Recent Strategies for the Immobilization of Therapeutic Enzymes
Abstract
:1. Introduction
2. Immobilization of Therapeutic Enzymes
2.1. Entrapment
2.1.1. Entrapment with Hydrogels
2.1.2. Liposomal Entrapment
2.1.3. RBCs
2.1.4. DNA Cage
2.1.5. Metal–Protein Hybrids
2.2. Adsorption
2.2.1. Inorganic Carriers
2.2.2. Organic Carriers
2.2.3. Biological Carriers
2.3. Covalent Attachment
2.3.1. Conjugation onto Polymers
2.3.2. Covalent Immobilization onto Nanocarriers
2.3.3. Albumin and RBCs as Carriers
Techniques | Support | Enzyme | Descriptions | Reference |
---|---|---|---|---|
Encapsulation | Alginate | Glucocerebrosidase | The immobilized enzyme presented broader activity than the free enzyme at higher pH values. Localized delivery of the enzyme was observed; 40% of the enzyme was loaded within microspheres after 24 h. | [20] |
PEG-b-polylactic acid | β-galactosidase | Polymersomes showed 72% efficiency and restricted release at physiological pH (7.4). Enzymatic-based treatment to the brain in lysosomal storage disorders was demonstrated. | [32] | |
Calcium carbonate | Alkaline Phosphatase | Enzyme loading of up to 48% was observed on particles. This approach could be a promising candidate for effective drug delivery, especially for bone reconstruction. | [33] | |
Poly(D,L-lactide) | Catalase and superoxide dismutase | Compared with the control enzymes, the entrapped enzymes enhanced the in vitro viability and function of isolated neonatal pancreatic porcine cell clusters. | [38,40] | |
Mouse RBCs | Human erythropoietin | Human RBCs presented higher encapsulation yield (22%) than mouse RBCs (14%) and an efficient cell recovery of 70%. The stability of the encapsulated enzyme was highly dependent on the experimental immobilization conditions. Carrier RBCs presented higher hypoosmotic resistance than regular RBCs, and they efficiently released the immobilized enzyme in suspension. | [51] | |
PEG-CNA-PLGA | Cytosine deaminase | PEG-CNA-PLGA nanoparticles are efficiently used for the co-immobilization of doxorubicin (a chemotherapy drug) and cytosine deaminase (prodrug enzyme). This system could be used for the codelivery of chemotherapy agents. | [61] | |
CaHPO4 nanoflower | Uricase and HRP | The synthesized hybrid, uricase and HRP-CaHPO4@HA MN, showed maximum encapsulation up to 71%. The resulting hybrid could be used for the treatment of hyperuricemia. | [67] | |
Calcium carbonate crystals | Superoxide dismutase | A high loading efficiency of 93% was achieved on particles, and they exhibited an excellent controlled release of the enzyme at physiologically relevant ionic strength without changes in its biological activity. It could potentially be used for SOD delivery in ophthalmology. | [68] | |
ZIF-8 | GOX and HRP | ZIF-8@Gox/HRP preserved high residual activity up to 2.1 fold. The hybrids showed selective tumor cell growth inhibition. | [69] | |
Magnetic hydrogel | L-asparaginase | The immobilization yield of the enzyme was as high as 90%. When the enzyme was immobilized within the polymeric shell, its activity remained unchanged after six months of storage at 4 °C. Moreover, the high biocompatibility of the support can be helpful for the delivery of the enzyme to tumor tissues. | [74] | |
Adsorption | Polyhydroxyalkanoate | Nattokinase | Enzyme activity increased by 20% after immobilization; moreover, the immobilized enzyme was stable up to 70 °C and did not lose its residual activity after 25 days of storage at 4 °C. | [73] |
HNT-PSP | Superoxide dismutase | HNT-PSP-SOD showed a two-fold higher residual activity without any enzyme leakage. This system can potentially be applied for inflammatory bowel disease therapy. | [76] | |
HNTs | Binase | An enzyme loading of 85% was achieved on HNTs, and it exhibited a two-fold enhanced cytotoxicity toward tumor colon cells. | [79] | |
Self-assembled monolayers | Glucocerebrosidase | Enzyme efficiency significantly increased up to 230% at higher pH (7–8) values after immobilization. | [81] | |
