The Role of Typha angustifilia Fiber–Matrix Bonding Parameters on Interfacial Shear Strength Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contact Model
2.2. Selection of Boundary Condition and Load
2.3. IFSS and Critical Fiber Length Calculation
3. Results
3.1. Comparison with Experimental Microbond Test
3.2. Effect of Fiber Diameter
3.3. Effect of Fiber Embedded Length
3.4. Effect of Vise–Specimen Distance
3.5. Effect of Fiber Aspect Ratio
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muntongkaw, S.; Pianklang, S.; Tangboriboon, N. Modifications to improve properties of gypsum ceiling composites as multifunctional construction by embedding Typha angustifolia fiber and natural rubber latex compound. Case Stud. Constr. Mater. 2021, 15, e00658. [Google Scholar] [CrossRef]
- Kamali Moghaddam, M. Typha leaves fiber and its composites: A review. J. Nat. Fibers 2021, 1–15. [Google Scholar] [CrossRef]
- Limami, H.; Manssouri, I.; Cherkaoui, K.; Khaldoun, A. Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive. Clean. Eng. Technol. 2021, 2, 100037. [Google Scholar] [CrossRef]
- Pandey, R.; Jose, S.; Sinha, M.K. Fiber extraction and characterization from Typha domingensis. J. Nat. Fibers 2020, 1–12. [Google Scholar] [CrossRef]
- Ly, E.B.; Lette, M.J.; Diallo, A.K.; Gassama, A.; Takasaki, A.; Ndiaye, D. Effect of reinforcing fillers and fibres treatment on morphological and mechanical properties of typha-phenolic resin composites. Fibers Polym. 2019, 20, 1046–1053. [Google Scholar] [CrossRef]
- Chilukoti, G.R.; Mandapati, R.N. Characterization of Cellulosic Leaf Fiber from the Typha angustifolia Plant. J. Nat. Fibers 2020, 1–11. [Google Scholar] [CrossRef]
- Chen, F.; Xu, B.; Jiao, H.; Chen, X.; Shi, Y.; Wang, J.; Li, Z. Triaxial mechanical properties and microstructure visualization of BFRC. Constr. Build. Mater. 2021, 278, 122275. [Google Scholar] [CrossRef]
- Miller, B.; Gaur, U.; Hirt, D.E. Measurement and mechanical aspects of the microbond pull-out technique for obtaining fiber/resin interfacial shear strength. Compos. Sci. Technol. 1991, 42, 207–219. [Google Scholar] [CrossRef]
- Singh, D.K.; Vaidya, A.; Thomas, V.; Theodore, M.; Kore, S.; Vaidya, U. Finite element modeling of the fiber-matrix interface in polymer composites. J. Compos. Sci. 2020, 4, 58. [Google Scholar] [CrossRef]
- Charlier, Q.; Lortie, F.; Gérard, J.-F. Interfacial adhesion in glass-fiber thermoplastic composites processed from acrylic reactive systems, a multi-scale experimental analysis. Int. J. Adhes. Adhes. 2020, 98, 102536. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, C.C.; Harper, L.T.; Warrior, N.A. Finite element study of the microdroplet test for interfacial shear strength: Effects of geometric parameters for a carbon fibre/epoxy system. J. Compos. Mater. 2018, 52, 2163–2177. [Google Scholar] [CrossRef]
- Ikramullah, S.H.; Thalib, S.; Rizal, S. Numerical Simulation Contact Model Fiber-Matrix on Typha spp. Reinforced Composite. In Proceedings of the Seminar Nasional Teknologi Rekayasa (SNTR) 3, Aceh Selatan, Indonesia, 17 December 2016. [Google Scholar]
- Andersons, J.; Joffe, R.; Hojo, M.; Ochiai, S. Fibre fragment distribution in a single-fibre composite tension test. Compos. Part B Eng. 2001, 32, 323–332. [Google Scholar] [CrossRef]
- Zhi, C.; Long, H.; Miao, M. Microbond testing and finite element simulation of fibre-microballoon-epoxy ternary composites. Polym. Test. 2018, 65, 450–458. [Google Scholar] [CrossRef]
- Potukuchi, S.K.S. Fracture Analysis of Carbon Fiber/Epoxy Matrix Interface through Microbond and Cruciform Tests. Master’s Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 7 July 2015. [Google Scholar]
- Song, B.; Bismarck, A.; Tahhan, R.; Springer, J. A generalized drop length–height method for determination of contact angle in drop-on-fiber systems. J. Colloid Interface Sci. 1998, 197, 68–77. [Google Scholar] [CrossRef]
- Pandey, G.; Kareliya, C.H.; Singh, R.P. A study of the effect of experimental test parameters on data scatter in microbond testing. J. Compos. Mater. 2012, 46, 275–284. [Google Scholar] [CrossRef]
- Rizal, S.; Gopakumar, D.A.; Huzni, S.; Thalib, S.; Syakir, M.I.; Owolabi, F.A.T.; Aprilla, N.A.S.; Paridah, M.T.; Khalil, H.P.S.A. Tailoring the Effective Properties of Typha Fiber Reinforced Polymer Composite via Alkali Treatment. BioResources 2019, 14, 5630–5645. [Google Scholar]
- Selmi, A. Effect of Glass Fiber Content on the Flexural Modulus of Elasticity of Glass-Epoxy Sandwich Composites. Emerg. Trends Eng. Technol. 2014, 187–191. [Google Scholar]
