Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review
Abstract
:1. Lignocellulose as Renewable Raw Material: Sources and General Chemical Description
2. Pretreatments of Lignocellulosic Biomass
2.1. Physical Pretreatments
2.2. Thermal Pretreatments
2.3. Chemical Pretreatments
2.4. Biological Pretreatments
2.4.1. Biodegradation by Fungus Activity
Cellulose Biodegradation by Fungus Activity
Hemicellulose Biodegradation by Fungus Activity
Lignin Biodegradation by Fungus Activity
2.4.2. Biodegradation by Bacterial Activity
Cellulose Biodegradation by Bacterial Activity
Hemicellulose Biodegradation by Bacterial Activity
Lignin Biodegradation by Bacterial Activity
3. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials
3.1. Biofuels
3.2. Biochemicals
3.3. Biomaterials
3.3.1. Lignocellulose-Derived Biomaterials
3.3.2. Cellulose-Derived Biomaterials
3.3.3. Hemicellulose-Derived Biomaterials
3.3.4. Lignin-Derived Biomaterials
4. Lignocellulose-Based Polyurethanes
4.1. Cellulose-Based Polyurethanes
4.2. Hemicellulose-Based Polyurethanes
4.3. Lignin-Based Polyurethanes
4.4. Lignocellulose-Based Polyurethane Adhesives
4.4.1. Cellulose-Based Polyurethane Adhesives
4.4.2. Hemicellulose-Based Polyurethane Adhesives
4.4.3. Lignin-Based Polyurethane Adhesives
4.5. Lignocellulose-Based Polyurethane Lubricating Greases
4.5.1. Cellulose-Based Polyurethane Lubricating Greases
4.5.2. Lignin-Based Polyurethane Lubricating Greases
4.6. Lignocellulose-Based Polyurethane Elastomers
4.6.1. Cellulose-Based Polyurethane Elastomers
4.6.2. Hemicellulose-Based Polyurethane Elastomers
4.6.3. Lignin-Based Polyurethane Elastomers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peace, A.H.; Carslaw, K.S.; Lee, L.A.; Regayre, L.A.; Booth, B.B.B.; Johnson, J.S.; Bernie, D.J. Effect of aerosol radiative forcing uncertainty on projected exceedance year of a 1.5 °C global temperature rise. Environ. Res. Lett. 2020, 15, 0940a6. [Google Scholar] [CrossRef]
- Cheng, C.-L.; Lo, Y.-C.; Lee, K.-S.; Lee, D.-J.; Lin, C.-Y.; Chang, J.-S. Biohydrogen production from lignocellulosic feedstock. Bioresour. Technol. 2011, 102, 8514–8523. [Google Scholar] [CrossRef]
- Himmel, M.E.; Ding, S.-Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 2007, 315, 804–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef]
- Bussemaker, M.; Trokanas, N.; Koo, L.; Cecelja, F. Ontology Modelling for Lignocellulosic Biomass: Composition and Conversion. Comput. Aided Chem. Eng. 2018, 43, 1565–1570. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Wang, A.; Huber, G.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef]
- Binder, J.B.; Raines, R.T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J. Am. Chem. Soc. 2009, 131, 1979–1985. [Google Scholar] [CrossRef]
- Domínguez-Robles, J.; Espinosa, E.; Savy, D.; Rosal, A.; Rodriguez, A. Biorefinery Process Combining Specel® Process and Selective Lignin Precipitation using Mineral Acids. BioResources 2016, 11, 7061–7077. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, M.; Champagne, P.; Cunningham, M.F.; Whitney, R.A. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 2010, 101, 8915–8922. [Google Scholar] [CrossRef]
- Menon, V.; Rao, M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 2012, 38, 522–550. [Google Scholar] [CrossRef]
- Yang, S.-T. Bioprocessing—From Biotechnology to Biorefinery. In Bioprocessing for Value-Added Products from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–24. [Google Scholar]
- Fan, L.T.; Lee, Y.-H.; Gharpuray, M.M. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. In Bioprocesses and Applied Enzymology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1982; pp. 157–187. [Google Scholar]
- Oginni, O.; Singh, K.; Zondlo, J.W. Pyrolysis of dedicated bioenergy crops grown on reclaimed mine land in West Virginia. J. Anal. Appl. Pyrolysis 2017, 123, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, E.; Karlsson, E.N.; Adlercreutz, P. Warming weather changes the chemical composition of oat hulls. Plant Biol. 2020, 22, 1086–1091. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Alternative Fuels from Biomass Sources. Available online: https://www.e-education.psu.edu/egee439/node/664 (accessed on 20 September 2021).
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Gibson, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef]
- De Souza, W.R. Microbial Degradation of Lignocellulosic Biomass. In Sustainable Degradation of Lignocellulosic Biomass—Techniques, Applications and Commercialization; Chandel, A., Ed.; IntechOpen: London, UK, 2013; pp. 207–248. [Google Scholar]
- Amen-Chen, C.; Pakdel, H.; Roy, C. Production of monomeric phenols by thermochemical conversion of biomass: A review. Bioresour. Technol. 2001, 79, 277–299. [Google Scholar] [CrossRef]
- Martínez Ángel, T.; Rencoret, J.; Marques, G.; Gutiérrez, A.; Ibarra, D.; Jimenez-Barbero, J.; del Río, J.C. Monolignol acylation and lignin structure in some nonwoody plants: A 2D NMR study. Phytochemistry 2008, 69, 2831–2843. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.-L.; Wen, J.-L.; Ma, M.-G.; Li, M.-F.; Sun, R.-C. Revealing the Structural Inhomogeneity of Lignins from Sweet Sorghum Stem by Successive Alkali Extractions. J. Agric. Food Chem. 2013, 61, 4226–4235. [Google Scholar] [CrossRef]
- Heikkinen, S.; Toikka, M.M.; Karhunen, P.T.; Kilpeläinen, I.A. Quantitative 2D HSQC (Q-HSQC) via Suppression of J-Dependence of Polarization Transfer in NMR Spectroscopy: Application to Wood Lignin. J. Am. Chem. Soc. 2003, 125, 4362–4367. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.I.; Fillat, U.; Martín-Sampedro, R.; Ballesteros, I.; Manzanares, P.; Ballesteros, M.; Eugenio, M.E.; Ibarra, D. Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum. Bioresources 2015, 10, 5215–5232. [Google Scholar] [CrossRef] [Green Version]
- Heitner, C.; Dimmel, D.; Schmidt, J. Lignin and Lignans: Advances in Chemistry; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Kringstad, B.K.P.; Mörck, R. 13C-NMR Spectra of Kraft Lignins. Holzforschung 1983, 37, 237–244. [Google Scholar] [CrossRef]
- Xia, Z.; Akim, A.L.G.; Argyropoulos, D.S. Quantitative 13C NMR Analysis of Lignins with Internal Standards. J. Agric. Food Chem. 2001, 49, 3573–3578. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.I.; Martin-Sampedro, R.; Fillat, Ú.; Oliva, J.M.; Negro, M.J.; Ballesteros, M.; Eugenio, M.E.; Ibarra, D. Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR. Int. J. Polym. Sci. 2015, 2015, 314891. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gellerstedt, G. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn. Reson. Chem. 2007, 45, 37–45. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef]
- Patil, N.D.; Tanguy, N.R.; Yan, N. Lignin Interunit Linkages and Model Compounds. In Lignin in Polymer Composites; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 27–47. [Google Scholar]
- Lawrence, A.; Thollander, P.; Karlsson, M. Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry. Sustainability 2018, 10, 1851. [Google Scholar] [CrossRef] [Green Version]
- Alonso, D.M.; Hakim, S.H.; Zhou, S.; Won, W.; Hosseinaei, O.; Tao, J.; Garcia-Negron, V.; Motagamwala, A.H.; Mellmer, M.A.; Huang, K.; et al. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Sci. Adv. 2017, 3, e1603301. [Google Scholar] [CrossRef] [Green Version]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Sousa, L.D.C.; Chundawat, S.P.; Balan, V.; Dale, B.E. ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 2009, 20, 339–347. [Google Scholar] [CrossRef]
- McMillan, J.D. Pretreatment of Lignocellulosic Biomass. In ACS Symposium Series; American Chemical Society (ACS): Washington, DC, USA, 1994; pp. 292–324. [Google Scholar]
- Yang, B.; Wyman, C.E. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2008, 2, 26–40. [Google Scholar] [CrossRef]
- El Hage, R.; Brosse, N.; Sannigrahi, P.; Ragauskas, A. Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym. Degrad. Stab. 2010, 95, 997–1003. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A. Biological pretreatment of lignocellulosic biomass—An overview. Bioresour. Technol. 2016, 199, 76–82. [Google Scholar] [CrossRef]
- Yang, B.; Dai, Z.; Ding, S.-Y.; Wyman, C.E. Enzymatic hydrolysis of cellulosic biomass. Biofuels 2011, 2, 421–449. [Google Scholar] [CrossRef] [Green Version]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef]
- Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef]
- Coughlan, M.P. Cellulose Degradation by Fungi. In Microbial Enzymes and Biotechnology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1990; pp. 1–36. [Google Scholar]
- Dekker, R.F.H. Biodegradation of the Hemicelluloses. In Biosynthesis and Biodegradation of Wood Components; Higuchi, T., Ed.; Academic Press: Cambridge, MA, USA, 1985; pp. 505–533. [Google Scholar] [CrossRef]
- Martínez, A.T.; Speranza, M.; Ruiz-Dueñas, F.J.; Ferreira, P.; Camarero, S.; Guillén, F.; Martinez, M.J.; Gutiérrez Suárez, A.; del Río Andrade, J.C. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 2005, 8, 195–204. [Google Scholar]
- Chen, C.-L.; Chang, H.-M.; Kirk, T.K. Carboxylic Acids Produced Through Oxidative Cleavage of Aromatic Rings During Degradation of Lignin in Spruce Wood by Phanerochaete Chrysosporium. J. Wood Chem. Technol. 1983, 3, 35–57. [Google Scholar] [CrossRef]
- Shi, Z.; Han, C.; Zhang, X.; Tian, L.; Wang, L. Novel Synergistic Mechanism for Lignocellulose Degradation by a Thermophilic Filamentous Fungus and a Thermophilic Actinobacterium Based on Functional Proteomics. Front. Microbiol. 2020, 11, 539438. [Google Scholar] [CrossRef]
- Thornbury, M.; Sicheri, J.; Slaine, P.; Getz, L.J.; Finlayson-Trick, E.; Cook, J.; Guinard, C.; Boudreau, N.; Jakeman, D.; Rohde, J.; et al. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. PLoS ONE 2019, 14, e0209221. [Google Scholar] [CrossRef] [Green Version]
- Sainsbury, P.D.; Hardiman, E.M.; Ahmad, M.; Otani, H.; Seghezzi, N.; Eltis, L.D.; Bugg, T.D.H. Breaking Down Lignin to High-Value Chemicals: The Conversion of Lignocellulose to Vanillin in a Gene Deletion Mutant of Rhodococcus jostii RHA1. ACS Chem. Biol. 2013, 8, 2151–2156. [Google Scholar] [CrossRef]