Polydopamine | Urease | The biocompatible properties and long-lasting effectiveness of this system can be used for various bladder disease diagnoses. | [88] | |
Alginate | Papain | The enzyme showed stability over 28 days with 80% residual activity. It improved the therapeutic features and thereby increased wound healing. | [89] | |
Acryloyl crosslinked dextrandialdehyde | Glucose oxidase | In vitro insulin controlled release of about 70% under artificial intestinal fluid conditions was demonstrated. It can be effectively used for therapeutic applications. | [90] | |
Immuno-virosomes | Lysozyme | Approximately 75% of the enzyme cargo was delivered to the cytoplasm, avoiding the endocytic pathway. | [92] | |
Covalent | Poly(ethylene glycol) | Adenosine deaminase | The PEGylation process dramatically increased the stability of the enzyme, decreased the immunogenicity, and prolonged the circulation time. | [52] |
Fe3O4@chitosan | Penicillin G acylase | The immobilized enzyme presented higher activity, better reusability, and higher thermal stability than the free enzyme over wide pH and temperature ranges. The conversion yield of 72% was recorded for the synthesis of amoxicillin using the immobilized enzyme at 25 °C. | [22] | |
Magnetic poly (2-hydroxyethyl methacrylate and glycidyl methacrylate) | L-asparaginase | Immobilized enzyme retained 50% activity after 10 h under thermophilic conditions (55 °C) and 85% residual activity preserved after 8 cycles of reuses. It could be a promising candidate for cancer treatment. | [95] | |
Polymeric agarose matrix | Lysozyme | Almost complete immobilization achieved. It is a promising candidate for the synthesis of complementary material for medical applications in extracorporeal therapy. | [96] | |
BioSi@THRP_MNP_PEI | HRP | The immobilization yield was achieved up to 78% and the stability improved ~280 times. It can potentially be used for DEPT and other related biotechnological applications. | [102] | |
Mouse RBCs | L-asparaginase | The immobilization of enzymes on RBCs lowered the development of antibody titers by >1000-fold and extended the pharmacodynamic effects of the enzyme drug by approximately ten-fold when administered to mice. | [106] |
3. Protein Engineering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keçili, R.; Say, R.; Yavuz, H. Synthesis and characterization of pseudo-affinity ligand for penicillin acylase purification. Int. J. Biol. Macromol. 2006, 39, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Jeon, M.S.; Gupta, R.K.; Jeon, Y.; Kalia, V.C.; Kim, S.C.; Cho, B.-K.; Kim, D.R.; Lee, J.-K. Hierarchical macro-porous particles for efficient whole-cell immobilization: Application in bioconversion of greenhouse gases to methanol. ACS Appl. Mater. Interfaces 2019, 11, 18968–18977. [Google Scholar] [CrossRef] [PubMed]
- Subjakova, V.; Oravczova, V.; Hianik, T. Polymer nanoparticles and nanomotors modified by DNA/RNA aptamers and antibodies in targeted therapy of cancer. Polymers 2021, 13, 341. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.G. Enzymes as a special class of therapeutic target: Clinical drugs and modes of action. Curr. Opin. Struct. Biol. 2007, 17, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.D.; Langer, R. Immobilized enzymes in clinical medicine: An emerging approach to new drug therapies. Trends Biotechnol. 1986, 4, 179–186. [Google Scholar] [CrossRef]
- Friboulet, A. From enzymes to new biocatalysts: Towards new therapeutic strategies. Actual. Chim. 2003, 11–12, 15–19. [Google Scholar]
- Holcenberg, J.S. Enzymes as drugs. Annu. Rev. Pharmacol. Toxicol. 1977, 17, 97–116. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Otari, S.V.; Li, J.; Kim, D.R.; Kim, S.C.; Cho, B.-K.; Kalia, V.C.; Kang, Y.C.; Lee, J.-K. Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J. Hazard. Mater. 2018, 347, 442–450. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Choi, H.; Lee, J.-K. Multi-metal based inorganic–protein hybrid system for enzyme immobilization. ACS Sustain. Chem. Eng. 2019, 7, 13633–13638. [Google Scholar] [CrossRef]
