1851–1855. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, J.; Zhang, L.; Liu, W.; Wu, C.; Liu, C.; Wu, Z.; Xiao, L.; Chen, Z.; Wang, S. Exciton and bi-exciton mechanisms in amplified spontaneous emission from CsPbBr3 perovskite thin films. Opt. Express 2019, 27, 29124–29132. [Google Scholar] [CrossRef]
- Chen, S.; Nurmikko, A. Exciton gain and laser emission from mixed cation halide perovskite thin films. Opt. Express 2018, 5, 1141–1149. [Google Scholar]
- Chen, L.-C.; Lin, Y.-S.; Tseng, Z.-L.; Wu, C.; Kao, F.-S.; Chen, S.-H. Overcoming the intrinsic difference between hydrophilic CH3NH3PbI3 and hydrophobic C60 thin films to improve the photovoltaic performance. Nanomaterials 2017, 7, 166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kim, S.-G.; Lee, D.; Shin, H.; Park, N.-G. Bifacial stamping for high efficiency perovskite solar cells. Energy Environ. Sci. 2019, 12, 308–321. [Google Scholar] [CrossRef]
- Solanki, A.; Yadav, P.; Turren-Cruz, S.-H.; Lim, S.S.; Salliba, M.; Sum, T.C. Cation influence on carrier dynamics in perovskite solar cells. Nano Energy 2019, 58, 604–611. [Google Scholar] [CrossRef]
- Motta, C.; El-Mellouhi, F.; Sanvito, S. Charge carrier mobility in hybrid halide perovskites. Sci. Rep. 2015, 5, 12746. [Google Scholar] [CrossRef]
- Gelvez-Rueda, M.C.; Renaud, N.; Grozema, F.C. Temperature dependent charge carrier dynamics in formamidinium lead iodide perovskite. J. Phys. Chem. C 2017, 121, 23392–23397. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, H.T.; Wu, X.; Haroldson, R.; Gartstein, Y.N.; Rodionov, Y.I.; Tikhonov, K.S.; Zakhidov, A.; Zhu, X.-Y.; Podzorov, Y. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurments. Nat. Commun. 2016, 7, 12253. [Google Scholar] [CrossRef]
- Hwang, H.; Park, S.; Heo, J.H.; Kim, W.; Ahn, H.; Kim, T.-S.; Im, S.H.; Son, H.J. Enhancing performance and stability of perovskite solar cells using hole transport layer of small molecule and conjugated polymer blend. J. Power Sources 2019, 418, 167–175. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Zhang, X.; Zeng, P.; Li, F.; Wang, B.; Yang, Q.; Liu, M. Inhibited aggregation of lithium salt in spiro-OMeTAD toward highly efficient perovskite solar cells. Nano Energy 2020, 70, 104483. [Google Scholar] [CrossRef]
- Desoky, M.M.; Bonomo, M.; Buscaino, R.; Fin, A.; Vicardi, G.; Barolo, C.; Quagliotto, P. Dopant-free all-organic small-molcule HTMs for perovskite solar cells: Concepts and structure-property relationships. Energies 2021, 14, 2279. [Google Scholar] [CrossRef]
- Fang, Y.; Bi, C.; Wang, D.; Huang, J. The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Lett. 2017, 2, 782–794. [Google Scholar] [CrossRef]
- Chiu, K.Y.; Chang, S.H.; Huang, W.-C.; Cheng, H.-M.; Shaw, H.; Yeh, S.-C.; Chen, C.-T.; Su, Y.O.; Chen, S.-H.; Wu, C.-G. Functional graded fullerene derivatives for improving the fill factor and device stability of inverted-type perovskite solar cells. Nanotechnology 2018, 29, 305701. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Gao, W.; Yu, H.; Zhu, L.; Li, L.; Yang, C. Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. J. Mater. Chem. A 2018, 6, 4443–4448. [Google Scholar] [CrossRef]
- Wang, P.; Shao, Z.; Ulfa, M.; Pauporte, T. Insights into the hole blocking layer effect on the perovskite solar cell performance and impedance response. J. Phys. Chem. C 2017, 121, 9131–9141. [Google Scholar] [CrossRef]