- Strachan, C.R.; Singh, R.; VanInsberghe, D.; Ievdokymenko, K.; Budwill, K.; Mohn, W.W.; Eltis, L.; Hallam, S.J. Metagenomic scaffolds enable combinatorial lignin transformation. Proc. Natl. Acad. Sci. USA 2014, 111, 10143–10148. [Google Scholar] [CrossRef] [Green Version]
- Ransom-Jones, E.; McCarthy, A.J.; Haldenby, S.; Doonan, J.; McDonald, J.E. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity. mSphere 2017, 2, e00300-17. [Google Scholar] [CrossRef] [Green Version]
- Granja, R.; Persinoti, G.F.; Squina, F.M.; Bugg, T.D.H. Functional genomic analysis of bacterial lignin degraders: Diversity in mechanisms of lignin oxidation and metabolism. Appl. Microbiol. Biotechnol. 2020, 104, 3305–3320. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Zühlke, D.; Becher, D.; Riedel, K.; Baldrian, P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 2016, 6, 25279. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Samant, K.; Sahu, A. Isolation of Cellulose-Degrading Bacteria and Determination of Their Cellulolytic Potential. Int. J. Microbiol. 2012, 2012, 578925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmel, M.E.; Adney, W.S.; Baker, J.O.; Nieves, R.A.; Thomas, S.R. Cellulases: Structure, Function, and Applications. In Handbook on Bioethanol; Routledge: London, UK, 2018; pp. 143–161. [Google Scholar]
- Coughlan, M.P. Mechanisms of cellulose degradation by fungi and bacteria. Anim. Feed Sci. Technol. 1991, 32, 77–100. [Google Scholar] [CrossRef]
- Shallom, D.; Shoham, Y. Microbial hemicellulases. Curr. Opin. Microbiol. 2003, 6, 219–228. [Google Scholar] [CrossRef]
- Béguin, P.; Aubert, J.-P. The biological degradation of cellulose. FEMS Microbiol. Rev. 1994, 13, 25–58. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Sankaran, R.; Show, P.L.; Ibrahim, T.N.B.T.; Chew, K.W.; Culaba, A.; Chang, J.-S. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Res. J. 2020, 7, 1115–1127. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, A.; Konrad, R.; Kuhnigk, T.; Kampfer, P.; Hertel, H.; König, H. Hemicellulose-degrading bacteria and yeasts from the termite gut. J. Appl. Bacteriol. 1996, 80, 471–478. [Google Scholar] [CrossRef]
- Saha, B.C.; Bothas, R.J. Enzymology of xylan degradation. In Biopolymers: Utilizing Natures Advanced Materials; American Chemical Society: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Brigham, J.S.; Adney, W.S.; Himmel, M.E. Hemicellulases: Diversity and Applications. In Handbook on Bioethanol; CRC Press: Boca Raton, FL, USA, 2018; pp. 119–141. [Google Scholar] [CrossRef]
- Bugg, T.D.H.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 2011, 28, 1883–1896. [Google Scholar] [CrossRef]
- Bugg, T.D.; Williamson, J.J.; Rashid, G.M. Bacterial enzymes for lignin depolymerisation: New biocatalysts for generation of renewable chemicals from biomass. Curr. Opin. Chem. Biol. 2020, 55, 26–33. [Google Scholar] [CrossRef]
- Ahmad, M.; Roberts, J.N.; Hardiman, E.M.; Singh, R.; Eltis, L.D.; Bugg, T.D.H. Identification of DypB from Rhodococcus jostii RHA1 as a Lignin Peroxidase. Biochemistry 2011, 50, 5096–5107. [Google Scholar] [CrossRef]
- Rahmanpour, R.; Rea, D.; Jamshidi, S.; Fülöp, V.; Bugg, T.D. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Arch. Biochem. Biophys. 2016, 594, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Del Cerro, C.; Erickson, E.; Dong, T.; Wong, A.R.; Eder, E.K.; Purvine, S.O.; Mitchell, H.D.; Weitz, K.K.; Markillie, L.M.; Burnet, M.C.; et al. Intracellular pathways for lignin catabolism in white-rot fungi. Proc. Natl. Acad. Sci. USA 2021, 118, e2017381118. [Google Scholar] [CrossRef]
- Balan, V.; Chiaramonti, D.; Kumar, S. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod. Biorefin. 2013, 7, 732–759. [Google Scholar] [CrossRef]
- Velvizhi, G.; Goswami, C.; Shetti, N.P.; Ahmad, E.; Pant, K.K.; Aminabhavi, T.M. Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint. Fuel 2021, 313, 122678. [Google Scholar] [CrossRef]
- Wi, S.G.; Cho, E.J.; Lee, D.-S.; Lee, S.J.; Lee, Y.J.; Bae, H.-J. Lignocellulose conversion for biofuel: A new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol. Biofuels 2015, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Baral, N.R.; Sundstrom, E.R.; Das, L.; Gladden, J.; Eudes, A.; Mortimer, J.C.; Singer, S.W.; Mukhopadhyay, A.; Scown, C.D. Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustain. Chem. Eng. 2019, 7, 9062–9079. [Google Scholar] [CrossRef]
- Baral, N.R.; Kavvada, O.; Mendez-Perez, D.; Mukhopadhyay, A.; Lee, T.S.; Simmons, B.A.; Scown, C.D. Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks. Energy Environ. Sci. 2019, 12, 807–824. [Google Scholar] [CrossRef] [Green Version]
- Bhujbal, S.K.; Ghosh, P.; Vijay, V.K.; Rathour, R.; Kumar, M.; Singh, L.; Kapley, A. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. Sci. Total Environ. 2022, 814, 152773. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Competitive liquid biofuels from biomass. Appl. Energy 2011, 88, 17–28. [Google Scholar] [CrossRef]
- Danso, B.; Ali, S.S.; Xie, R.; Sun, J. Valorisation of wheat straw and bioethanol production by a novel xylanase- and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species. Fuel 2021, 310, 122333. [Google Scholar] [CrossRef]
- Isahak, W.N.R.W.; Hisham, M.W.; Yarmo, M.A.; Hin, T.-Y.Y. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2012, 16, 5910–5923. [Google Scholar] [CrossRef]
- Prasad, S.; Dhanya, M.S.; Gupta, N.; Kumar, A. Biofuels from biomass: A sustainable alternative to energy and environment, Biochem. Cell. Arch. 2012, 12, 255–260. [Google Scholar]
- Gottumukkala, L.D.; Mathew, A.K.; Abraham, A.; Sukumaran, R.K. Biobutanol Production: Microbes, Feedstock, and Strategies. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 355–377. [Google Scholar]
- Borrero-López, A.M.; Masson, E.; Celzard, A.; Fierro, V. Modelling the reactions of cellulose, hemicellulose and lignin submitted to hydrothermal treatment. Ind. Crop. Prod. 2018, 124, 919–930. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.U.; Chae, T.U.; Cho, J.S.; Kim, J.W.; Shin, J.H.; Kim, D.I.; Ko, Y.-S.; Jang, W.D.; Jang, Y.-S. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2019, 2, 18–33. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Werpy, T.; Holladay, J.; White, J. Top Value Added Chemicals from Biomass: I. In Results of Screening for Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2004. [Google Scholar]
- Mamman, A.S.; Lee, J.-M.; Kim, Y.-C.; Hwang, I.T.; Park, N.-J.; Hwang, Y.K.; Chang, J.-S.; Hwang, J.-S. Furfural: Hemicellulose/xylosederived biochemical. Biofuels Bioprod. Biorefin. 2008, 2, 438–454. [Google Scholar] [CrossRef]
- Schutyser, W.; Renders, T.; Van Den Bosch, S.; Koelewijn, S.-F.; Beckham, G.T.; Sels, B.F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef]
- Sharma, J.; Kumar, S.; Kumar, V.; Malyan, S.K.; Mathimani, T.; Bishnoi, N.R.; Pugazhendhi, A. Upgrading of microalgal consortia with CO2 from fermentation of wheat straw for the phycoremediation of domestic wastewater. Bioresour. Technol. 2020, 305, 123063. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B.; Duan, H. Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Sci. Total Environ. 2020, 718, 137422. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Yang, H.; Ouyang, D.; Liu, T.; Liu, D.; Zhao, X. Construction of electron transfer chains with methylene blue and ferric ions for direct conversion of lignocellulosic biomass to electricity in a wide pH range. Appl. Catal. B Environ. 2020, 265, 118578. [Google Scholar] [CrossRef]
- Ahmadi, R.; Souri, B.; Ebrahimi, M. Evaluation of wheat straw to insulate fired clay hollow bricks as a construction material. J. Clean. Prod. 2020, 254, 120043. [Google Scholar] [CrossRef]
- Martos, S.; Mattana, S.; Ribas, A.; Albanell, E.; Domene, X. Biochar application as a win-win strategy to mitigate soil nitrate pollution without compromising crop yields: A case study in a Mediterranean calcareous soil. J. Soils Sediments 2020, 20, 220–233. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.-W.; Luhar, I. Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review. Compos. Part B Eng. 2019, 175, 107076. [Google Scholar] [CrossRef]
- Chen, H. Lignocellulose biorefinery product engineering. In Lignocellulose Biorefinery Engineering, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2015; pp. 125–165. [Google Scholar]
- Basta, A.; El-Sayed, E.S.A.; El-Saied, H. Lignocellulosic Materials in Building Elements. Part IV—Economical Manufacture and Improvement of Properties of Light-Weight Agro-Panels. Int. J. Polym. Mater. Polym. Biomater. 2004, 53, 709–723. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, Q.; Kara, U.I.; Mamtani, R.S.; Zhou, X.; Bian, H.; Yang, Z.; Li, Y.; Lv, H.; Adera, S.; et al. Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers. Nano-Micro Lett. 2021, 14, 11. [Google Scholar] [CrossRef]
- Rocha, C.G.; Zaia, D.A.M.; Alfaya, R.V.D.S.; Alfaya, A.A.D.S. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. J. Hazard. Mater. 2009, 166, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Dai, Y.; Zhang, M.; Feng, C.; Qin, B.; Zhang, W.; Zhao, N.; Li, Y.; Ni, Z.; Xu, Z.; et al. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Sci. Total Environ. 2020, 717, 136894. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Wang, W.; Lu, L.; Yan, L.; Yu, D. Utilization of biochar for the removal of nitrogen and phosphorus. J. Clean. Prod. 2020, 257, 120573. [Google Scholar] [CrossRef]
- Abdelaal, S.; Gad, Y.; Dessouki, A. Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater. J. Hazard. Mater. 2006, 129, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Nethaji, S.; Sivasamy, A.; Thennarasu, G.; Saravanan, S. Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass. J. Hazard. Mater. 2010, 181, 271–280. [Google Scholar] [CrossRef]
- Liu, R.-L.; Liu, Y.; Zhou, X.-Y.; Zhang, Z.-Q.; Zhang, J.; Dang, F.-Q. Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue. Bioresour. Technol. 2014, 154, 138–147. [Google Scholar] [CrossRef]
- Licona-Aguilar, Á.I.; Lois-Correa, J.A.; Torres, A.; Domínguez-Crespo, M.A.; Dorantes-Rosales, H.J.; Garcia-Zaleta, D.S. Sugarcane Bagasse-, Orange Peel-Derived Adsorbent Materials: Thermal and Morphological Studies. J. Nanosci. Nanotechnol. 2020, 20, 4563–4573. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M. Biomass-Based Adsorbents for Removal of Dyes from Wastewater: A Review. Front. Environ. Sci. 2021, 9, 764958. [Google Scholar] [CrossRef]