- Danial, E.N.; Alkhalaf, M.I. Co-immobilisation of superoxide dismutase and catalase using an in vitro encapsulation protocol. J. King Saud Univ. Sci. 2020, 32, 2489–2494. [Google Scholar] [CrossRef]
- El-Newehy, M.H.; El-Hamshary, H.; Salem, W.M. Solution blowing spinning technology towards green development of urea sensor nanofibers immobilized with hydrazone probe. Polymers 2021, 13, 531. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, J.; Sivakumar, D.; Kim, T.-S.; Patel, S.K.S.; Kalia, V.C.; Kim, I.-W.; Zhang, Y.-W.; Lee, J.-K. NADH oxidase from Lactobacillus reuteri: A versatile enzyme for oxidized cofactor regeneration. Int. J. Biol. Macromol. 2019, 123, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Wahab, R.A.; Elias, N.; Abdullah, F.; Ghoshal, S.K. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React. Funct. Polym. 2020, 152, 104613. [Google Scholar] [CrossRef]
- Pagolu, R.; Singh, R.; Shanmugam, R.; Kondaveeti, S.; Patel, S.K.S.; Kalia, V.C.; Lee, J.-K. Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. Bioresour. Technol. 2021, 331, 125063. [Google Scholar]
- Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 2004, 35, 126–139. [Google Scholar] [CrossRef]
- Li, H.; Dong, W.-F.; Zhou, J.-Y.; Xu, X.-M.; Li, F.-Q. Triggering effect of N-acetylglucosamine on retarded drug release from a lectin-anchored chitosan nanoparticles-in-microparticles system. Int. J. Pharm. 2013, 449, 37–43. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Zhang, D.; Jiang, S.; Shi, K.; Huang, Y.; Li, R.; Xu, Q. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: Vitro and vivo study. J. Drug Target. 2014, 22, 849–858. [Google Scholar] [CrossRef]
- Betigeri, S.S.; Neau, S.H. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 2002, 23, 3627–3636. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Jiang, X.-P.; Li, Y.; Zeng, S.; Zhang, Y.-W. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int. J. Biol. Macromol. 2015, 75, 44–50. [Google Scholar] [CrossRef]
- Barrias, C.C.; Lamghari, M.; Granja, P.L.; Miranda, M.C.S.; Barbosa, M.A. Biological evaluation of calcium alginate microspheres as a vehicle for the localized delivery of a therapeutic enzyme. Biomed. Mater. Res. A 2005, 74, 545–552. [Google Scholar] [CrossRef]
- Bhavsar, C.; Momin, M.; Gharat, S.; Omri, A. Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opin. Drug Deliv. 2017, 14, 1189–1204. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.-M.; Wang, X.-Y.; Ma, P.; Yang, Y.; Qin, J.-M.; Zhang, X.-J.; Zhang, Y.-W. Covalent immobilization of penicillin G acylase onto Fe3O4@chitosan magnetic nanoparticles. J. Microbiol. Biotechnol. 2016, 26, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Saquib, M.; Nayak, A.; Singh, M.; Tabish, M.; Ansari, M.T.; Ara, T.J. Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release. Int. J. Biol. Macromol. 2016, 83, 71–77. [Google Scholar]
- Chiumiento, A.; Lamponi, S.; Barbucci, R.; Dominguez, A.; Perez, Y.; Villalonga, R. Immobilizing Cu,Zn-superoxide dismutase in hydrogels of carboxymethylcellulose improves its stability and wound healing properties. Biochem. Mosc. 2006, 71, 1324. [Google Scholar] [CrossRef]
- Bannikova, A.; Rasumova, L.; Evteev, A.; Ivan, E.; Kasapis, S. Protein-loaded sodium alginate and carboxymethyl cellulose beads for controlled release under simulated gastrointestinal conditions. Int. J. Food Sci. Technol. 2017, 52, 2171–2179. [Google Scholar] [CrossRef]
- Zelikin, A.N.; Ehrhardt, C.; Healy, A.M. Materials and methods for delivery of biological drugs. Nat. Chem. 2016, 8, 997–1007. [Google Scholar] [CrossRef]