- Lee, K.-M.; Chen, K.-S.; Wu, J.-R.; Lin, Y.-D.; Yu, S.-M.; Chang, S.H. Highly efficient and stable semi-transparent perovskite solar modules with a trilayer anode electrode. Nanoscale 2018, 10, 17699–17704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavakoli, M.M.; Tavakoli, R.; Prochowicz, D.; Yadav, P.; Saliba, M. Surface modification of a hole transporting layer for an efficient perovskite solar cell with an enhanced fill factor and stability. Mol. Syst. Des. Eng. 2018, 3, 717–722. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, X.Z.; Zhang, Y.; Che, W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-T.; Cheng, Y.-T.; Leu, C.-C.; Wu, S.-H.; Shih, C.-F. Improving two-step prepared CH3NH3PbI3 perovskite solar cells by co-doping potassium halide and water in PbI2 layer. Nanomaterials 2019, 9, 666. [Google Scholar] [CrossRef] [Green Version]
- Jafari, F.; Patil, B.R.; Motaram, F.; Cauduro, A.L.F.; Rubahn, H.-G.; Behjat, A.; Madsen, M. Inverted organic solar cells with non-clustering bathocuproine (BCP) cathode interlayers obtained by fullerene doping. Sci. Rep. 2019, 9, 10422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, J.; Wang, H.; Rohr, J.A.; Fishman, Z.S.; Zhu, Y.; Li, M.; Cotlet, M.; Kim, G.; Karpovich, C.; Antonio, F.; et al. Perovskite solar cells with enhanced fill factors using polymer-capped solvent annealing. ACS Appl. Energy Mater. 2020, 3, 7231–7238. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Wu, C.-G. A method for the preparation of highly oriented MAPbI3 crystallities for high-efficiency perovskite solar cells to achieve an 86% fill factor. ACS Nano 2018, 12, 10355–10364. [Google Scholar] [CrossRef]
- Frost, J.M.; Butler, K.T.; Brivio, F.; Hendon, C.H.; van Schilfgaared, M.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Leet. 2014, 14, 2584–2590. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.-C.; Huang, B.-C.; Chin, S.-C.; Hsing, C.-R.; Nguyen, D.-L.; Schnedler, M.; Dunin-Borkowski, R.S.R.E.; Wei, C.-M.; Chen, C.-W.; Ebert, P.; et al. Photodriven dipole reordering: Key to carrier separation in metalorganic halide perovskites. ACS Nano 2019, 13, 4402–4409. [Google Scholar] [CrossRef]
- Chen, C.-J.; Chandel, A.; Thakur, D.; Wu, J.-R.; Chiang, S.-E.; Zeng, G.-S.; Shen, J.-L.; Chen, S.-H.; Chang, S.H. Ag modified bathocuproine:ZnO nanoparticles electron buffer layer based bifacial inverted-type perovskite solar cells. Org. Electron. 2021, 92, 106110. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, J.; Li, Z.; Yang, M.; Park, J.-S.; Park, I.J.; Kim, J.Y.; Berry, J.J.; Rumbles, G.; Zhu, K. 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment. Adv. Mater. 2017, 29, 1606831. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, X.; Feng, J.; Huang, H.; Zhu, Z.; Yu, T.; Li, Z.; Zou, Z. Carrier mobility enhancement in (121)-oriented CsPbBr3 perovskite films induced by the microstructure tailoring of PbBr2 precursor films. ACS Appl. Electron. Mater. 2021, 3, 373–384. [Google Scholar] [CrossRef]
- Meng, G.; Hao, C.; Ji, M.; Shi, Y. Theoretical insights into the carrier mobility anisotropy of organic-inorganic perovskite ABI3 (A = CH3NH3 and HC(NH2)2; B = Pb and Sn). J. Phys. Chem. C 2021, 125, 22446–22456. [Google Scholar] [CrossRef]
- Liao, Q.; Wang, Y.; Yao, X.; Su, M.; Li, B.; Sun, H.; Huang, J.; Guo, X. A dual-functional conjugated polymer as an efficient hole-transporting layer for high-performance inverted perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 16744–16753. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Yang, F.-M.; Huang, C.-Y.; Chou, W.-Y.; Chang, J.; Lien, Y.-C. Increasing the work function of poly((3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by ultraviolet irradiation. Appl. Phys. Lett. 2007, 91, 092127. [Google Scholar] [CrossRef]