- Castro-Gutiérrez, J.; Díez, N.; Sevilla, M.; Izquierdo, M.; Celzard, A.; Fierro, V. Model carbon materials derived from tannin to assess the importance of pore connectivity in supercapacitors. Renew. Sustain. Energy Rev. 2021, 151, 111600. [Google Scholar] [CrossRef]
- Liu, Y.; Su, M.; Li, D.; Li, S.; Li, X.; Zhao, J.; Liu, F. Soybean straw biomass-derived Fe-N co-doped porous carbon as an efficient electrocatalyst for oxygen reduction in both alkaline and acidic media. RSC Adv. 2020, 12, 6763–6771. [Google Scholar] [CrossRef]
- Ma, M.; Dai, Y.; Zou, J.-L.; Wang, L.; Pan, K.; Fu, H.-G. Synthesis of Iron Oxide/Partly Graphitized Carbon Composites as a High-Efficiency and Low-Cost Cathode Catalyst for Microbial Fuel Cells. ACS Appl. Mater. Interfaces 2014, 6, 13438–13447. [Google Scholar] [CrossRef]
- Wu, X.-L.; Wen, T.; Guo, H.-L.; Yang, S.; Wang, X.; Xu, A.-W. Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors. ACS Nano 2013, 7, 3589–3597. [Google Scholar] [CrossRef]
- Gupta, G.K.; De, S.; Franco, A.; Balu, A.M.; Luque, R. Sustainable Biomaterials: Current Trends, Challenges and Applications. Molecules 2015, 21, 48. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. Advances in the Valorization of Lignocellulosic Materials by Biotechnology: An Overview. BioResources 2013, 8, 3157–3176. [Google Scholar] [CrossRef] [Green Version]
- Bugatti, V.; Brachi, P.; Viscusi, G.; Gorrasi, G. Valorization of Tomato Processing Residues Through the Production of Active Bio-Composites for Packaging Applications. Front. Mater. 2019, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Ita-Nagy, D.; Vázquez-Rowe, I.; Kahhat, R.; Quispe, I.; Chinga-Carrasco, G.; Clauser, N.M.; Area, M.C. Life cycle assessment of bagasse fiber reinforced biocomposites. Sci. Total Environ. 2020, 720, 137586. [Google Scholar] [CrossRef]
- Engel, J.B.; Mac Ginity, M.; Luchese, C.L.; Tessaro, I.C.; Spada, J.C. Reuse of Different Agroindustrial Wastes: Pinhão and Pecan Nutshells Incorporated into Biocomposites Using Thermocompression. J. Polym. Environ. 2020, 28, 1431–1440. [Google Scholar] [CrossRef]
- Chen, B.; Luo, Z.; Chen, H.; Chen, C.; Cai, D.; Qin, P.; Cao, H.; Tan, T. Wood Plastic Composites from the Waste Lignocellulosic Biomass Fibers of Bio-Fuels Processes: A Comparative Study on Mechanical Properties and Weathering Effects. Waste Biomass Valorization 2018, 11, 1701–1710. [Google Scholar] [CrossRef]
- Chen, W.-F.; Iyer, S.; Iyer, S.; Sasaki, K.; Wang, C.-H.; Zhu, Y.; Muckerman, J.T.; Fujita, E. Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ. Sci. 2013, 6, 1818–1826. [Google Scholar] [CrossRef]
- Chen, H. Integrated industrial lignocellulose biorefinery chains. In Lignocellulose Biorefinery Engineering; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 219–245. [Google Scholar]
- Horuz, T.İ.; Belibağli, K.B. Encapsulation of tomato peel extract into nanofibers and its application in model food. J. Food Process. Preserv. 2019, 43, e14090. [Google Scholar] [CrossRef]
- Niu, Y.; Xia, Q.; Gu, M.; Yu, L. Interpenetrating network gels composed of gelatin and soluble dietary fibers from tomato peels. Food Hydrocoll. 2019, 89, 95–99. [Google Scholar] [CrossRef]
- Ajdary, R.; Tardy, B.L.; Mattos, B.D.; Bai, L.; Rojas, O.J. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Adv. Mater. 2021, 33, e2001085. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- Zhao, G.; Lyu, X.; Lee, J.; Cui, X.; Chen, W.-N. Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packag. Shelf Life 2019, 21, 100345. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannino, A.; Madaghiele, M.; Lionetto, M.G.; Schettino, T.; Maffezzoli, A. A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: Anin vitro biocompatibility study on rat intestine. J. Appl. Polym. Sci. 2006, 102, 1524–1530. [Google Scholar] [CrossRef]
- Yan, L.; Shuai, Q.; Gong, X.; Gu, Q.; Yu, H. Synthesis of Microporous Cationic Hydrogel of Hydroxypropyl Cellulose (HPC) and its Application on Anionic Dye Removal. CLEAN—Soil Air Water 2009, 37, 392–398. [Google Scholar] [CrossRef]
- Long, L.-Y.; Weng, Y.-X.; Wang, Y.-Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers 2018, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Parsons, G.N.; Rojas, O.J.; Khan, S.A. Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation. ACS Omega 2017, 2, 4297–4305. [Google Scholar] [CrossRef]
- Tripathi, A.; Parsons, G.N.; Khan, S.A.; Rojas, O.J. Synthesis of organic aerogels with tailorable morphology and strength by controlled solvent swelling following Hansen solubility. Sci. Rep. 2018, 8, 2106. [Google Scholar] [CrossRef]
- Pușcaș, A.; Mureșan, V.; Socaciu, C.; Muste, S. Oleogels in Food: A Review of Current and Potential Applications. Foods 2020, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Triviño, E.; Valencia, C.; Delgado, M.A.; Franco, J.M. Thermo-rheological and tribological properties of novel bio-lubricating greases thickened with epoxidized lignocellulosic materials. J. Ind. Eng. Chem. 2019, 80, 626–632. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Marangoni, A.G.; Davidovich-Pinhas, M. Ethylcellulose Oleogels. In Edible Oleogels; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 331–362. [Google Scholar]
- Nuñez, N.; Martín-Alfonso, J.E.; Eugenio, M.E.; Valencia, C.; Díaz, M.J.; Franco, J.M. Preparation and Characterization of Gel-like Dispersions Based on Cellulosic Pulps and Castor Oil for Lubricant Applications. Ind. Eng. Chem. Res. 2011, 50, 5618–5627. [Google Scholar] [CrossRef]
- Núñez, N.; Martín-Alfonso, J.; Valencia, C.; Sánchez, M.; Franco, J.M. Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. Ind. Crops Prod. 2012, 37, 500–507. [Google Scholar] [CrossRef]
- Cortés-Triviño, E.; Valencia, C.; Delgado, M.A.; Franco, J.M. Rheology of epoxidized cellulose pulp gel-like dispersions in castor oil: Influence of epoxidation degree and the epoxide chemical structure. Carbohydr. Polym. 2018, 199, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Fiedler, M.; Kuhn, E.; Franco, J.M. Tribological characterization of green lubricating greases formulated with castor oil and different biogenic thickener agents: A comparative experimental study. Ind. Lubr. Tribol. 2011, 63, 446–452. [Google Scholar] [CrossRef]
- Sánchez, R.; Franco, J.; Delgado, M.; Valencia, C.; Gallegos, C. Rheological and mechanical properties of oleogels based on castor oil and cellulosic derivatives potentially applicable as bio-lubricating greases: Influence of cellulosic derivatives concentration ratio. J. Ind. Eng. Chem. 2011, 17, 705–711. [Google Scholar] [CrossRef]
- Alfonso, J.E.M.; Núñez, N.; Valencia, C.; Franco, J.; Díaz, M. Formulation of new biodegradable lubricating greases using ethylated cellulose pulp as thickener agent. J. Ind. Eng. Chem. 2011, 17, 818–823. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef]
- Mittal, N.; Ansari, F.; Gowda, V.K.; Brouzet, C.; Chen, P.; Larsson, P.T.; Roth, S.V.; Lundell, F.; Wågberg, L.; Kotov, N.A.; et al. Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. ACS Nano 2018, 12, 6378–6388. [Google Scholar] [CrossRef]
- Peng, B.L.; Dhar, N.; Liu, H.L.; Tam, K.C. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Can. J. Chem. Eng. 2011, 89, 1191–1206. [Google Scholar] [CrossRef]
- Farhat, W.; Venditti, R.; Mignard, N.; Taha, M.; Becquart, F.; Ayoub, A. Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process. Int. J. Biol. Macromol. 2017, 104, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.E.; Rodrigues, H.; Gomes, M.C.S.; Eleamen, E.; Nagashima, T.; Egito, E.S.T. Xylan, a Promising Hemicellulose for Pharmaceutical Use. In Products and Applications of Biopolymers; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Pardeshi, C.V.; Kulkarni, A.D.; Belgamwar, V.S.; Surana, S.J. Xyloglucan for drug delivery applications. In Fundamental Biomaterials: Polymers; Woodhead Publishing: Sawston, UK, 2018; pp. 143–169. [Google Scholar] [CrossRef]
- Wan, J.; Liu, L.; Ayub, K.S.; Zhang, W.; Shen, G.; Hu, S.; Qian, X. Characterization and adsorption performance of biochars derived from three key biomass constituents. Fuel 2020, 269, 117142. [Google Scholar] [CrossRef]
- Peng, P.; She, D. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: A review. Carbohydr. Polym. 2014, 112, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, A.; Venditti, R.A.; Pawlak, J.J.; Salam, A.; Hubbe, M.A. Novel Hemicellulose–Chitosan Biosorbent for Water Desalination and Heavy Metal Removal. ACS Sustain. Chem. Eng. 2013, 1, 1102–1109. [Google Scholar] [CrossRef]
- Seo, S.-J.; Park, I.-K.; Yoo, M.-K.; Shirakawa, M.; Akaike, T.; Cho, C.-S. Xyloglucan as a synthetic extracellular matrix for hepatocyte attachment. J. Biomater. Sci. Polym. Ed. 2004, 15, 1375–1387. [Google Scholar] [CrossRef]
- Silveira, J.L.M.; Bresolin, T.M.B. Pharmaceutical use of galactomannans. Quím. Nova 2011, 34, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Landin, M.; Echezarreta, M.M. Galactomannans: Old and new pharmaceutical materials. In Polysaccharides: Development, Properties and Applications; Nova Science: Hauppauge, NY, USA, 2010. [Google Scholar]
- Rossi, B.; Ponzini, E.; Merlini, L.; Grandori, R.; Galante, Y.M. Characterization of aerogels from chemo-enzymatically oxidized galactomannans as novel polymeric biomaterials. Eur. Polym. J. 2017, 93, 347–357. [Google Scholar] [CrossRef]
- Hansen, N.M.L.; Plackett, D. Sustainable Films and Coatings from Hemicelluloses: A Review. Biomacromolecules 2008, 9, 1493–1505. [Google Scholar] [CrossRef]
- Prakobna, K.; Kisonen, V.; Xu, C.; Berglund, L.A. Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J. Mater. Sci. 2015, 50, 7413–7423. [Google Scholar] [CrossRef]