- Franssen, O.; Vandervennet, L.; Roders, P.; Hennink, W.E. Degradable dextran hydrogels: Controlled release of a model protein from cylinders and microspheres. J. Control. Release 1999, 60, 211–221. [Google Scholar] [CrossRef]
- Alexandre, N.; Amorim, I.; Caseiro, A.R.; Pereira, T.; Alvites, R.; Rêma, A.; Gonçalves, A.; Valadares, G.; Costa, E.; Santos-Silva, A.; et al. Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int. J. Pharm. 2016, 513, 332–346. [Google Scholar] [CrossRef]
- Crommelin, D.J.A.; Storm, G.; Jiskoot, W.; Stenekes, R.; Mastrobattista, E.; Hennink, W.E. Nanotechnological approaches for the delivery of macromolecules. J. Control. Release 2003, 87, 81–88. [Google Scholar] [CrossRef]
- Nguyen, H.X.; O’Rear, E.A. Biphasic release of protein from polyethylene glycol and polyethylene glycol/modified dextran microspheres. J. Biomed. Mater. Res. A 2013, 101, 2699–2705. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Singhal, R.S. Pullulan-complexed α-amylase and glucosidase in alginate beads: Enhanced entrapment and stability. Carbohydr. Polym. 2014, 105, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.M.; Gross, A.L.; Martin, D.R.; Byrne, M.E. Polyethylene glycol-b-poly(lactic acid) polymersomes as vehicles for enzyme replacement therapy. Nanomedicine 2017, 12, 2591–2606. [Google Scholar] [CrossRef] [PubMed]
- Abalymov, A.; Poelvoorde, L.V.; Atkin, V.; Skirtach, A.G.; Konrad, M.; Parakhonskiy, B. Alkaline phosphatase delivery system based on calcium carbonate carriers for acceleration of ossification. ACS Appl. Bio Mater. 2020, 3, 2986–2996. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Srivastava, R.; Brown, J.Q.; McShane, M.J. Combined physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity. Bioconjug. Chem. 2005, 16, 1451–1458. [Google Scholar] [CrossRef] [Green Version]
- Gombotz, W.R.; Wee, S. Protein release from alginate matrices. Drug Deliv. Rev. 2012, 64, 194–205. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Firempong, C.K.; Wang, Y.-W.; Xu, W.-Q.; Wang, M.-M.; Cao, X.; Zhu, Y.; Tong, S.-S.; Yu, J.-N.; Xu, X.-M. Ergosterol-loaded poly(lactide-co-glycolide) nanoparticles with enhanced in vitro antitumor activity and oral bioavailability. Acta Pharmacol. Sin. 2017, 37, 834–844. [Google Scholar] [CrossRef]
- Xiong, F.; Hu, K.; Yu, H.; Zhou, L.; Song, L.; Zhang, Y.; Shan, X.; Liu, J.; Gu, N. A functional iron oxide nanoparticles modified with PLA-PEG-DG as tumor-targeted MRI contrast agent. Pharm. Res. 2017, 34, 1683–1692. [Google Scholar] [CrossRef]
- Giovagnoli, S.; Luca, G.; Casaburi, I.; Blasi, P.; Macchiarulo, G.; Ricci, M.; Calvitti, M.; Basta, G.; Calafiore, R.; Rossi, C. Long-term delivery of superoxide dismutase and catalase entrapped in poly(lactide-co-glycolide) microspheres: In vitro effects on isolated neonatal porcine pancreatic cell clusters. J. Control. Release 2005, 107, 65–77. [Google Scholar] [CrossRef]
- Paik, D.-H.; Choi, S.-W. Entrapment of protein using electrosprayed poly(d,l-lactide-co-glycolide) microspheres with a porous structure for sustained release. Macromol. Rapid Commun. 2014, 35, 1033–1038. [Google Scholar] [CrossRef]
- Giovagnoli, S.; Blasi, P.; Ricci, M.; Rossi, C. Biodegradable microspheres as carriers for native superoxide dismutase and catalase delivery. AAPS PharmSciTech 2004, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Demers, N.; Agostinelli, E.; Averill-Bates, D.A.; Fortier, G. Immobilization of native and poly(ethylene glycol)-treated (‘PEGylated’) bovine serum amine oxidase into a biocompatible hydrogel. Biotechnol. Appl. Biochem. 2001, 33, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Geng, L.; Ge, L.; Yu, P.; Duan, X.; Chen, J.; Chang, Y. Effect of iron liposomes on anemia of inflammation. Int. J. Pharm. 2013, 454, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xin, J.; Zhang, Z.; Yan, H.; Wang, J.; Sun, E.; Hou, J.; Jia, X.; Lv, H. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: Formulation design and its evaluation in vitro and in vivo. J. Pharm. Pharmacol. 2016, 68, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Vemuri, S.; Rhodes, C.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm. Acta Helv. 1995, 70, 95–111. [Google Scholar] [CrossRef]
