Leachability and Anti-Mold Efficiency of Nanosilver on Poplar Wood Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Mold Resistance of Nano-Ag in Culture Medium and Its Concentration Screening
2.2.2. Treatment of Poplar Wood by Nano-Silver and the Leaching Evaluation
2.2.3. Anti-Mold Evaluation of Nano-Ag Treated Wood Materials
2.2.4. Characterization Methods
3. Results
3.1. Preliminary Screening of Nano-Ag Concentration in Culture Medium
3.2. Evaluation of Leachability of Nano-Ag on Wood Surfaces
3.3. Evaluation of Anti-Mold Effect of Nano-Ag on Wood Surface
4. Discussion
4.1. The Leachability of Nano-Ag on Wood Surfaces
4.2. The Anti-Mold Effect of the Nano-Ag
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramage, M.H.; Burridge, H.; Marta, B.W.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.L.; Yu, L.; Fleming, P.; Danielle, D.T.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Gustavsson, L.; Nguyen, T.; Sathre, R.; Tettey, U.Y.A. Climate effects of forestry and substitution of concrete buildings and fossil energy. Renew. Sustain. Energy Rev. 2021, 136, 110435. [Google Scholar] [CrossRef]
- Hellenbr, K.E.; Reade, A.E. Microorganisms associated with fuel wood chips and their impact on indoor air quality: A review. Int. Biodeter. Biodegr. 1992, 29, 19–43. [Google Scholar] [CrossRef]
- Purhonen, J.; Huhtinen, S.; Kotiranta, H.; Kotiaho, J.S.; Halme, P. Detailed information on fruiting phenology provides new insights on wood-inhabiting fungal detection. Fungal Ecol. 2017, 27, 175–177. [Google Scholar] [CrossRef]
- Johansson, P.; Annika, E.T.; Svensson, T.; Bok, G. Laboratory study to determine the critical moisture level for mould growth on building materials. Int. Biodeter. Biodegr. 2012, 73, 23–32. [Google Scholar] [CrossRef]
- Arango, R.; Yang, V.; Lebow, S.; Lebow, P.; Wiemann, M.; Grejczyk, M.; DeWald, P. Variation in mold susceptibility among hardwood species under laboratory conditions. Int. Biodeter. Biodegr. 2020, 154, 105082. [Google Scholar] [CrossRef]
- Papoutsis, K.; Mathioudakis, M.; Hasperu, J.; Ziogas, V. Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends Food Sci. Technol. 2019, 86, 479–491. [Google Scholar] [CrossRef]
- Wu, Z.G.; Deng, X.; Luo, Z.Y.; Zhang, B.G.; Xi, X.D.; Yu, L.P.; Li, L.F. Improvements in fire resistance, decay resistance, anti-mold property and bonding performance in plywood treated with manganese chloride, phosphoric acid, boric acid and ammonium chloride. Coatings 2021, 11, 399. [Google Scholar] [CrossRef]
- Sanchez, C.L.; Souders, C.L.; Pena-Delgado, C.J.; Nguyen, K.T.; Kroyter, N.; El Ahmadie, N.; Aristizabal-Henao, J.J.; Bowden, J.A.; Martyniuk, C.J. Neurotoxicity assessment of triazole fungicides on mitochondrial oxidative respiration and lipids in differentiated human SH-SY5Y neuroblastoma cells. Neurotoxicology 2020, 80, 76–86. [Google Scholar] [CrossRef]
- Yu, L.L.; Cao, J.Z.; Gao, W.; Su, H.T. Evaluation of ACQ-D treated Chinese fir and Mongolian Scots pine with different post-treatments after 20 months of exposure. Int. Biodeter. Biodegr. 2011, 65, 585–590. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, H.; Ma, E.N.; Liu, R. Resistance to fungal decay of paraffin wax emulsion/copper azole compound system treated wood. Int. Biodeter. Biodegr. 2018, 129, 61–66. [Google Scholar] [CrossRef]
- Thaler, N.; Humar, M. Copper leaching from copper-ethanolamine treated wood: Comparison of field test studies and laboratory standard procedures. BioResources 2014, 9, 3038–3051. [Google Scholar] [CrossRef]
- Terzi, E.; Kartal, S.N.; Yılgör, N.; Rautkari, L.; Yoshimura, T. Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. Int. Biodeter. Biodegr. 2016, 107, 77–87. [Google Scholar] [CrossRef]