- Peng, H.; Yang, A.; Xiong, J. Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Carbohydr. Polym. 2013, 91, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Huang, J.; Chen, T.; Zhao, Q.; Xu, F.; Zhang, X. Synthesis of hemicellulose/deep eutectic solvent based carbon quantum dots for ultrasensitive detection of Ag+ and L-cysteine with “off-on” pattern. Int. J. Biol. Macromol. 2020, 153, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Farhat, W.; Venditti, R.; Quick, A.; Taha, M.; Mignard, N.; Becquart, F.; Ayoub, A. Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind. Crop. Prod. 2017, 107, 370–377. [Google Scholar] [CrossRef]
- Ebringerova, A. The potential of xylans as biomaterial resources. In Polysaccharide Building Blocks: A Sustainable Approach to the Development of Renewable Biomaterials; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Martínez-Ibarra, D.M.; López-Cervantes, J.; Machado, D.I.S.; Sanches-Silva, A. Chitosan and Xyloglucan-Based Hydrogels: An Overview of Synthetic and Functional Utility. In Chitin-Chitosan—Myriad Functionalities in Science and Technology; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Nagar, B.J.; Naikwadi, N.N.; Variya, B.C. Galactomannan: A versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 2013, 60, 83–92. [Google Scholar] [CrossRef]
- Polari, L.; Ojansivu, P.; Mäkelä, S.; Eckerman, C.; Holmbom, B.; Salminen, S. Galactoglucomannan Extracted from Spruce (Picea abies) as a Carbohydrate Source for Probiotic Bacteria. J. Agric. Food Chem. 2012, 60, 11037–11043. [Google Scholar] [CrossRef]
- Faruk, O.; Sain, M. Lignin in Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Gordobil, O. New Products from Lignin. Ph.D. Thesis, Universidad del País Vasco, San Sebastián, Spain, 2018. [Google Scholar]
- Pucciariello, R.; Villani, V.; Bonini, C.; D’Auria, M.; Vetere, T. Physical properties of straw lignin-based polymer blends. Polymer 2004, 45, 4159–4169. [Google Scholar] [CrossRef]
- Mishra, S.B.; Mishra, A.; Kaushik, N.; Khan, M.A. Study of performance properties of lignin-based polyblends with polyvinyl chloride. J. Mater. Process. Technol. 2007, 183, 273–276. [Google Scholar] [CrossRef]
- Yang, W.; Rallini, M.; Wang, D.-Y.; Gao, D.; Dominici, F.; Torre, L.; Kenny, J.M.; Puglia, D. Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Compos. Part A Appl. Sci. Manuf. 2018, 107, 61–69. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, J.-Y.; Youn, H.J.; Choi, J.W. Utilization of lignin fractions in UV resistant lignin-PLA biocomposites via lignin-lactide grafting. Int. J. Biol. Macromol. 2019, 138, 1029–1034. [Google Scholar] [CrossRef]
- Sheng, Y.; Ma, Z.; Wang, X.; Han, Y. Ethanol organosolv lignin from different agricultural residues: Toward basic structural units and antioxidant activity. Food Chem. 2021, 376, 131895. [Google Scholar] [CrossRef]
- Canetti, M.; Bertini, F.; De Chirico, A.; Audisio, G. Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym. Degrad. Stab. 2006, 91, 494–498. [Google Scholar] [CrossRef]
- Gregorová, A.; Košíková, B.; Moravčík, R. Stabilization effect of lignin in natural rubber. Polym. Degrad. Stab. 2006, 91, 229–233. [Google Scholar] [CrossRef]
- Tavares, L.B.; Rosa, D.D.S. Stabilization effect of kraft lignin into PBAT: Thermal analyses approach. Matéria 2019, 24, 12405. [Google Scholar] [CrossRef]
- Lisperguer, J.; Nuñez, C.; Perez-Guerrero, P. Structure and Thermal Properties of Maleated Lignin-Recycled Polystyrene Composites. J. Chil. Chem. Soc. 2013, 58, 1937–1940. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Patil, S.; Argyropoulos, D. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem. 2015, 17, 4862–4887. [Google Scholar] [CrossRef]
- De Chirico, A.; Armanini, M.; Chini, P.; Cioccolo, G.; Provasoli, F.; Audisio, G. Flame retardants for polypropylene based on lignin. Polym. Degrad. Stab. 2003, 79, 139–145. [Google Scholar] [CrossRef]
- Chollet, B.; Lopez-Cuesta, J.-M.; Laoutid, F.; Ferry, L. Lignin Nanoparticles as A Promising Way for Enhancing Lignin Flame Retardant Effect in Polylactide. Materials 2019, 12, 2132. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lin, S.; Hu, Y.; Ma, M.; Shi, Y.; Liu, J.; Zhu, F.; Wang, X. A lignin-based flame retardant for improving fire behavior and biodegradation performance of polybutylene succinate. Polym. Adv. Technol. 2018, 29, 3142–3150. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Xu, X.; Bourbigot, S.; Wang, H.; Song, P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020, 22, 2129–2161. [Google Scholar] [CrossRef]
- Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Malucelli, G.; Guan, J.-P. An Overview on the Use of Lignin and Its Derivatives in Fire Retardant Polymer Systems. In Lignin—Trends and Applications; Poletto, M., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Ikeda, Y.; Phakkeeree, T.; Junkong, P.; Yokohama, H.; Phinyocheep, P.; Kitano, R.; Kato, A. Reinforcing biofiller “Lignin” for high performance green natural rubber nanocomposites. RSC Adv. 2017, 7, 5222–5231. [Google Scholar] [CrossRef] [Green Version]
- Al Mamun, A.; Nikousaleh, M.A.; Feldmann, M.; Rüppel, A.; Sauer, V.; Kleinhans, S.; Heim, H.-P. Lignin Reinforcement in Bioplastic Composites. In Lignin in Polymer Composites; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 153–165. [Google Scholar]
- Jiang, C.; He, H.; Jiang, H.; Ma, L.; Jia, D.M. Nano-lignin filled natural rubber composites: Preparation and characterization. Express Polym. Lett. 2013, 7, 480–493. [Google Scholar] [CrossRef]
- Rozman, H.; Tan, K.; Kumar, R.; Abubakar, A.; Ishak, Z.M.; Ismail, H. The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites. Eur. Polym. J. 2000, 36, 1483–1494. [Google Scholar] [CrossRef]
- Tanjung, F.A.; Husseinsyah, S.; Hussin, K. Chitosan-filled polypropylene composites: The effect of filler loading and organosolv lignin on mechanical, morphological and thermal properties. Fibers Polym. 2014, 15, 800–808. [Google Scholar] [CrossRef]
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Aini, N.A.M.; Othman, N.; Hussin, M.H.; Sahakaro, K.; Hayeemasae, N. Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review. Front. Mater. 2020, 6, 329. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Chen, F.; Zhou, X.; He, G. Preparation and Characterization of Poly (vinyl chloride) Polyblends with Fractionated Lignin. Int. J. Polym. Mater. Polym. Biomater. 2012, 61, 214–228. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Research and Innovation. Study on Support to R & I Policy in the Area of Bio-Based Products and Services on the Top 20 Innovative Bio-Based Products; Publications Office: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Yu, G.; Li, B.; Wang, H.; Liu, C.; Mu, X. Preparation of Concrete Superplasticizer by Oxidation-Sulfomethylation of Sodium Lignosulfonate. Bioresources 2012, 8, 1055–1063. [Google Scholar] [CrossRef]
- Mu, L.; Shi, Y.; Guo, X.; Ji, T.; Chen, L.; Yuan, R.; Brisbin, L.; Wang, H.; Zhu, J. Non-corrosive green lubricants: Strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Adv. 2015, 5, 66067–66072. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Wu, J.; Matsakas, L.; Chen, M.; Rova, U.; Christakopoulos, P.; Zhu, J.; Shi, Y. Two important factors of selecting lignin as efficient lubricating additives in poly (ethylene glycol): Hydrogen bond and molecular weight. Int. J. Biol. Macromol. 2019, 129, 564–570. [Google Scholar] [CrossRef]
- Hua, J.; Shi, Y. Non-corrosive Green Lubricant with Dissolved Lignin in Ionic Liquids Behave as Ideal Lubricants for Steel-DLC Applications. Front. Chem. 2019, 7, 857. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Triviño, E.; Valencia, C.; Franco, J.M. Thickening Castor Oil with a Lignin-Enriched Fraction from Sugarcane Bagasse Waste via Epoxidation: A Rheological and Hydrodynamic Approach. ACS Sustain. Chem. Eng. 2021, 9, 10503–10512. [Google Scholar] [CrossRef]
- Borrego, M.; Martín-Alfonso, J.E.; Sánchez, M.C.; Valencia, C.; Franco, J.M. Electrospun lignin-PVP nanofibers and their ability for structuring oil. Int. J. Biol. Macromol. 2021, 180, 212–221. [Google Scholar] [CrossRef]
- Cortés-Triviño, E.; Valencia, C.; Delgado, M.A.; Franco, J.M. Modification of Alkali Lignin with Poly(Ethylene Glycol) Diglycidyl Ether to Be Used as a Thickener in Bio-Lubricant Formulations. Polymers 2018, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Valle, J.; Sánchez, M.; Valencia, C.; Martín-Alfonso, J.; Franco, J. Electrohydrodynamic Processing of PVP-Doped Kraft Lignin Micro- and Nano-Structures and Application of Electrospun Nanofiber Templates to Produce Oleogels. Polymers 2021, 13, 2206. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Ramalingam, S.; Javid, M.A.; Rao, J.R. Lignin Based Colorant: Modified Black Liquor for Leather Surface Coating Application. J. Am. Leather Chem. Assoc. 2018, 113, 311–317. [Google Scholar]
- Araújo, P.; Costa, A.; Fernandes, I.; Mateus, N.; de Freitas, V.; Sarmento, B.; Oliveira, J. Stabilization of bluish pyranoanthocyanin pigments in aqueous systems using lignin nanoparticles. Dye. Pigment. 2019, 166, 367–374. [Google Scholar] [CrossRef]
- Ugartondo, V.; Mitjans, M.; Vinardell, M.P. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 2008, 99, 6683–6687. [Google Scholar] [CrossRef]
- Espinoza-Acosta, J.L.; Torres-Chávez, P.I.; Ramírez-Wong, B.; López-Saiz, C.-M.; Montaño-Leyva, B. Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioResources 2016, 11, 5452–5481. [Google Scholar] [CrossRef]
- Mahmood, Z.; Yameen, M.; Jahangeer, M.; Riaz, M.; Ghaffar, A.; Javid, I. Lignin as Natural Antioxidant Capacity. In Lignin—Trends and Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Zhang, Y.; Gu, L.; Wu, W.; Zhao, H.; Jin, Y. Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali-oxygen black liquor. Int. J. Biol. Macromol. 2018, 116, 513–519. [Google Scholar] [CrossRef]
- Li, M.-F.; Sun, S.-N.; Xu, F.; Sun, R.-C. Sequential solvent fractionation of heterogeneous bamboo organosolv lignin for value-added application. Sep. Purif. Technol. 2012, 101, 18–25. [Google Scholar] [CrossRef]
- Ma, P.; Gao, Y.; Zhai, H. Fractionated Wheat Straw Lignin and Its Application as Antioxidant. BioResources 2013, 8, 5581–5595. [Google Scholar] [CrossRef] [Green Version]
- Lora, J.H.; Glasser, W.G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. [Google Scholar] [CrossRef]
- Nippon Paper Group. Available online: https://www.nipponpapergroup.com/english/products/chemical/lignin_products/industries (accessed on 14 March 2020).