- Chen, G.Y.; Li, D.H.; Jin, Y.; Zhang, W.Y.; Teng, L.R.; Bunt, C.; Wen, J.Y. Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin. Drug Dev. Ind. Pharm. 2014, 40, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Haidar, Z.S.; Hamdy, R.C.; Tabrizian, M. Protein release kinetics for core–shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 2008, 29, 1207–1215. [Google Scholar] [CrossRef]
- Jahadi, M.; Khosravi-Darani, K. Liposomal encapsulation enzymes: From medical applications to kinetic characteristics. Mini-Rev. Med. Chem. 2017, 17, 366–370. [Google Scholar] [CrossRef]
- Liang, J.F.; Li, Y.T.; Yang, V.C. Biomedical application of immobilized enzymes. J. Pharm. Sci. 2000, 89, 979–990. [Google Scholar] [CrossRef] [Green Version]
- Parayath, N.; Amiji, M. Therapeutic targeting strategies using endogenous cells and proteins. J. Control. Release 2017, 258, 81–94. [Google Scholar] [CrossRef]
- Lizano, C.; Sanz, S.; Luque, J.; Pinilla, M. In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. Biochim. Biophys. Acta BBA Gen. Subj. 1998, 1425, 328–336. [Google Scholar] [CrossRef]
- Garín, M.-I.; López, R.-M.; Sanz, S.; Pinilla, M.; Luque, J. Erythrocytes as carriers for recombinant human erythropoietin. Pharm. Res. 1996, 13, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Lainka, E.; Hershfield, M.S.; Santisteban, I.; Bali, P.; Seibt, A.; Neubert, J.; Friedrich, W.; Niehues, T. Polyethylene gly-col-conjugated adenosine deaminase (ADA) therapy provides temporary immune reconstitution to a child with de-layed-onset ADA deficiency. Clin. Diagn. Lab. Immonol. 2005, 12, 861–866. [Google Scholar]
- He, H.; Ye, J.; Wang, Y.; Liu, Q.; Chung, H.S.; Kwon, Y.M.; Shin, M.C.; Lee, K.; Yang, V.C. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J. Control. Release 2014, 176, 123–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnani, M.; Pierigè, F.; Rossi, L. Erythrocytes as a novel delivery vehicle for biologics: From enzymes to nucleic acid-based therapeutics. Ther. Deliv. 2012, 3, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Seeman, N.C. DNA in a material world. Nature 2003, 421, 427–431. [Google Scholar] [CrossRef]
- Goodman, R.P.; Schaap, I.A.T.; Tardin, C.F.; Erben, C.M.; Berry, R.M.; Schmidt, C.F.; Turberfield, A.J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 2005, 310, 1661–1665. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, A.R.; Levchenko, O. DNA Nanocages. Chem. Mater. 2016, 28, 5569–5581. [Google Scholar] [CrossRef]
- Saccà, B.; Niemeyer, C.M. Functionalization of DNA nanostructures with proteins. Chem. Soc. Rev. 2011, 40, 5910. [Google Scholar] [CrossRef]
- Erben, C.M.; Goodman, R.P.; Turberfield, A.J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. 2006, 45, 7414–7417. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, K.-R.; Ahn, D.-R.; Lee, J.E.; Yang, E.G.; Kim, S.Y. Reversible regulation of enzyme activity by pH-responsive encapsulation in DNA nanocages. ACS Nano 2017, 11, 9352–9359. [Google Scholar] [CrossRef]
- Harguindey, A.; Roy, S.; Harris, A.W.; Fairbanks, B.D.; Goodwin, A.P.; Bowman, C.N.; Cha, J.N. Click nucleic acid mediated loading of prodrug activating enzymes in PEG−PLGA nanoparticles for combination chemotherapy. Biomacromolecules 2019, 20, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Lei, J.; Zare, R.N. Protein–inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Batule, B.S.; Park, K.S.; Kim, M.I.; Park, H.G. Ultrafast sonochemical synthesis of protein- inorganic nanoflowers. Int. J. Nanomed. 2015, 10, 137–142. [Google Scholar]
- Cui, J.; Jia, S. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coord. Chem. Rev. 2017, 352, 249–263. [Google Scholar] [CrossRef]