- Goffredo, G.B.; Citterio, B.; Biavasco, F.; Stazi, F.; Barcelli, S.; Munafò, P. Nanotechnology on wood: The effect of photocatalytic nanocoatings against Aspergillus niger. J. Cult. Herit. 2017, 27, 125–136. [Google Scholar] [CrossRef]
- Li, J.P.; Ma, R.; Wu, Z.X.; He, S.; Chen, Y.H.; Bai, R.H.; Wang, J. Visible-light-driven Ag-modified TiO2 thin films anchored on bamboo material with antifungal memory activity against Aspergillus niger. J. Fungi 2021, 7, 592. [Google Scholar] [CrossRef]
- Pandoli, O.; Martins, R.D.S.; Romani, E.C.; Paciornik, S.; Mauricio, M.H.D.P.; Alves, H.D.L.; Pereira, M.F.V.; Luz, E.L.; Koller, S.M.L.; Valiente, H.; et al. Colloidal silver nanoparticles: An effective nano-filler material to prevent fungal proliferation in bamboo. RSC Adv. 2016, 6, 98325–98336. [Google Scholar] [CrossRef]
- Xie, G.J.; Zhou, Y.D.; Cao, Y.J.; Li, L.M. Anti-mildew properties of copper cured heat-treated wood. BioResources 2018, 13, 5643–5655. [Google Scholar]
- Nosál, E.; Reinprecht, L. Anti-bacterial and anti-mold efficiency of silver nanoparticles present in melamine-laminated particleboard surfaces. BioResources 2019, 14, 3914–3924. [Google Scholar] [CrossRef]
- Wang, D.; Hu, C.S.; Gu, J.; Tu, D.Y.; Wang, G.; Jiang, M.L.; Zhang, W.W. Bamboo surface coated with polymethylsilsesquioxane/Cu-containing nanoparticles (PMS/CuNP) xerogel for superhydrophobic and anti-mildew performance. J. Wood Sci. 2020, 66, 33. [Google Scholar] [CrossRef]
- Peng, R.; Yu, H.L.; Du, C.G.; Zhang, J.J.; Hu, A.L.; Li, Q.; Hua, Y.T.; Liu, H.Z.; Chu, S.M. Preparation of uniformly dispersed N-isopropylacryl-amide/acrylic acid/nanosilver composite hydrogel and its anti-mold properties. BioResources 2021, 16, 441–454. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.P.; Zhuang, X.W.; Pan, X.; Yu, H.X.; Sun, F.L.; Song, J.G.; Jin, C.D.; Jiang, Y.T. Improved mould resistance and antibacterial activity of bamboo coated with ZnO/graphene. R. Soc. Open Sci. 2018, 5, 180173. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.J.; Li, J.P.; Xu, J.; Wu, Z.X.; Bao, Y.J.; Li, N.; Chen, Y.H. Efficient antifungal and flame-retardant properties of ZnO-TiO2-layered double-nanostructures coated on bamboo substrate. Coatings 2018, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Li, J.P.; Su, M.L.; Wang, A.K.; Wu, Z.X.; Chen, Y.H.; Qin, D.C.; Jiang, Z.H. In situ formation of Ag nanoparticles in mesoporous TiO2 films decorated on bamboo via self-sacrificing reduction to synthesize nanocomposites with efficient antifungal activity. Int. J. Mol. Sci. 2019, 20, 5497. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.C.; Meneses, M.B.; Albukhari, S.M.; Richter, D.L.; Matuana, L.M.; Heiden, P.A. Comparing leaching of different copper oxide nanoparticles and ammoniacal copper salt from wood. Macromol. Mat. Eng. 2013, 298, 1335–1343. [Google Scholar] [CrossRef]
- Hoang, A.S.; Cong, H.H.; Shukanov, V.P.; Karytsko, L.A.; Poljanskaja, S.N.; Melnikava, E.V.; Mashkin, I.A.; Nguyen, T.H.; Pham, D.K.; Phan, C.M. Evaluation of metal nano-particles as growth promoters and fungi inhibitors for cereal crops. Chem. Biol. Agric. 2022, 9, 277. [Google Scholar] [CrossRef]
- Pařil, P.; Baar, J.; Čermák, P.; Rademacher, P.; Prucek, R.; Sivera, M.; Panáček, A. Antifungal effects of copper and silver nanoparticles against white and brown-rot fungi. J. Mater. Sci. 2017, 52, 2720–2729. [Google Scholar] [CrossRef]
- Kotzybik, K.; Grf, V.; Kugler, L. Influence of different nanomaterials on growth and mycotoxin production of Penicillium verrucosum. PLoS ONE 2016, 11, e0150855. [Google Scholar] [CrossRef] [Green Version]
- GB/T 18261-2013; Test Method for Anti-mildew Agents in Controlling Wood Mold and Stain Fungi. China National Standardization Administration Committee: Beijing, China, 2013.