- Li, Y.; Luo, X.; Hu, S. Bio-Based Polyols and Polyurethanes; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Chen, F.; Lu, Z. Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J. Appl. Polym. Sci. 2009, 111, 508–516. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, Y.; Jia, C.; Wang, C.; Li, X.; Zhang, M. Polyurethane from liquefied wheat straw as coating material for controlled release fertilizers. BioResources 2015, 10, 7877–7888. [Google Scholar] [CrossRef]
- Gürsoy, T. Water absorption and biodegradation properties of barley straw-contained polyurethane foams. In Book of Abstract Proceedings, 8TH International Adavanced Technologies Symposium IATS; Firat University: Elazığ, Turkey, 2017. [Google Scholar]
- Ertas, M.; Fidan, M.S.; Almat, M.H. Preparation and characterization of biodegradable rigid polyurethane foams from the liquefied eucalyptus and pine woods. Wood Res. 2014, 59, 97–108. [Google Scholar]
- Wang, Q.; Tuohedi, N. Polyurethane Foams and Bio-Polyols from Liquefied Cotton Stalk Agricultural Waste. Sustainability 2020, 12, 4214. [Google Scholar] [CrossRef]
- Fidan, M.S.; Ertaş, M. Bio-based rigid polyurethane foam prepared from apricot stone shell-based polyol for thermal insulation application—Part 2: Morphological, mechanical, and thermal properties. BioResources 2020, 15, 6080–6094. [Google Scholar] [CrossRef]
- Hosseinpourpia, R.; Adamopoulos, S.; Echart, A.S.; Eceiza, A. Polyurethane films prepared with isophorone diisocyanate functionalized wheat starch. Eur. Polym. J. 2021, 161, 110826. [Google Scholar] [CrossRef]
- Calvo-Correas, T.; Ugarte, L.; Ochoa-Gómez, J.R.; Roncal, T.; Diñeiro, C.; Corcuera, M.A.; Eceiza, A. Lignocellulosic Biomass as a Source of Raw Materials for the Synthesis of Polyurethanes. Proceedings 2018, 2, 1493. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Zhang, J.; Deng, W.; Xie, S.; Zhang, Q.; Wang, Y. Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles. Chem. Commun. 2019, 55, 8013–8016. [Google Scholar] [CrossRef] [PubMed]
- Bernard, F.L.; dos Santos, L.; Cobalchina, F.W.; Schwab, M.B.; Einloft, S. Polyurethane/poly (Ionic Liquids) Cellulosic Composites and their Evaluation for Separation of CO2 from Natural Gas. Mater. Res. 2019, 22, 20180827. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Y.; Silverstein, M.S. Cellulose-based, highly porous polyurethanes templated within non-aqueous high internal phase emulsions. Cellulose 2020, 27, 4007–4018. [Google Scholar] [CrossRef]
- Wang, W.; Wang, F.; Zhang, C.; Wang, Z.; Tang, J.; Zeng, X.; Wan, X. Robust, Reprocessable, and Reconfigurable Cellulose-Based Multiple Shape Memory Polymer Enabled by Dynamic Metal–Ligand Bonds. ACS Appl. Mater. Interfaces 2020, 12, 25233–25242. [Google Scholar] [CrossRef]
- Góes, M.M.; Keller, M.; Oliveira, V.M.; Villalobos, L.D.G.; Moraes, J.C.G.; Carvalho, G.M. Polyurethane foams synthesized from cellulose-based wastes: Kinetics studies of dye adsorption. Ind. Crop. Prod. 2016, 85, 149–158. [Google Scholar] [CrossRef]
- Jabber, L.J.Y.; Grumo, J.C.; Patricio, J.N.; Magdadaro, M.R.; Alguno, A.C.; Lubguban, A. Effect of cellulose-based fibers extracted from pineapple (Ananas comosus) leaf in the formation of polyurethane foam. J. Fundam. Appl. Sci. 2017, 9, 134–143. [Google Scholar]
- Jabber, L.J.Y.; Grumo, J.C.; Alguno, A.C.; Lubguban, A.A.; Capangpangan, R.Y. The Effect of Cellulose Fibers on the Formation of Petroleum-Based and Bio-Based Polyurethane Foams. Key Eng. Mater. 2019, 803, 371–376. [Google Scholar] [CrossRef]
- Hadjadj, A.; Jbara, O.; Tara, A.; Gilliot, M.; Malek, F.; Maafi, E.M.; Tighzert, L. Effects of cellulose fiber content on physical properties of polyurethane based composites. Compos. Struct. 2016, 135, 217–223. [Google Scholar] [CrossRef]
- Ikhwan, F.H.; Ilmiati, S.; Adi, H.K.; Arumsari, R.; Chalid, M. Novel route of synthesis for cellulose fiber-based hybrid polyurethane. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 223, p. 012019. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cheng, Z.; Liu, Z.; Kang, H.; Liu, Y. Cellulose nanofibers/polyurethane shape memory composites with fast water-responsivity. J. Mater. Chem. B 2018, 6, 1668–1677. [Google Scholar] [CrossRef]
- Qin, S.; Pour, M.G.; Lazar, S.; Köklükaya, O.; Gerringer, J.; Song, Y.; Wågberg, L.; Grunlan, J.C. Super Gas Barrier and Fire Resistance of Nanoplatelet/Nanofibril Multilayer Thin Films. Adv. Mater. Interfaces 2019, 6, 1801424. [Google Scholar] [CrossRef]
- Guo, W.; Wang, X.; Zhang, P.; Liu, J.; Song, L.; Hu, Y. Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Carbohydr. Polym. 2018, 195, 71–78. [Google Scholar] [CrossRef]
- Urbina, L.; Alonso-Varona, A.; Saralegi, A.; Palomares, T.; Eceiza, A.; Corcuera, M.Á.; Retegi, A. Hybrid and biocompatible cellulose/polyurethane nanocomposites with water-activated shape memory properties. Carbohydr. Polym. 2019, 216, 86–96. [Google Scholar] [CrossRef]
- Kupka, V.; Zhou, Q.; Ansari, F.; Tang, H.; Šlouf, M.; Vojtová, L.; Berglund, L.A.; Jančář, J. Well-dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solvent-free procedure in bulk. Polym. Compos. 2019, 40, 456–465. [Google Scholar] [CrossRef]
- Yun, G.W.; Lee, J.H.; Kim, S.H. Flame retardant and mechanical properties of expandable graphite/polyurethane foam composites containing iron phosphonate dopamine-coated cellulose. Polym. Compos. 2020, 41, 2816–2828. [Google Scholar] [CrossRef]
- Ge, X.; Chang, C.; Zhang, L.; Cui, S.; Luo, X.; Hu, S.; Qin, Y.; Li, Y. Conversion of Lignocellulosic Biomass into Platform Chemicals for Biobased Polyurethane Application. In Advances in Bioenergy; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 161–213. [Google Scholar]
- Robinson, J.M.; Burgess, C.E.; Bently, M.A.; Brasher, C.D.; Horne, B.O.; Lillard, D.M.; Macias, J.M.; Mandal, H.D.; Mills, S.C.; O’Hara, K.D.; et al. The use of catalytic hydrogenation to intercept carbohydrates in a dilute acid hydrolysis of biomass to effect a clean separation from lignin. Biomass Bioenergy 2004, 26, 473–483. [Google Scholar] [CrossRef]
- Samavi, M.; Rakshit, S. Utilization of Microbial Oil from Poplar Wood Hemicellulose Prehydrolysate for the Production of Polyol Using Chemo-enzymatic Epoxidation. Biotechnol. Bioprocess Eng. 2020, 25, 327–335. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, J.; Erdocia, X.; De Hoyos, P.L.; Sequeiros, A.; Labidi, J. Catalytic Cascade Transformations of Biomass into Polyols. In Production of Biofuels and Chemicals with Bifunctional Catalysts; Springer: Berlin/Heidelberg, Germany, 2017; pp. 187–219. [Google Scholar]
- Cheng, H.N.; Furtado, R.F.; Alves, C.R.; Bastos, M.D.S.R.; Kim, S.; Biswas, A. Novel polyurethanes from xylan and TDI: Preparation and characterization. Int. J. Polym. Anal. Charact. 2017, 22, 35–42. [Google Scholar] [CrossRef]
- Magnusson, M. A study of alternative Polyurethane films with Hemicellulose Preparation and characterization methods. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2017. [Google Scholar]
- Hu, Z.; Xiang, Z.; Song, T.; Lu, F. Effects of crosslinking degree on the coating properties of arabinoxylan. BioResources 2019, 14, 70–86. [Google Scholar]
- Pakzad, B.; Daryaei, M.; Ashkezari, M.D. Coating of Polyurethane Scaffold with Arabinogalactan Leads to Increase of Adhesion to Fibroblast Cells by Integrin Molecules Pathway. Colloids Interface Sci. Commun. 2018, 22, 1–4. [Google Scholar] [CrossRef]
- Bafghi, A.F.; Ashkezari, M.D.; Vakili, M.; Pournasir, S. Polyurethane sheet impregnated with Arabinogalactan can lead to increase of attachment of promastigotes and Amastigote of Leishmania major (MRHO/IR/75/ER) by GP63 and HSP70 genes. Mater. Sci. Eng. C 2018, 91, 292–296. [Google Scholar] [CrossRef]
- Sarkiliotis, A.W.; Bauer, K.H. Synthesis and investigation of polyurethanes with galactomannan segment as auxiliary materials for the release of peptide drugs in the colon. Pharm. Ind. 1992, 54, 873–880. [Google Scholar]
- Zia, F.; Zia, K.M.; Zuber, M.; Ahmad, H.B.; Muneer, M. Glucomannan based polyurethanes: A critical short review of recent advances and future perspectives. Int. J. Biol. Macromol. 2016, 87, 229–236. [Google Scholar] [CrossRef]
- Shao, M.; Liu, Z.-Q.; Li, N.; Zhao, Y.; Özkan, N.; Chen, X.D. Thermal Properties of Polyurethane Films Prepared from Mixed Cellulose, Hemicelluloses and Lignin. Int. J. Food Eng. 2012, 8, 1. [Google Scholar] [CrossRef]
- Upton, B.; Kasko, A.M. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chem. Rev. 2016, 116, 2275–2306. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Huang, C.; Chen, Q.; Ingram, I.D.V.; Zeng, X.; Ren, T.; Xie, H. Sustainable Aromatic Aliphatic Polyesters and Polyurethanes Prepared from Vanillin-Derived Diols via Green Catalysis. Polymers 2020, 12, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandini, A.; Belgacem, M.N.; Guo, Z.-X.; Montanari, S. Lignins as Macromonomers for Polyesters and Polyurethanes. In Chemical Modification, Properties, and Usage of Lignin; Springer: Berlin/Heidelberg, Germany, 2002; pp. 57–80. [Google Scholar]
- Alinejad, M.; Henry, C.; Nikafshar, S.; Gondaliya, A.; Bagheri, S.; Chen, N.; Singh, S.K.; Hodge, D.B.; Nejad, M. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers 2019, 11, 1202. [Google Scholar] [CrossRef] [Green Version]
- Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 2014, 39, 1266–1290. [Google Scholar] [CrossRef]
- Nikafshar, S.; Fang, Z.; Nejad, M. Development of a Novel Curing Accelerator-Blowing Agent for Formulating Epoxy Rigid Foam Containing Aminated-Lignin. Ind. Eng. Chem. Res. 2020, 59, 15146–15154. [Google Scholar] [CrossRef]
- Quinsaat, J.E.Q.; Feghali, E.; van de Pas, D.J.; Vendamme, R.; Torr, K.M. Preparation of Mechanically Robust Bio-Based Polyurethane Foams Using Depolymerized Native Lignin. ACS Appl. Polym. Mater. 2021, 3, 5845–5856. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Wang, L.; Valencia, C.; Franco, J.M.; Rojas, O.J. Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviors. Compos. Sci. Technol. 2021, 203, 108602. [Google Scholar] [CrossRef]