- Shende, P.; Kasture, P.; Gaud, R.S. Nanoflowers: The future trend of nanotechnology for multi-applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1–10. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Su, Y.; Ouyang, P.; Ge, J.; Liu, Z. Spatial co-localization of multi-enzymes by inorganic nanocrystal–protein complexes. Chem. Commun. 2014, 50, 12465–12468. [Google Scholar] [CrossRef]
- Hao, Y.; Li, H.; Cao, Y.P.; Chen, Y.W.; Lei, M.Y.; Zhang, T.Y.; Xiao, Y.; Chu, B.Y.; Qian, Z.Y. Uricase and horseradish peroxidase hybrid CaHPO4 nanoflower integrated with transcutaneous patches for treatment of hyperuricemia. J. Biomed. Nanotechnol. 2019, 15, 951–965. [Google Scholar] [CrossRef]
- Binevski, P.V.; Balabushevich, N.G.; Uvarova, V.I.; Vikulina, A.S.; Volodkin, D. Bio-friendly encapsulation of superoxide dismutase into vaterite CaCO3 crystals. Enzyme activity, release mechanism, and perspectives for ophthalmology. Colloids Surf. B Biointerfaces 2019, 181, 437–449. [Google Scholar] [CrossRef]
- Bai, J.; Peng, C.; Guo, L.; Zhou, M. Metal−organic framework-integrated enzymes as bioreactor for enhanced therapy against solid tumor via a cascade catalytic reaction. ACS Biomater. Sci. Eng. 2019, 5, 6207–6215. [Google Scholar] [CrossRef]
- Vertegel, A.A.; Siegel, R.W.; Dordick, J. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004, 20, 6800–6807. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, F.; Zhang, X.-Y.; Li, Y.; Wang, X.-Y.; Xu, X.-M.; Zhang, Y.-W. Preparation of Magnetic Fe3O4@SiO2 nanoparticles for immobilization of lipase. J. Nanosci. Nanotechnol. 2014, 14, 3068–3072. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, W.; Tao, Q.-L.; Jiang, X.-P.; Liu, C.-H.; Zeng, S.; Zhang, Y.-W. Immobilization of lipase by adsorption onto magnetic nanoparticles in organic solvents. J. Nanosci. Nanotechnol. 2016, 16, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Deepak, V.; Pandian, S.B.R.K.; Kalishwaralal, K.; Gurunathan, S. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles. Bioresour. Technol. 2009, 100, 6644–6646. [Google Scholar] [CrossRef] [PubMed]
- Teodor, E.; Litescu, S.C.; Lazar, V.; Somoghi, R. Hydrogel-magnetic nanoparticles with immobilized L-asparaginase for biomedical applications. J. Mater. Sci. Mater. Med. 2009, 20, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Chen, C.-T.; Hung, Y.; Chou, C.-M.; Liu, T.-P.; Liang, M.-R.; Chen, C.-T.; Mou, C.-Y. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: Superoxide dismutase. J. Am. Chem. Soc. 2013, 135, 1516–1523. [Google Scholar] [CrossRef] [PubMed]
- Katana, B.; Rouster, P.; Varga, G.; Muráth, S.; Glinel, K.; Jonas, A.M.; Szilagyi, I. Self-assembly of protamine biomacromolecule on halloysite nanotubes for immobilization of superoxide dismutase enzyme. ACS Appl. Bio Mater. 2020, 3, 522–530. [Google Scholar] [CrossRef]
- Condori, J.; Acosta, W.; Ayala, J.; Katta, V.; Flory, A.; Martin, R.; Radin, J.; Cramer, C.L.; Radin, D.N. Enzyme replacement for GM1-gangliosidosis: Uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase: RTB lectin fusion. Mol. Genet. Metab. 2016, 117, 199–209. [Google Scholar] [CrossRef]
- Ribeiro, C.C.; Barrias, C.C.; Barbosa, M.A. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 2004, 25, 4363–4373. [Google Scholar] [CrossRef] [Green Version]
- Khodzhaeva, V.; Makeeva, A.; Ulyanova, V.; Zelenikhin, P.; Evtugyn, V.; Hardt, M.; Rozhina, E.; Lvov, Y.; Fakhrullin, R.; Ilinskaya, O. Binase immobilized on halloysite nanotubes exerts enhanced cytotoxicity toward human colon adenocarcinoma cells. Front. Pharmacol. 2017, 8, 631. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, Z.; Jin, R.; Yang, X.; Bai, Y.; Liu, S.; Chen, X. Stepwise co-delivery of an enzyme and prodrug based on a multi-responsive nanoplatform for accurate tumor therapy. J. Mater. Chem. B 2018, 6, 6262–6268. [Google Scholar] [CrossRef]