- Sze, P.-W.; Lee, K.-W.; Huang, P.-C.; Chou, D.-W.; Kao, B.-S.; Huang, C.-J. The investigation of high quality PEDOT:PSS film by multilayer-processing and acid treatment. Energies 2017, 10, 716. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, Y.; Cho, H.; Lee, J.-G.; Kim, J.H. Improvement of PEDOT:PSS linearity via controlled addition process. RSC Adv. 2019, 9, 17318–17324. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.C.; Hong, J.A.; Jung, E.D.; Kim, D.B.; Baek, S.-M.; Lee, S.; Cho, S.; Park, S.S.; Choi, K.J.; Song, M.H. Highly efficient and stable inverted perovskite solar cell emplogying PEDOT:GO composite layer as a hole transport layer. Sci. Rep. 2018, 8, 1070. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Lin, X.; Hou, X.; Pan, L.; Huang, S.; Chen, X. Efficient and air-stable planar perovskite solar cells formed on grapheme-oxide-modified PEDOT:OSS hole transport layer. Nano-Micro Lett. 2017, 9, 39. [Google Scholar]
- Niu, J.; Yang, D.; Ren, X.; Yang, Z.; Liu, Y.; Zhu, X.; Zhao, W.; Liu, S. Grphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell. Org. Electron. 2017, 48, 165–171. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Han, D.; Yuan, Q.; Cao, T.; Chen, N.; Zhou, D.; Cong, H.; Feng, L. Ammonia-treated grapheme oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Org. Electron. 2019, 70, 63–70. [Google Scholar] [CrossRef]
- Kornilov, D.Y.; Gubin, S.P. Graphene oxide: Structure, properties, synthesis, and reduction (a review). Russ. J. Inorg. Chem. 2020, 65, 1965–1976. [Google Scholar] [CrossRef]
- Yin, X.; Que, M.; Xing, Y.; Que, W. High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J. Mater. Chem. A 2015, 3, 24495–24503. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, Y.; Yu, D.; Wang, F.; Dai, J. High performance inverted planar MAPbI3 perovskite solar cells with a simple annealing process. ChemNanoMat 2019, 5, 715–722. [Google Scholar] [CrossRef]
- Dharmadasa, I.M.; Rahaq, Y.; Alam, A.E. Perovskite solar cells: Short lifetime and hysteresis behavior of current-voltage characteristics. J. Mater. Sci. Mater. Electron. 2019, 30, 12851–12859. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Li, C.; Liu, H.; Qin, R.; Ma, H. Ploy(3,4-ethylenedioxythiophene):polu(styrenesulfonate) (PEDOT:PSS)-molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 9958–9966. [Google Scholar] [CrossRef]
- Wang, Z.-K.; Li, M.; Yuan, D.-X.; Shi, X.-B.; Ma, H.; Liao, L.-S. Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. ACS Appl. Mater. Interfaces 2015, 7, 9645–9651. [Google Scholar] [CrossRef]
- Pakr, I.J.; Park, M.A.; Kim, D.H.; Park, G.D.; Kim, B.J.; Son, H.J.; Ko, M.J.; Lee, D.-K.; Park, T.; Shin, H.; et al. New hybrid hole extraction layer of perovskite solar cells with a planar p-i-n geometry. J. Phys. Chem. C 2015, 119, 27285–27290. [Google Scholar]
- Intaniwer, A.; Mills, C.A.; Shkunov, M.; Thiem, H.; Keddie, J.L.; Sellin, P.J. Characterization of thick film poly(triarylamine) semiconductor diodes for direct x-ray detection. J. Appl. Phys. 2009, 106, 064513. [Google Scholar] [CrossRef] [Green Version]
- Neumann, K.; Thelakkat, M. Perovskite solar cells involving poly(tetraphenylbenzidine)s: Investigation of hole carrier mobility, doping effects and photovoltaic properties. RSC Adv. 2014, 4, 43550–43559. [Google Scholar] [CrossRef] [Green Version]
- Rombach, F.M.; Haque, S.A.; Macdonald, T.J. Lessons learned from spiro-OMeTAD and PTAA is perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161. [Google Scholar] [CrossRef]
- Chen, B.; Yu, Z.J.; Manzoor, S.; Wang, S.; Weigand, W.; Yu, Z.; Yang, G.; Ni, Z.; Dai, X.; Holman, Z.C.; et al. Blade-coated perovskite on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 2020, 4, 850–864. [Google Scholar] [CrossRef]
- Li, Y.; Liang, C.; Wang, G.; Li, J.; Chen, S.; Yang, S.; Xing, G.; Pan, H. Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells. Photon. Res. 2020, 8, A39–A49. [Google Scholar] [CrossRef]
- Wang, C.; Su, Z.; Chen, L.; Zhang, H.; Hui, W.; Liang, D.; Zheng, G.; Zhang, L.; Tang, Z.; Wen, W.; et al. MoO3 doped PTAA for high-performance inverted perovskite solar cells. Appl. Surf. Sci. 2022, 571, 151301. [Google Scholar] [CrossRef]