- Pinto, J.; Fernandes, I.; Pinto, V.; Gomes, E.; Oliveira, C.; Pinto, P.C.R.; Mesquita, L.; Piloto, P.; Rodrigues, A.; Barreiro, M.-F. Valorization of Lignin Side-Streams into Polyols and Rigid Polyurethane Foams—A Contribution to the Pulp and Paper Industry Biorefinery. Energies 2021, 14, 3825. [Google Scholar] [CrossRef]
- Ortiz-Serna, P.; Carsí, M.; Culebras, M.; Collins, M.; Sanchis, M. Exploring the role of lignin structure in molecular dynamics of lignin/bio-derived thermoplastic elastomer polyurethane blends. Int. J. Biol. Macromol. 2020, 158, 1369–1379. [Google Scholar] [CrossRef]
- Vendamme, R.; De Bueren, J.T.B.; Gracia-Vitoria, J.; Isnard, F.; Mulunda, M.M.; Ortiz, P.; Wadekar, M.; Vanbroekhoven, K.; Wegmann, C.; Buser, R.; et al. Aldehyde-Assisted Lignocellulose Fractionation Provides Unique Lignin Oligomers for the Design of Tunable Polyurethane Bioresins. Biomacromolecules 2020, 21, 4135–4148. [Google Scholar] [CrossRef]
- Griffini, G.; Passoni, V.; Suriano, R.; Levi, M.; Turri, S. Polyurethane Coatings Based on Chemically Unmodified Fractionated Lignin. ACS Sustain. Chem. Eng. 2015, 3, 1145–1154. [Google Scholar] [CrossRef]
- Shahabadi, I.; Kong, J.; Lu, X. Aqueous-Only, Green Route to Self-Healable, UV-Resistant, and Electrically Conductive Polyurethane/Graphene/Lignin Nanocomposite Coatings. ACS Sustain. Chem. Eng. 2017, 5, 3148–3157. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, H.; Liu, X.; Tian, S.; Liu, Y.; Fu, S. Ag immobilized lignin-based PU coating: A promising candidate to promote the mechanical properties, thermal stability, and antibacterial property of paper packaging. Int. J. Biol. Macromol. 2021, 189, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.Q.; Wu, X.J. Water-Based UV-Curable Polyurethane Based on Wheat Straw Lignin Obtained by Ethanol Extraction. Adv. Mater. Res. 2011, 295–297, 278–281. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, J.; Liu, B.; Zhang, C.; Zhao, Q.; Sun, Z.; Cao, H.; Zhu, G. Synergism between lignin, functionalized carbon nanotubes and Fe3O4 nanoparticles for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Compos. Commun. 2021, 24, 100616. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.-T.; Lou, C.-W.; Lin, J.-H. Facile method for tent fabrics with eco-friendly/durable properties using waterborne polyurethane/lignin: Preparation and evaluation. J. Ind. Text. 2020, 1528083720931884. [Google Scholar] [CrossRef]
- Gonçalves, S.S.L.; Rudnitskaya, A.; Sales, A.J.; Costa, L.M.C.; Evtuguin, D.V. Nanocomposite Polymeric Materials Based on Eucalyptus Lignoboost® Kraft Lignin for Liquid Sensing Applications. Materials 2020, 13, 1637. [Google Scholar] [CrossRef] [Green Version]
- Karunarathna, M.S.; Smith, R.C. Valorization of Lignin as a Sustainable Component of Structural Materials and Composites: Advances from 2011 to 2019. Sustainability 2020, 12, 734. [Google Scholar] [CrossRef] [Green Version]
- Burchardt, B. Advances in polyurethane structural adhesives. In Advances in Structural Adhesive Bonding; Elsevier: Amsterdam, The Netherlands, 2010; pp. 35–65. [Google Scholar]
- Jiang, W.; Kumar, A.; Adamopoulos, S. Liquefaction of lignocellulosic materials and its applications in wood adhesives—A review. Ind. Crop. Prod. 2018, 124, 325–342. [Google Scholar] [CrossRef]
- Lee, W.-J.; Lin, M.-S. Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 2008, 109, 23–31. [Google Scholar] [CrossRef]
- Mori, R. Inorganic–organic hybrid biodegradable polyurethane resin derived from liquefied Sakura wood. Wood Sci. Technol. 2015, 49, 507–516. [Google Scholar] [CrossRef]
- Juhaida, M.; Paridah, M.; Hilmi, M.M.; Sarani, Z.; Jalaluddin, H.; Zaki, A.M. Liquefaction of kenaf (Hibiscus cannabinus L.) core for wood laminating adhesive. Bioresour. Technol. 2010, 101, 1355–1360. [Google Scholar] [CrossRef]
- Tohmura, S.-I.; Li, G.-Y.; Qin, T.-F. Preparation and characterization of wood polyalcohol-based isocyanate adhesives. J. Appl. Polym. Sci. 2005, 98, 791–795. [Google Scholar] [CrossRef]
- Tenorio-Alfonso, A.; Sánchez, M.C.; Franco, J.M. Impact of moisture curing conditions on the chemical structure and rheological and ultimate adhesion properties of polyurethane adhesives based on castor oil and cellulose acetate. Prog. Org. Coat. 2021, 161, 106547. [Google Scholar] [CrossRef]
- Tenorio-Alfonso, A.; Pizarro, M.; Sánchez, M.; Franco, J. Assessing the rheological properties and adhesion performance on different substrates of a novel green polyurethane based on castor oil and cellulose acetate: A comparison with commercial adhesives. Int. J. Adhes. Adhes. 2018, 82, 21–26. [Google Scholar] [CrossRef]
- Tenorio-Alfonso, A.; Sánchez, M.C.; Franco, J.M. Synthesis and mechanical properties of bio-sourced polyurethane adhesives obtained from castor oil and MDI-modified cellulose acetate: Influence of cellulose acetate modification. Int. J. Adhes. Adhes. 2019, 95, 102404. [Google Scholar] [CrossRef]
- Jasiūnas, L.; Peck, G.; Bridžiuvienė, D.; Miknius, L. Mechanical, thermal properties and stability of high renewable content liquefied residual biomass derived bio-polyurethane wood adhesives. Int. J. Adhes. Adhes. 2020, 101, 102618. [Google Scholar] [CrossRef]
- Balcioglu, S.; Parlakpinar, H.; Vardi, N.; Denkbas, E.B.; Karaaslan, M.G.; Gulgen, S.; Taslidere, E.; Koytepe, S.; Ates, B. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties. ACS Appl. Mater. Interfaces 2016, 8, 4456–4466. [Google Scholar] [CrossRef]
- Rackham, R.A. Use of Xylan to Improve Bond Strength. European Patent EP 1265969B1, 12 October 2005. [Google Scholar]
- Hsu, O.H.H.; Glasser, W.G. Polyurethane adhesives and coatings from modified lignin. J. Appl. Polym. Sci. Appl. Polym. Symp. 1975, 378, 297–307. [Google Scholar]
- Borrero-López, A.M.; Valencia, C.; Domínguez, G.; Eugenio, M.E.; Franco, J.M. Rheology and adhesion performance of adhesives formulated with lignins from agricultural waste straws subjected to solid-state fermentation. Ind. Crop. Prod. 2021, 171, 113876. [Google Scholar] [CrossRef]
- De Haro, J.C.; Allegretti, C.; Smit, A.T.; Turri, S.; D’Arrigo, P.; Griffini, G. Biobased Polyurethane Coatings with High Biomass Content: Tailored Properties by Lignin Selection. ACS Sustain. Chem. Eng. 2019, 7, 11700–11711. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Zhu, Z.; Fu, S. High-value utilization of hydroxymethylated lignin in polyurethane adhesives. Int. J. Biol. Macromol. 2020, 152, 775–785. [Google Scholar] [CrossRef]
- Gouveia, J.R.; Antonino, L.D.; Garcia, G.E.S.; Tavares, L.B.; Santos, A.N.B.; dos Santos, D.J. Kraft lignin-containing polyurethane adhesives: The role of hydroxypropylation on thermomechanical properties. J. Adhes. 2020, 97, 1423–1439. [Google Scholar] [CrossRef]
- Ibrahim, V.; Mamo, G.; Gustafsson, P.-J.; Hatti-Kaul, R. Production and properties of adhesives formulated from laccase modified Kraft lignin. Ind. Crop. Prod. 2013, 45, 343–348. [Google Scholar] [CrossRef]
- García, J.L.; Pans, G.; Phanopoulos, C. Use of lignin in polyurethane-based structural wood adhesives. J. Adhes. 2018, 94, 814–828. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Di, M. Green Modification of Corn Stalk Lignin and Preparation of Environmentally Friendly Lignin-Based Wood Adhesive. Polymers 2018, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Lyadov, A.S.; Maksimova, Y.M.; Shakhmatova, A.S.; Kirillov, V.V.; Parenago, O.P. Urea (Polyurea) Greases. Russ. J. Appl. Chem. 2018, 91, 885–894. [Google Scholar] [CrossRef]
- Chandra Sharma, U.; Singh, N. Biogreases for Environment Friendly Lubrication. In Environonmental Science & Engineering; Sustainable Development; Studium Press: New Delhi, India, 2019; Volume 1. [Google Scholar]
- Borrero-López, A.M.; Blánquez, A.; Valencia, C.; Hernández, M.; Arias, M.E.; Franco, J.M. Influence of solid-state fermentation with Streptomyces on the ability of wheat and barley straws to thicken castor oil for lubricating purposes. Ind. Crops Prod. 2019, 140, 111625. [Google Scholar] [CrossRef]
- Gallego, R.; Arteaga, J.F.; Valencia, C.; Franco, J.M. Chemical modification of methyl cellulose with HMDI to modulate the thickening properties in castor oil. Cellulose 2013, 20, 495–507. [Google Scholar] [CrossRef]
- Gallego, R.; Arteaga, J.; Valencia, C.; Franco, J. Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr. Polym. 2013, 98, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Gallego, R.; Arteaga, J.; Valencia, C.; Franco, J. Thickening properties of several NCO-functionalized cellulose derivatives in castor oil. Chem. Eng. Sci. 2015, 134, 260–268. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Blánquez, A.; Hernández, M.; Eugenio, M.E.; Franco, J.M. Cellulose Pulp- and Castor Oil-Based Polyurethanes for Lubricating Applications: Influence of Streptomyces Action on Barley and Wheat Straws. Polymers 2020, 12, 2822. [Google Scholar] [CrossRef]
- Gallego, R.; Arteaga, J.F.; Valencia, C.; Díaz, M.J.; Franco, J.M. Gel-Like Dispersions of HMDI-Cross-Linked Lignocellulosic Materials in Castor Oil: Toward Completely Renewable Lubricating Grease Formulations. ACS Sustain. Chem. Eng. 2015, 3, 2130–2141. [Google Scholar] [CrossRef]