- Hobbiebrunken, T.; Fiedler, B.; Hojo, M.; Tanaka, M. Experimental determination of the true epoxy resin strength using micro-scaled specimens. Compos. Part A Appl. Sci. Manuf. 2007, 38, 814–818. [Google Scholar] [CrossRef]
- Sarkar, J.; Annepu, H.; Mishra, S.K. Simulating contact instability in soft thin films through finite element techniques. In Perusal of the Finite Element Method; IntechOpen: London, UK, 2016; ISBN 9535128205. [Google Scholar]
- Dadej, K.; Surowska, B. Analysis of cohesive zone model parameters on response of glass-epoxy composite in mode II interlaminar fracture toughness test. Theory Pract. 2016, 16, 180–188. [Google Scholar]
- Afrizal, A.; Huzni, S.; Thalib, S.; Abdul Khalil, H.P.S.; Rizal, S. Effect of Mesh Sensitivity and Cohesive Properties on Simulation of Typha Fiber/Epoxy Microbond Test. Computation 2020, 8, 2. [Google Scholar]
- Zhou, Y.; Fan, M.; Chen, L. Interface and bonding mechanisms of plant fibre composites: An overview. Compos. Part B Eng. 2016, 101, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Da Luz, F.S.; Ramos, F.J.H.T.V.; Nascimento, L.F.C.; da Silva Figueiredo, A.B.-H.; Monteiro, S.N. Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. J. Mater. Res. Technol. 2018, 7, 528–534. [Google Scholar] [CrossRef]
- Ikramullah; Rizal, S.; Nakai, Y.; Shiozawa, D.; Khalil, H.P.S.A.; Huzni, S.; Thalib, S. Evaluation of interfacial fracture toughness and interfacial shear strength of Typha Spp. fiber/polymer composite by double shear test method. Materials 2019, 12, 2225. [Google Scholar] [CrossRef] [Green Version]
- Zhi, C.; Long, H.; Miao, M. Influence of microbond test parameters on interfacial shear strength of fiber reinforced polymer-matrix composites. Compos. Part A Appl. Sci. Manuf. 2017, 100, 55–63. [Google Scholar] [CrossRef]
- Ash, J.T.; Cross, W.M.; Svalstad, D.; Kellar, J.J.; Kjerengtroen, L. Finite element evaluation of the microbond test: Meniscus effect, interphase region, and vise angle. Compos. Sci. Technol. 2003, 63, 641–651. [Google Scholar] [CrossRef]
- Afrizal, A.; Fonna, S.; Huzni, S. Investigation of Meniscus Effect on Microbond Test of Typha Fiber/Epoxy Matrix. In Proceedings of the Defect and Diffusion Forum. Trans Tech. Publ. 2020, 402, 14–19. [Google Scholar]
- Wang, H.; Tian, G.; Wang, H.; Li, W.; Yu, Y. Pull-out method for direct measuring the interfacial shear strength between short plant fibers and thermoplastic polymer composites (TPC). Holzforschung 2014, 68, 17–21. [Google Scholar] [CrossRef]
- Hao, J.; Zhao, Y.; Luo, Y.; Wang, Y.; Chen, D. Experiments and finite element simulation of interfacial properties for monofilament composites. New Carbon Mater. 2014, 29, 176–185. [Google Scholar] [CrossRef]
Young’s Modulus E (MPa) | Tensile Strength σ (MPa) | Poisson’s Ratio v | |
---|---|---|---|
Typha angustifolia Fiber | 884.66 | 74.46 | 0.35 |
Epoxy resin | 3700 | 89.45 | 0.45 |
Parameters | Value |
---|---|
Fiber diameter | 0.25 mm |
Embedded fiber length | 1.60 mm |
Vise–specimen distance | 0.10 mm |
Observation of Current Results | Comparable with: |
---|---|
Larger fiber diameter led to higher IFSS value | Reference [26] |
IFSS decreased with increasing embedded length | Reference [27] |
Larger fiber diameter led to higher average peak force | Reference [11] |
The force increased as the distance between the vise and the specimen grew | Reference [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huzni, S.; Ikramullah, I.; Ibrahim, I.B.M.; Fonna, S.; Sukhairi, T.A.; Afrizal, A.; Muksin, U.; H. P. S., A.K.; Aprilia, S.; Rizal, S. The Role of Typha angustifilia Fiber–Matrix Bonding Parameters on Interfacial Shear Strength Analysis. Polymers 2022, 14, 1006. https://doi.org/10.3390/polym14051006
Huzni S, Ikramullah I, Ibrahim IBM, Fonna S, Sukhairi TA, Afrizal A, Muksin U, H. P. S. AK, Aprilia S, Rizal S. The Role of Typha angustifilia Fiber–Matrix Bonding Parameters on Interfacial Shear Strength Analysis. Polymers. 2022; 14(5):1006. https://doi.org/10.3390/polym14051006
Chicago/Turabian StyleHuzni, Syifaul, Ikramullah Ikramullah, Israr B. M. Ibrahim, Syarizal Fonna, Teuku Arriessa Sukhairi, Andri Afrizal, Umar Muksin, Abdul Khalil H. P. S., Sri Aprilia, and Samsul Rizal. 2022. "The Role of Typha angustifilia Fiber–Matrix Bonding Parameters on Interfacial Shear Strength Analysis" Polymers 14, no. 5: 1006. https://doi.org/10.3390/polym14051006
APA StyleHuzni, S., Ikramullah, I., Ibrahim, I. B. M., Fonna, S., Sukhairi, T. A., Afrizal, A., Muksin, U., H. P. S., A. K., Aprilia, S., & Rizal, S. (2022). The Role of Typha angustifilia Fiber–Matrix Bonding Parameters on Interfacial Shear Strength Analysis. Polymers, 14(5), 1006. https://doi.org/10.3390/polym14051006