- Gil, B.; Kim, J.; Yun, A.J.; Park, K.; Cho, J.; Park, M.; Park, B. CuCrO2 nanoparticles incorporated into PTAA as a hole transport layer for 85 °C and light stabilities in perovskite solar cells. Nanomaterials 2020, 10, 1669. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.-C.; Zhu, L.; Zhang, W.; Wang, H.-Q.; Fang, J. Improving efficiency and reproducibility of perovskite solar cells through aggregation control in polyelectrolytes hole transport layer. ACS Appl. Mater. Interfaces 2017, 9, 31357–31361. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, M.; Zhao, C.; Jian, H.; Wang, N.; Yao, L.; Huang, C.; Zhao, Y.; Jiu, T. Graphidyne-doped P3CT-L as an efficient hole-transport layer for MAPbI3 perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 2626–2631. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Chandel, A.; Wu, J.-R.; Thakur, D.; Chiang, S.-E.; Cheng, K.-J.; Chen, S.-H.; Shen, J.-L.; Chang, S.H. Highly efficient and stable P3TC-Na based MAPbI3 solar cells with a Sn-rich ITO anode. Sol. Energy Mater. Sol. Cells 2021, 231, 111305. [Google Scholar] [CrossRef]
- Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747. [Google Scholar] [CrossRef]
- Yao, Y.; Hsu, W.-L.; Dagenais, M. High-efficiency perovskite solar cell based on sequential doping of PTAA. IEEE J. Photovolt. 2019, 9, 1025–1030. [Google Scholar] [CrossRef]
- Bagheri, Z.; Matteocci, F.; Lamanna, E.; Girolamo, D.D.; Marrani, A.G.; Zanoni, R.; Carlo, A.D.; Moshaii, A. Light-induced improvement of dopant-free PTAA on performance of inverted perovskite solar cells. Sol. Energy Mater. Sol. Cells 2020, 215, 110606. [Google Scholar] [CrossRef]
- Zhao, D.; Sexton, M.; Park, H.-Y.; Baure, G.; Nino, J.C.; So, F. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Adv. Energy Mater. 2015, 5, 1401855. [Google Scholar] [CrossRef]
- Safari, Z.; Zarandi, M.B.; Giuri, A.; Bisconti, F.; Carallo, S.; Listorti, A.; Corcione, C.E.; Nateghi, M.R.; Rizzo, A.; Colella, S. Optimizing the interface between hole transporting material and nanocomposite for highly efficient perovskite solar cells. Nanomaterials 2019, 9, 1627. [Google Scholar] [CrossRef] [Green Version]
- Coskun, H.; Iskigor, F.H.; Chen, Z.; Imran, M.; Li, B.; Xu, Q.; Quyang, J. Thermally evaporated two-dimensional SnS as an efficient and stable electron collection interlayer for inverted planar perovskite solar cells. J. Mater. Chem. A 2019, 7, 4759–4765. [Google Scholar] [CrossRef]
- Chandel, A.; Ke, Q.B.; Thakur, D.; Chiang, S.-E.; Wu, J.-R.; Cai, K.-B.; Yuan, C.-T.; Chang, S.H. Regioregularity effects of p-type P3CT-Na polymers on inverted perovskite photovoltaic cells. Org. Electron. 2022, 102, 106449. [Google Scholar] [CrossRef]
- Tzoganakis, N.; Feng, B.; Loizos, M.; Krassas, M.; Tsikritzis, D.; Zhuang, X.; Kymakis, E. Ultrathin PTAA interlayer in conjunction with azulene derivatives for the fabrication of inverted perovskite solar cells. J. Mater. Chem. C 2021, 9, 14709–14719. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, J.; Li, Z.; Liu, D.; Qin, M.; Cheung, S.H.; Lu, X.; Lei, D.; So, S.K.; Zhu, Z.; et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 2020, 1248–1262. [Google Scholar] [CrossRef]
- Zhou, Q.; Qiu, J.; Wang, Y.; Yu, M.; Liu, J.; Zhang, X. Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. ACS Energy Lett. 2021, 6, 1596–1606. [Google Scholar] [CrossRef]
- Hsieh, H.-C.; Hsiow, C.-Y.; Lin, K.-F.; Shih, Y.-C.; Wang, L.; Renaud, C.; Nguyen, T.-P. Analysis of defects and traps in N-I-P layered-structure of perovskite solar cells by charge-based deep level transient spectroscopy (Q-DLTS). J. Phys. Chem. C 2018, 122, 17601–17611. [Google Scholar] [CrossRef]