- Gallego, R.; Cidade, M.T.; Sánchez, R.; Valencia, C.; Franco, J. Tribological behaviour of novel chemically modified biopolymer-thickened lubricating greases investigated in a steel–steel rotating ball-on-three plates tribology cell. Tribol. Int. 2016, 94, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Li, Z.; Wang, H.; Li, H. Synthesis and optimization of polyurethane microcapsules containing [BMIm]PF6 ionic liquid lubricant. J. Colloid Interface Sci. 2019, 534, 469–479. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Rheology of lignin-based chemical oleogels prepared using diisocyanate crosslinkers: Effect of the diisocyanate and curing kinetics. Eur. Polym. J. 2017, 89, 311–323. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Green and facile procedure for the preparation of liquid and gel-like polyurethanes based on castor oil and lignin: Effect of processing conditions on the rheological properties. J. Clean. Prod. 2020, 277, 123367. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Blánquez, A.; Valencia, C.; Hernández, M.; Arias, M.E.; Eugenio, M.E.; Fillat, Ú.; Franco, J.M. Valorization of Soda Lignin from Wheat Straw Solid-State Fermentation: Production of Oleogels. ACS Sustain. Chem. Eng. 2018, 6, 5198–5205. [Google Scholar] [CrossRef]
- Domínguez, G.; Blánquez, A.; Borrero-López, A.M.; Valencia, C.; Eugenio, M.E.; Arias, M.E.; Rodríguez, J.; Hernández, M. Eco-Friendly Oleogels from Functionalized Kraft Lignin with Laccase SilA from Streptomyces ipomoeae: An Opportunity to Replace Commercial Lubricants. ACS Sustain. Chem. Eng. 2021, 9, 4611–4616. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Martín-Sampedro, R.; Ibarra, D.; Valencia, C.; Eugenio, M.E.; Franco, J.M. Evaluation of lignin-enriched side-streams from different biomass conversion processes as thickeners in bio-lubricant formulations. Int. J. Biol. Macromol. 2020, 162, 1398–1413. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Ibarra, D.; Ballesteros, I.; Franco, J.M. Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties. Int. J. Biol. Macromol. 2021, 195, 412–423. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Santiago-Medina, F.J.; Valencia, C.; Eugenio, M.E.; Martin-Sampedro, R.; Franco, J.M. Valorization of Kraft Lignin as Thickener in Castor Oil for Lubricant Applications. J. Renew. Mater. 2018, 6, 347–361. [Google Scholar] [CrossRef]
- Fajardo, C.; Blánquez, A.; Domínguez, G.; Borrero-López, A.; Valencia, C.; Hernández, M.; Arias, M.; Rodríguez, J. Assessment of Sustainability of Bio Treated Lignocellulose-Based Oleogels. Polymers 2021, 13, 267. [Google Scholar] [CrossRef]
- Litters, T.; Hahn, F.; Goerz, T.; Erkel, H.J. Process for the Preparation of Polyurea-Thickened Lignin Derivative-Based Lubricating Greases, Such Lubricant Greases and Use Thereof. U.S. Patent US10604721B2, 9 March 2016. [Google Scholar]
- Aureliano Perez, J.R.; Vaught, K.A.; Hansen, G.P. Low Volatile Organic Content Lubricant. U.S. Patent US7524797B1, 28 April 2009. [Google Scholar]
- Pasquini, D. Fully Green Elastomer Composites. In Advances in Elastomers II; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Ducharme, R. Multi-composite acoustic panel. J. Acoust. Soc. Am. 2009, 125, 4104. [Google Scholar] [CrossRef]
- Bi, H.; Ren, Z.; Guo, R.; Xu, M.; Song, Y. Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Ind. Crop. Prod. 2018, 122, 76–84. [Google Scholar] [CrossRef]
- Mengeloğlu, F.; Çavuş, V. Preparation of thermoplastic polyurethane-based biocomposites through injection molding: Effect of the filler type and content. BioResources 2020, 15, 5749–5763. [Google Scholar] [CrossRef]
- Guodong, T.; Yu, Z.; Jiming, X.; Jianying, Z.; Yiwei, W. Rice Straw Liquefying Method and Method for Synthesizing Polyurethane Elastomer from Rice Straw Liquefying Product. China Patent CN103965485A, 6 August 2014. [Google Scholar]
- Zhao, S.L.; Xue, Z.H.; Bin Li, Y.; Huang, J.T. Study on Straw Liquefied Product Synthetizing Polyurethane Elastomer. Adv. Mater. Res. 2013, 821–822, 977–980. [Google Scholar] [CrossRef]
- Yan, Q.; Zhao, S.; Kang, H.; Zhang, S. Thiol-assisted bioinspired deposition of polyurethane onto cellulose as robust elastomer for reinforcing soy protein-based composites. J. Appl. Polym. Sci. 2020, 137, 49176. [Google Scholar] [CrossRef]
- Wu, Q.; Henriksson, M.; Liu, X.; Berglund, L. A High Strength Nanocomposite Based on Microcrystalline Cellulose and Polyurethane. Biomacromolecules 2007, 8, 3687–3692. [Google Scholar] [CrossRef] [PubMed]
- Pei, A.; Malho, J.-M.; Ruokolainen, J.; Zhou, Q.; Berglund, L.A. Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals. Macromolecules 2011, 44, 4422–4427. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.; Luo, H.; Young, R.J.; Deng, L.; Zhang, S.; Fan, Y.; Ye, G. Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 2012, 8, 2509–2517. [Google Scholar] [CrossRef]
- Aranguren, M.I.; Marcovich, N.E.; Salgueiro, W.; Somoza, A. Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy. Polym. Test. 2013, 32, 115–122. [Google Scholar] [CrossRef]
- Saralegi, A.; Rueda, L.; Martin, L.; Arbelaiz, A.; Eceiza, A.; Corcuera, M. From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites. Compos. Sci. Technol. 2013, 88, 39–47. [Google Scholar] [CrossRef]
- Lee, M.; Heo, M.H.; Lee, H.-H.; Kim, Y.-W.; Shin, J. Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites. Carbohydr. Polym. 2017, 159, 125–135. [Google Scholar] [CrossRef]
- Gao, Z.; Peng, J.; Zhong, T.; Sun, J.; Wang, X.; Yue, C. Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr. Polym. 2012, 87, 2068–2075. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L. Morphology and mechanical properties of semi-interpenetrating polymer networks from polyurethane and benzyl konjac glucomannan. Polymer 2002, 43, 3979–3986. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, L.; Cao, J. Synthesis and characterization of poly(ester urethane)/nitrokonjac glucomannan semi-interpenetrating polymer networks. J. Appl. Polym. Sci. 2003, 90, 2224–2228. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L.; Zhang, X.; Zhou, Y. Effects of secondary structure on miscibility and properties of semi-IPN from polyurethane and benzyl konjac glucomannan. Polymer 2003, 44, 6689–6696. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Li, P.; He, C. Conversion of biomass lignin to high-value polyurethane: A review. J. Bioresour. Bioprod. 2020, 5, 163–179. [Google Scholar] [CrossRef]
- Gang, H.; Lee, D.; Choi, K.-Y.; Kim, H.-N.; Ryu, H.; Lee, D.-S.; Kim, B.-G. Development of High Performance Polyurethane Elastomers Using Vanillin-Based Green Polyol Chain Extender Originating from Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2017, 5, 4582–4588. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, B.; Zhu, Y.; Wang, Z. Effects of Lignin-Derived Polycarboxylic Acids on the Properties of Waterborne Polyurethane Elastomers. Int. J. Polym. Sci. 2018, 2018, 7989367. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sun, J.-T.; Wang, C.; Liu, S.; Yuan, D.; Zhou, X.; Tan, J.; Stubbs, L.; He, C. High Modulus, Strength, and Toughness Polyurethane Elastomer Based on Unmodified Lignin. ACS Sustain. Chem. Eng. 2017, 5, 7942–7949. [Google Scholar] [CrossRef]
- Jeong, H.; Park, J.; Kim, S.; Lee, J.; Ahn, N.; Roh, H.-G. Preparation and characterization of thermoplastic polyurethanes using partially acetylated kraft lignin. Fibers Polym. 2013, 14, 1082–1093. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, R.; Ngo, T.-D.; Zhao, Q.; Duan, J.; Du, X.; Wang, Y.; Liu, B.; Sun, Z.; Hu, W.; et al. Ozone oxidized lignin-based polyurethane with improved properties. Eur. Polym. J. 2019, 117, 114–122. [Google Scholar] [CrossRef]
- Liu, W.; Fang, C.; Wang, S.; Huang, J.; Qiu, X. High-Performance Lignin-Containing Polyurethane Elastomers with Dynamic Covalent Polymer Networks. Macromolecules 2019, 52, 6474–6484. [Google Scholar] [CrossRef]
- Ciobanu, C.; Ungureanu, M.; Ignat, L.; Popa, V. Properties of lignin–polyurethane films prepared by casting method. Ind. Crop. Prod. 2004, 20, 231–241. [Google Scholar] [CrossRef]
- Kai, D.; Tan, M.J.; Chee, P.L.; Chua, Y.K.; Yap, Y.L.; Loh, X.J. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016, 18, 1175–1200. [Google Scholar] [CrossRef]
- Lang, J.M.; Shrestha, U.M.; Dadmun, M. The Effect of Plant Source on the Properties of Lignin-Based Polyurethanes. Front. Energy Res. 2018, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Culebras, M.; Beaucamp, A.; Wang, Y.; Clauss, M.M.; Frank, E.; Collins, M.N. Biobased Structurally Compatible Polymer Blends Based on Lignin and Thermoplastic Elastomer Polyurethane as Carbon Fiber Precursors. ACS Sustain. Chem. Eng. 2018, 6, 8816–8825. [Google Scholar] [CrossRef]
- Li, H.; Sivasankarapillai, G.; McDonald, A.G. Lignin valorization by forming toughened thermally stimulated shape memory copolymeric elastomers: Evaluation of different fractionated industrial lignins. J. Appl. Polym. Sci. 2015, 132, 41389. [Google Scholar] [CrossRef]
- Frigerio, P.; Zoia, L.; Orlandi, M.; Hanel, T.; Castellani, L. Application of Sulphur-Free Lignins as a Filler for Elastomers: Effect of Hexamethylenetetramine Treatment. BioResources 2013, 9, 1387–1400. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Sewell, P.; Brook, M.A. Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chem. 2015, 17, 1811–1819. [Google Scholar] [CrossRef]
- Engelmann, G.; Ganster, J. Lignin Reinforcement in Thermosets Composites. In Lignin in Polymer Composites; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 119–151. [Google Scholar]
Feedstocks | Carbohydrate Composition (% Dry Weight) | ||
---|---|---|---|
Cellulose | Hemicellulose | Lignin | |
Barley hull | 24 | 36 | 19 |
Barley straw | 36–43 | 24–33 | 6.3–9.8 |
Bamboo | 49–50 | 18–20 | 23 |
Banana waste | 13 | 15 | 14 |
Corn cob | 32.3–45.6 | 39.8 | 6.7–13.9 |
Corn stover | 35.1–39.5 | 20.7–24.6 | 11.0–19.1 |
Cotton | 85–95 | 5–15 | 0 |
Cotton stalk | 31 | 11 | 30 |
Coffee pulp | 33.7–36.9 | 44.2–47.5 | 15.6–19.1 |
Douglas fir | 35–48 | 20–22 | 15–21 |
Eucalyptus | 45–51 | 11–18 | 29 |
Hardwood stems | 40–55 | 24–40 | 18–25 |
Rice straw | 29.2–34.7 | 23–25.9 | 17–19 |
Rice husk | 28.7–35.6 | 11.96–29.3 | 15.4–20 |
Wheat straw | 35–39 | 22–30 | 12–16 |
Wheat bran | 10.5–14.8 | 35.5–39.2 | 8.3–12.5 |