- Barrias, C.C.; Martins, M.A.C.L.; Miranda, M.A.C.S.; Barbosa, M.A. Adsorption of a therapeutic enzyme to self-assembled monolayers: Effect of surface chemistry and solution pH on the amount and activity of adsorbed enzyme. Biomaterials 2005, 26, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Bajaj, A.; Mout, R.; Rotello, V.M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 2012, 64, 200–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunasekaran, T.; Nigusse, T.; Dhanaraju, M.D. Silver nanoparticles as real topical bullets for wound healing. J. Am. Coll. Clin. Wound Spec. 2011, 3, 82–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.K.S.; Choi, S.H.; Kang, Y.; Lee, J.-K. Eco-friendly composite of Fe3O4-reduced grapene oxide particles for efficient enzyme immobilization. ACS Appl. Mater. Interfaces 2017, 9, 2213–2222. [Google Scholar] [CrossRef]
- Manzano, M.; Vallet-Regi, M. New developments in ordered mesoporous materials for drug delivery. J. Mater. Chem. 2010, 20, 5593–5604. [Google Scholar] [CrossRef]
- Zahirinejad, S.; Hemmati, R.; Homaei, A.; Dinari, A.; Hosseinkhani, S.; Mohammadi, S.; Vianello, F. Nano-organic supports for enzyme immobilization: Scopes and perspectives. Colloids Surf. B Biointerfaces 2021, 204, 111774. [Google Scholar] [CrossRef]
- Kalia, V.C.; Patel, S.K.S.; Shanmugam, R.; Lee, J.-K. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. Bioresour. Technol. 2021, 326, 124737. [Google Scholar] [CrossRef]
- Choi, H.; Cho, S.H.; Hahn, S.K. Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano 2020, 14, 6683–6692. [Google Scholar] [CrossRef]
- Filho, R.N.F.M.; Vasconcelos, N.F.; Andrade, F.K.; Roas, M.D.F.; Vieira, R.S. Papain immobilized on alginate membrane for wound dressing application. Colloids Surf. B Biointerfaces 2020, 194, 111222. [Google Scholar] [CrossRef]
- Jamwal, S.; Rama, B.; Ranote, S.; Dharela, R.; Chauhan, G.S. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int. J. Biol. Macromol. 2019, 123, 968–978. [Google Scholar] [CrossRef]
- Cusi, M.G. Applications of influenza virosomes as a delivery system. Hum. Vaccines 2006, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Mani, P.; Pratheesh, P.; Chandra, S.; Jeyakkodi, M.; Chattopadhyay, P.; Sarkar, D.P.; Sinha, S. Membrane fusion medi-ated targeted cytosolic drug delivery through scFv engineered sendai viral envelopes. Curr. Mol. Med. 2015, 15, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Koyani, R.; Pérez-Robles, J.; Cadena-Nava, R.D.; Vazquez-Duhalt, R. Biomaterial-based nanoreactors, an alternative for enzyme delivery. Nanotechnol. Rev. 2017, 6, 405–419. [Google Scholar] [CrossRef]
- Alconcel, S.N.S.; Baas, A.S.; Maynard, H.D. FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym. Chem. 2011, 2, 1442–1448. [Google Scholar] [CrossRef]
- Orhan, H.; Uygun, D.A. Immobilization of L-asparaginase on magnetic nanoparticles for cancer treatment. Appl. Biochem. Biotechnol. 2020, 191, 1432–1443. [Google Scholar] [CrossRef]
- Levashov, P.A.; Matolygina, D.A.; Ovchinnikova, E.D.; Adamova, I.Y.; Dmitrieva, O.A.; Pokrovsky, N.S.; Eremeev, N.L. A novel method of covalent lysozyme immobilization for the development of materials for medical applications. Rus. J. Bioorgan. Chem. 2019, 45, 101–106. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Choi, S.H.; Kang, Y.; Lee, J.-K. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk–shell particles: A promising support for enzyme immobilization. Nanoscale 2016, 8, 6728–6738. [Google Scholar] [CrossRef] [Green Version]
- Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 2012, 30, 512–523. [Google Scholar] [CrossRef]
- Ali, S.S.; Morsy, R.; El-Zawawy, N.A.; Fareed, M.F.; Bedaiwy, M.Y. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): A novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomed. 2017, 12, 6059–6073. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Guo, S.; Gao, J.; Zhao, J.; Xue, S.; Xu, W. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosens. Bioelectron. 2017, 98, 83–90. [Google Scholar] [CrossRef]