- Cho, S.H.; Byeon, J.; Jeong, K.; Hwang, J.; Lee, H.; Jang, J.; Lee, J.; Kim, T.; Kim, K.; Choi, M.; et al. Investigation of defect-tolerant perovskite solar cells with long-term stability via controlling the self-doping effect. Adv. Energy Mater. 2021, 11, 2100555. [Google Scholar] [CrossRef]
- Kassou, S.; Wu, J.-R.; Thakur, D.; Chandel, A.; Chiang, S.-E.; Cheng, K.-R.; Chen, S.-H.; Shen, J.-L.; Chang, S.H. Efficiency improvement of P3TC-Na based MAPbI3 solar cells with a simple wetting process. Nanotechnology 2021, 32, 345402. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, W.; Li, H.; Zhang, C.; Fan, J.; Mai, Y. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency. Nanoscale 2017, 9, 13967–13975. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L.; et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 2020, 11, 1245. [Google Scholar] [CrossRef]
- Said, A.A.; Xie, J.; Zhang, Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 2019, 15, 1900854. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, X.; Yu, S.; Feng, Z.; Liang, L.; Qin, W.; Wang, Y.; Hu, X.; Chen, S.; Feng, Z.; et al. Hydroxylated non-fullerene acceptor for highly efficient inverted perovskite solar cells. Energy Environ. Sci. 2021, 14, 6536–6545. [Google Scholar] [CrossRef]
- Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503–6509. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Massonnet, N.; Yvenou, E.; Brenet, S.; Faure-Vincent, J.; Pouget, S.; Rieutord, F.; Okuno, H.; Benayad, A.; et al. Structure and dopant engineering in PEDOT thin films: Practical tools for a dramatic conductivity enhancement. Chem. Mater. 2016, 28, 3462–3468. [Google Scholar] [CrossRef]
- Thakur, D.; Chiang, S.-E.; Yang, M.-H.; Wang, J.-S.; Chang, S.H. Self-stability of un-encapsulated polycrystalline MAPbI3 solar cells via the formation of chemical bonds between C60 molecules and MA cations. Sol. Energy Mater. Sol. Cells 2022, 235, 111454. [Google Scholar] [CrossRef]
- Lee, I.; Rolston, N.; Brunner, P.-L.; Dauskardt, R.H. Hole-transport layer molecular weight and doping effects on perovskite solar cell efficiency and mechanical behavior. ACS Appl. Mater. Interfaces 2019, 11, 23757–23764. [Google Scholar] [CrossRef]
- Nia, N.Y.; Mendez, M.; Paci, B.; Generosi, A.; Carlo, A.D.; Palomares, E. Analysis of the efficiency losses in hybrid perovskite/PTAA solar cells with different molecular weights: Morphology versus kinetics. ACS Appl. Energy Mater. 2020, 3, 6853–6859. [Google Scholar]
- Abdelghafour, M.M.; Orban, A.; Deak, A.; Lamch, L.; Frank, E.; Nagy, R.; Adam, A.; Sipos, P.; Farkas, E.; Bari, F.; et al. The effect of molecular weight on the solubility properties of biocompatible poly(ethylene succinate) polyester. Polymers 2021, 13, 2725. [Google Scholar] [CrossRef] [PubMed]
P-Type Polymer | Perovskite | Grain Size and Thickness of Perovskite (nm) | VOC (V) | JSC (mA/cm2) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|
PEDOT:PSS | MAPbI3 | 1500/470 | 1.060 | 23.10 | 86.0 | 21.05 | [108] |
Modified PTAA | (MAFA)Pb(ICl)3 | 350/550 | 1.155 | 24.13 | 83.7 | 23.32 | [70] |
P3CT-X | (CsMAFA)Pb(IBr)3 | 300/400 | 1.120 | 22.78 | 83.6 | 21.33 | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, Q.B.; Wu, J.-R.; Lin, C.-C.; Chang, S.H. Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar Cells. Polymers 2022, 14, 823. https://doi.org/10.3390/polym14040823
Ke QB, Wu J-R, Lin C-C, Chang SH. Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar Cells. Polymers. 2022; 14(4):823. https://doi.org/10.3390/polym14040823
Chicago/Turabian StyleKe, Qi Bin, Jia-Ren Wu, Chia-Chen Lin, and Sheng Hsiung Chang. 2022. "Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar Cells" Polymers 14, no. 4: 823. https://doi.org/10.3390/polym14040823
APA StyleKe, Q. B., Wu, J. -R., Lin, C. -C., & Chang, S. H. (2022). Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar Cells. Polymers, 14(4), 823. https://doi.org/10.3390/polym14040823