- GB/T 29905-2013; Laboratory Method of Determining the Leachability of Wood Preservatives. China National Standardization Administration Committee: Beijing, China, 2013.
- Singh, T.; Singh, A.P. A review on natural products as wood protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Pantano, D.; Neubauer, N.; Navratilova, J.; Scifo, L.; Civardi, C.; Stone, V.; Kammer, F.V.D.; Müller, P.; Sobrido, M.S.; Angeletti, B.; et al. Transformations of nanoenabled copper formulations govern release, antifungal effectiveness, and sustainability throughout the wood protection lifecycle. Environ. Sci. Technol. 2018, 52, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Paternò, G.M.; Ross, A.M.; Pietralunga, S.M.; Normani, S.; Vedova, N.D.; Limwongyut, J.; Bondelli, G.; Moscardi, L.; Bazan, G.C.; Scotognella, F.; et al. The impact of bacteria exposure on the plasmonic response of silver nanostructured surfaces. Chem. Phys. Rev. 2021, 2, 021401. [Google Scholar] [CrossRef]
- Yan, L.; Zeng, F.Y.; Chen, Z.J.; Chen, S.; Lei, Y.F. Improvement of wood decay resistance by salicylic acid/silica microcapsule: Effects on the salicylic leaching, microscopic structure and decay resistance. Int. Biodeter. Biodegr. 2021, 156, 105134. [Google Scholar] [CrossRef]
- Shen, T.; Liu, Y.; Zhu, Y.; Yang, D.Q.; Sacher, E. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization. Appl. Surf. Sci. 2017, 411, 411–418. [Google Scholar] [CrossRef]
- Benjamin, L.O.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar]
- Pietro, G.; Lorenzo, D.V.; Chiara, M.; Angelo, T.; Yuri, D.F.; Margaux, B.; Laura, D.; Laura, S.; Silvia, R.; Barbara, V.; et al. PVA films with mixed silver nanoparticles and gold nanostars for intrinsic and photothermal antibacterial action. Nanomaterials 2021, 11, 1387. [Google Scholar]
- Zhang, X.J.; Wang, B.B.; Ma, L.F.; Xie, L.; Yang, H.; Li, Y.C.; Wang, S.; Qiao, H.X.; Lin, H.; Lan, J.P.; et al. Chemical stability, antibacterial and osteogenic activities study of strontium-silver co-substituted fluorohydroxyapatite nanopillars: A potential multifunctional biological coating. Ceram. Int. 2020, 46, 27758–27773. [Google Scholar] [CrossRef]
- Marcela, G.; Luz, D.G.; Camilo, G.; Carlos, H.E.; Ana, P.R.; María, E.G.; Edgar, V.S. Inhibition of the filamentation of Candida albicans by Borojoa patinoi silver nanoparticles. SN Appl. Sci. 2021, 3, 4103. [Google Scholar] [CrossRef]
- Jolanta, P.; Marcin, B.; Renata, S.; Mirosław, B. Nanosilver against fungi. Silver nano-particles as an effective biocidal factor. Acta Biochim. Pol. 2013, 60, 795–798. [Google Scholar]
Infection Value | Infection Area |
---|---|
0 | Without hypha on surface |
1 | Infection area < 1/4 |
2 | Infection area 1/4~1/2 |
3 | Infection area 1/2~3/4 |
4 | Infection area > 3/4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Qi, Y.; Luo, H.; He, Z.; Wei, L.; Dong, X.; Ma, X.; Yang, D.-Q.; Li, Y. Leachability and Anti-Mold Efficiency of Nanosilver on Poplar Wood Surface. Polymers 2022, 14, 884. https://doi.org/10.3390/polym14050884
Dai X, Qi Y, Luo H, He Z, Wei L, Dong X, Ma X, Yang D-Q, Li Y. Leachability and Anti-Mold Efficiency of Nanosilver on Poplar Wood Surface. Polymers. 2022; 14(5):884. https://doi.org/10.3390/polym14050884
Chicago/Turabian StyleDai, Xiaohan, Yanran Qi, Hongxue Luo, Zaixin He, Lianxiang Wei, Xiaoying Dong, Xingxia Ma, De-Quan Yang, and Yongfeng Li. 2022. "Leachability and Anti-Mold Efficiency of Nanosilver on Poplar Wood Surface" Polymers 14, no. 5: 884. https://doi.org/10.3390/polym14050884
APA StyleDai, X., Qi, Y., Luo, H., He, Z., Wei, L., Dong, X., Ma, X., Yang, D. -Q., & Li, Y. (2022). Leachability and Anti-Mold Efficiency of Nanosilver on Poplar Wood Surface. Polymers, 14(5), 884. https://doi.org/10.3390/polym14050884