- Fritzen-Garcia, M.B.; Monteiro, F.F.; Cristofolini, T.; Acuña, J.J.S.; Zanetti-Ramos, B.G.; Oliveira, I.R.W.Z.; Soldi, V.; Pasa, A.A.; Creczynski-Pasa, T.B. Characterization of horseradish peroxidase immobilized on PEGylated polyurethane nanoparticles and its application for dopamine detection. Sens. Actuators B—Chem. 2013, 182, 264–272. [Google Scholar] [CrossRef]
- Correa, S.; Puertas, S.; Gutiérrez, L.; Asín, L.; de la Fuente, J.M.; Grazú, V.; Betancor, L. Design of stable magnetic hybrid nanoparticles of Si-entrapped HRP. PLoS ONE 2019, 14, e0214004. [Google Scholar] [CrossRef] [PubMed]
- Elsadek, B.; Kratz, F. Impact of albumin on drug delivery—New applications on the horizon. J. Control. Release 2012, 157, 4–28. [Google Scholar] [CrossRef] [PubMed]
- Sleep, D.; Cameron, J.; Evans, L.R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta 2013, 1830, 5526–5534. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Barak, O.; Wildeman, J.; van de Wetering, J.; Hettinga, J.; Schuilenga-Hut, P.; Gross, A.; Clark, S.; Bassan, M.; Gilgun-Sherki, Y.; Mendzelevski, B.; et al. Safety, pharmacokinetics, and pharmacodynamics of TV-1380, a novel mutated butyrylcholinesterase treatment for cocaine addiction, after single and multiple intramuscular injections in healthy subjects. J. Clin. Pharmacol. 2015, 55, 573–583. [Google Scholar] [CrossRef]
- Shi, J.; Kundrat, L.; Pishesha, N.; Bilate, A.; Theile, C.; Maruyama, T.; Dougan, S.K.; Ploegh, H.L.; Lodish, H.F. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Natl. Acad. Sci. USA 2014, 111, 10131–10136. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Tiwari, M.K.; Singh, R.; Lee, J.-K. From protein engineering to immobilization: Promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci. 2013, 14, 1232–1277. [Google Scholar] [CrossRef]
- Smith, M.T.; Wu, J.C.; Varner, C.T.; Bundy, B.C. Enhanced protein stability through minimally invasive, direct, covalent, and site-specific immobilization. Biotechnol. Prog. 2013, 29, 247–254. [Google Scholar] [CrossRef]
- Wu, J.C.Y.; Hutchings, C.H.; Lindsay, M.J.; Werner, C.J.; Bundy, B.C. Enhanced enzyme stability through site-directed covalent immobilization. J. Biotechnol. 2015, 193, 83–90. [Google Scholar] [CrossRef]
- Raliski, B.K.; Howard, C.A.; Young, D.D. Site-specific protein immobilization using unnatural amino acids. Bioconjug. Chem. 2014, 25, 1916–1920. [Google Scholar] [CrossRef]
- Redeker, E.S.; Ta, D.T.; Cortens, D.; Billen, B.; Guedens, W.; Adriaensens, P. Protein engineering for directed immobilization. Bioconj. Chem. 2013, 24, 1761–1777. [Google Scholar] [CrossRef] [PubMed]
- Ball, P.; Halliwell, J.; Anderson, S.; Gwenin, V.; Gwenin, C. Evaluation of two xenobiotic reductases from Pseudomonas putida for their suitability for magnetic nanoparticle-directed enzyme prodrug therapy as a novel approach to cancer treatment. Microbiologyopen 2020, 9, e1110. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.-Y.; Li, F.-L.; Zhang, Y.-W.; Gupta, R.K.; Patel, S.K.S.; Lee, J.-K. Recent Strategies for the Immobilization of Therapeutic Enzymes. Polymers 2022, 14, 1409. https://doi.org/10.3390/polym14071409
Zhu C-Y, Li F-L, Zhang Y-W, Gupta RK, Patel SKS, Lee J-K. Recent Strategies for the Immobilization of Therapeutic Enzymes. Polymers. 2022; 14(7):1409. https://doi.org/10.3390/polym14071409
Chicago/Turabian StyleZhu, Chen-Yuan, Fei-Long Li, Ye-Wang Zhang, Rahul K. Gupta, Sanjay K. S. Patel, and Jung-Kul Lee. 2022. "Recent Strategies for the Immobilization of Therapeutic Enzymes" Polymers 14, no. 7: 1409. https://doi.org/10.3390/polym14071409
APA StyleZhu, C. -Y., Li, F. -L., Zhang, Y. -W., Gupta, R. K., Patel, S. K. S., & Lee, J. -K. (2022). Recent Strategies for the Immobilization of Therapeutic Enzymes. Polymers, 14(7), 1409. https://doi.org/10.3390/polym14071409