Grasses | 25–40 | 25–50 | 10–30 |
Newspaper | 40–55 | 24–39 | 18–30 |
Sugarcane bagasse | 25–45 | 28–32 | 15–25 |
Sugarcane tops | 35 | 32 | 14 |
Pine | 42–49 | 13–25 | 23–29 |
Poplar wood | 45–51 | 25–28 | 10–21 |
Olive tree biomass | 25.2 | 15.8 | 19.1 |
Jute fibres | 45–53 | 18–21 | 21–26 |
Switchgrass | 35–40 | 25–30 | 15–20 |
Winter rye | 29–30 | 22–26 | 16.1 |
Oilseed rape | 27.3 | 20.5 | 14.2 |
Softwood stem | 45–50 | 24–40 | 18–25 |
Oat straw | 31–35 | 20–26 | 10–15 |
Nut shells | 25–30 | 22–28 | 30–40 |
Sorghum straw | 32–35 | 24–27 | 15–21 |
Tamarind kernel powder | 10–15 | 55–65 | - |
Water hyacinth | 18.2–22.1 | 48.7–50.1 | 3.5–5.4 |
Miscanthus * | 37 | 29 | 10 |
Oat husks ** | 23 | 35 | 25 |
Linkage Type | Approximate Percentage (%) | |
---|---|---|
Softwood | Hardwood | |
β-O-4 | 45–50 | 60 |
5–5 | 18–25 | 5 |
β-5 | 9–12 | 6 |
4-O-5 | 4–8 | 7 |
β-1 | 7–10 | 7 |
β-β | 3 | 3 |
Enzyme | Objective |
---|---|
Endo-β-l,4-xylanase | β-1,4-xylose linkage hydrolysation of the xylan backbone |
Exo-xylanase | β-1,4-xylose linkage hydrolysation, releasing xylobiose |
β-Xylosidase | Release short-chain xylooligosaccharides and xylose from xylobiose |
α-L-Arabinofuranosidase | Terminal non-reducing α-arabinofuranose hydrolysation from arabinoxylans |
α-Glucuronidase | Release glucuronic acid from glucuronoxylans |
Acetylxylan esterase | Acetylester bond hydrolysation in acetyl xylans |
Ferulic acid esterase | Feruloylester bond hydrolysation in xylans |
ρ-Coumaric acid esterase | ρ -coumaryl ester bond hydrolysation in xylans |
Compound | Fungal Lignin Degrader | Bacterial Lignin Degrader | |
---|---|---|---|
Benzoic acid | 4-hydroxy | P. chrysosporium | A. aneurinilyticus, A. sp. 75iv3 |
4-hydroxy-3-methoxy | P. chrysosporium | A. aneurinilyticus | |
4-hydroxy-3-methoxy-6-carboxy | P. chrysosporium | ||
4-hydroxy-3-methoxy-5-carboxy | P. putida, R. jostii RHA1 | ||
3,4-dimethoxy | P. chrysosporium | ||
3,4-dimethoxy-2-carboxy | P. chrysosporium | ||
2-hydroxy-3-methoxy | A. aneurinilyticus, P. putida | ||
2,3-dihydroxy | |||
2,3,4-trihydroxy | Bacillus sp. | ||
Benzaldehyde | 4-hydroxy-3-methoxy | S. paucimobilis | |
3,4,5-trimethoxy | Bacillus sp. | ||
Cinnamic acid | 4-hydroxy | Bacillus sp. | |
4-hydroxy-3-methoxy | Bacillus sp., P. putida, R. jostii RHA1 | ||
Biphenyl-5,5′-dicarboxylic acid, 2,2′-dihydroxy, 3,3′-dimethoxy | P. chrysosporium | ||
Diphenyl ether | P. chrysosporium | ||
Propiophenone-3′-hydroxy | 4-hydroxy-3-methoxy | S. paucimobilis. P. putida, R. jostii RHA1 | |
Acetophenone | 4-hydroxy-3-methoxy | Soil metabolite | |
Phenol | 2-methoxy | Soil metabolite | |
2-methoxy-4-vinyl | Soil metabolite | ||
Vanillin | R. jostii RHA1, A. sp. 75iv3 |
Pretreatment | Cost | Toxic Byproduct | Applicable to a Wide Range of Biomass | Remarks |
---|---|---|---|---|
Acid pretreatment | 🗸 | × | 🗸 | Inhibitors limited by dilute acid use |
Freezing | 🗸 | 🗸 | × | Freezing/thawing cycles |
Milling | 🗸 | 🗸 | 🗸 | Used for bioethanol and biogas production |
Liquid hot water | 🗸 | 🗸 | × | High water and energy inputs |
Organic solvent (Organosolv) | × | × | 🗸 | Low boiling point of the solvent. Solvent recycling is required |
Oxidation | × | 🗸 | 🗸 | High cost of ozone generation. Ozone handling is required |
Steam explosion | × | × | 🗸 | High cost of steam generation |
Extrusion | 🗸 | 🗸 | 🗸 | Hydrolysis efficiency is improved |
Wet oxidation | × | 🗸 | × | Less water use as no washing is required |
CO2 explosion | × | 🗸 | 🗸 | High cost for pressure maintenance |
Microwave irradiation | × | 🗸 | 🗸 | More effective than conventional heating |
Ultrasound | × | 🗸 | 🗸 | Low temperature and time required |
Ammonium fibre expansion | × | 🗸 | 🗸 | Less effective for biomass with high lignin contents |
Ionic liquid | × | 🗸 | 🗸 | Stability and reuse. Instability may cause contamination |
Biological pretreatment | 🗸 | 🗸 | 🗸 | Increases delignification. Able to reduce polymerisation |
Hydrothermal liquefaction | × | 🗸 | 🗸 | Lignocellulosic materials are depolymerised into bio-oil, biogas, biochar and water-soluble compounds |
Biofuel | Lower Heating Value | References |
---|---|---|
Biodiesel | 32.6 MJ/L | [76] |
Bioethanol | 21.2 MJ/L | [76,77] |
Biocrude | 35.0 MJ/kg | [76] |
Bio-oil | 40 MJ/kg | [76,78] |
Biogas | 13–17 MJ/m3 | [71,79] |
Biohydrogen | 13 MJ/m3 | [71,79] |
Biobutanol | 27.8 MJ/L | [80] |
Compound | Production | Derived Products |
---|---|---|
Succinic, fumaric and malic acid | Biofermentation | Tetrahydrofuran (THF), 1,4-butanediol, 2-pyrrolidone, o-butyrolactone, N-methyl-2-pyrrolidone (NMP) |
2,5-Furan dicarboxylic acid | Chemical (oxidative dehydration of glucose) and biological | (2,5-Bis(aminomethyl)-tetrahydrofuran, 2,5-dihydroxymethyl-tetrahydrofuran, 2,5-dihydroxymethyl-furan |
3-Hydroxy propionic acid | Biofermentation | 1,3-Propanediol, acrylic acid, acrylamide |
Aspartic acid | Chemical and biological pathways | 2-Amino-1,4-butanediol, aspartic anhydride, 3-aminotetrahydrofuran, amino-γ-butyrolactone |
Glucaric acid | Chemical (starch oxidation by nitric acid or bleach) | Glucaro-γ-lactone, polyhydroxypolyamides, glucarodilactone, glucaro-δ-lactone |
Glutamic acid | Biofermentation | Glutaminol, glutaric acid, norvoline, 1,5-pentandiol, 5-amino-1-butanol |
Itaconic acid | Chemical and biofermentation | 3-Methylpyrrolidine, 3- & 4-methyl NMP, 3-methyl THF, 2-methyl-1,4-butanediol. |
Levulinic acid | Chemical (acid decomposition of six-carbon sugars) | Diphenolic acid, 2-methyl-THF, b-acetylacrylic acid, 1,4-pentanediol |
3-Hydroxybutyrolactone | Chemical (oxidative degradation of starch) | 3-Hydroxytetrahydrofuran, 3-aminotetrahydrofuran, acrylate-lactone |
Glycerol | Transesterification (via chemical or biological pathways) | Glyceric acid, 1,3-propanediol, propylene glycol |
Sorbitol | Chemical (glucose hydrogenation) | Isosorbide, propylene glycol, ethylene glycol, 1,4-sorbitan |
Xylitol/arabinitol | Chemical (hydrogenation of xylose and arabinose) and biological | Xylaric acid, propylene glycol, ethylene glycol, lactic acid |
Depolymerisation | Procedures | Products | Refs |
---|---|---|---|
Non-reductive depolymerisation | Thermal, hydrothermal, oxidative, acid and base catalysed, solvolytic | Vanillin, syringaldehyde, acetosyringone, guaiacylacetone, p-hydroxylated phenol acetovanillone, syringol, guaiacol, phenol, catechol, alkylcatechols, creosol, p-hydroxybenzaldehyde, vanillic, protocatechuic, syringic, homovanillic and p-hydroxybenzoic acid, aliphatic carboxylic acids (succinic, acetic and formic acid) | [81,86] |
Reductive depolymerisation | Hydroprocessing, liquid phase reforming | Cresol, xylenol, phenol with long alkyl chains, p-substituted methoxyphenols, | [86] |
Components | Potential Applications |
---|---|
Chitosan/Konjac glucomannan (KGM) | Membrane with superior dehydration |
KGM/Chitosan | Food industry, biomaterial matrix, biomedical material |
KGM/Ethyl cellulose | Films for food packaging |
Glucomannan–Chitosan–Nisin | Active packaging material |
KGM/Gellan gum | Food packaging material |
KGM/Poly(acrylic acid) | Specific drug delivery |
KGM/Polyacrylamide/Sodium xanthate | Hydrogels for drug delivery |
KGM/poly(methacrylic acid) | Specific drug delivery |
KGM/Polyvinyl alcohol | Pervaporation dehydration, food package film |
KGM/Xanthan gum | Gels for delivery systems, specific drug delivery |
KGM/Alginate/Chitosan | Controlled release |
KGM/Carboxymethyl cellulose | Emulsion stabiliser |
KGM/Curdian | Food films and coatings |
KGM/Poly(aspartic acid) | Carrier for drug delivery |
KGM/Cellulose | Separation |
KGM/Whey protein | Edible food films |
KGM/Sodium alginate | Food films |
KGM/Gelatin | Specific drug delivery |
KGM/Starch | Edible food films & coatings |
KGM/Poly(diallydimethylammonium chloride) | Antibacterial in biomedicine |
KGM/xanthan gum | Drug delivery |
KGM-graft-Polyacrylamide-co-sodium xanthate | Flocculant |
KGM | Coating |
Base Oils | Thickeners |
---|---|
Mineral oil | Sodium soap |
Synthetic oil | Calcium soap |
Diester | Lithium soap |
Silicone liquid | Aluminium soap |
Phosphate ester | Lithium complex |
Fluorinated silicone | Calcium complex |
Chlorinated silicone | Aluminium complex |
Polyglycol | Bentonite |
Castor oil | Silicon oxide |
Carbon/graphite | |
Polyurea | |
Polyethylene | |
Indanthrene dye | |
Phthalocyanine dye |
Date | Event |
---|---|
About 1400 BC | The use of animal fat and limestone for lubrication of axes of Hittite chariots was started. In the same period, lubricants based on olive oil and limestone were used in Ancient Egypt |
1845 | A lubricant consisting of mineral oil, animal fat and limestone was invented in the United States |
1853 | The first sodium lubricant based on beef fat appeared in the United Kingdom |
1912 | The production of calcium lubricants with the dispersion medium based on mineral oil was started in Japan |
1938 | Lithium lubricants were developed. They quickly conquered the world and were used as multipurpose lubricants |
1954 | Invention of complex aluminium lubricants for operation at high temperatures |
1955 | Invention of urea greases in the United States |
1960–Present | Resurgence of vegetable-oil-based lubricating greases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 2022, 14, 881. https://doi.org/10.3390/polym14050881
Borrero-López AM, Valencia C, Franco JM. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers. 2022; 14(5):881. https://doi.org/10.3390/polym14050881
Chicago/Turabian StyleBorrero-López, Antonio M., Concepción Valencia, and José M. Franco. 2022. "Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review" Polymers 14, no. 5: 881. https://doi.org/10.3390/polym14050881
APA StyleBorrero-López, A. M., Valencia, C., & Franco, J. M. (2022). Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers, 14(5), 881. https://doi.org/10.3390/polym14050881