A Study of Wave Confinement and Optical Force in Polydimethlysiloxane–Arylazopyrazole Composite for Photonic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of Molecular Switch
2.4. Synthesis of PDMS–AAP Composite
3. Results and Discussions
3.1. Photoisomerization Properties
3.2. Refractive Index of PDMS–AAP
3.3. Wave Confinement
3.4. Optical Force
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sydoruk, O.; Zhernovaya, O.; Tuchin, V.; Douplik, A. Refractive index of solution of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis. J. Biomed Opt. 2012, 17, 115002. [Google Scholar] [CrossRef]
- Gienger, J.; Gross, H.; Neukammer, J.; Bar, M. Determining the refractive index of human hemoglobin solutions by Kramers–Kronig relations with an improved absorption model. Appl. Opt. 2016, 55, 8951–8961. [Google Scholar] [CrossRef]
- Kim, S.; Novotny, D.; Gordon, J.; Guerrieri, J. A differential form of the Kramers-Kronig relation for determining a Lorentz-type of refractive index. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 1174–1175. [Google Scholar]
- Miri, M.; Cotrufo, M.; Alu, A. Optical gradient forces between evanescently coupled waveguides. Opt. Lett. 2018, 43, 4104–4107. [Google Scholar] [CrossRef]
- Thourhout, D.V.; Roels, J. Optomechanical device actuation through the optical gradient force. Nat. Photon. 2010, 4, 211–217. [Google Scholar] [CrossRef]
- Ding, M. Isomeric polyimides. Progr. Polym. Sci. 2007, 32, 623–668. [Google Scholar] [CrossRef]
- Palaimiene, E.; Schaefer, S.; Macutkevic, J.; Banys, J.; Selskis, A.; Fierro, V.; Celzard, A. Electrical percolation and electromagnetic properties of polydimethylsiloxane composites filled with Ag nanoparticles of different sizes. Polym. Compos. 2020, 41, 4750–4756. [Google Scholar] [CrossRef]
- Gao, X.; Huang, Y.; He, X.; Fan, X.; Liu, Y.; Xu, H.; Wu, D.; Wan, C. Mechanically enhanced electrical conductivity of polydimethylsiloxane-based composites by a hot embossing process. Polymers 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Jun, Y.; Park, M.G.; Um, J.G.; Habibpour, S.; Sy, S.; Park, C.B.; Yu, A. The conductivity of polydimethylsiloxane/graphene nano-ribbon foam composite with elongation. Carbon 2020, 162, 328–338. [Google Scholar] [CrossRef]
- Ishigure, T.; Nihei, E.; Koike, Y. Optimum refractive-index profile of the graded-index polymer optical fiber toward gigabit data links. Appl. Opt. 1996, 35, 2048–2053. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Ishigure, T. Index profile design for high-bandwidth w-shaped plastic optical fiber. J. Lightw. Technol. 2006, 24, 2867–2876. [Google Scholar] [CrossRef]
- Prajzler, V.; Hyps, P.; Mastera, R.; Nekvindova, P. Properties of siloxane based optical waveguides deposited on transparent paper and foil. Radioengineering 2016, 25, 230–235. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, G.; Zheng, S.; Lin, Z.; Jian, S. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express 2013, 21, 17089–17096. [Google Scholar] [CrossRef]
- Roels, J.; De Vlaminck, I.; Lagae, L.; Maes, B.; Van Thourhout, D.; Baets, R. Tunable optical forces between nanophotonic waveguides. Nat. Nanotechnol. 2009, 4, 510–513. [Google Scholar] [CrossRef]
- De Leonardis, F.; De Carlo, M.; Passaro, V.M.N. Design rules for a nano-opto-mechanical actuator based on suspended slot waveguide. Photonics 2017, 4, 1–8. [Google Scholar]
- Povinelli, M.L.; Loncar, M.; Ibanescu, M.; Smythe, E.J.; Johnson, S.G.; Capasso, F.; Joannopoulos, J.D. Evanescent-wave bonding between optical waveguides. Optics Lett. 2005, 30, 3042–3044. [Google Scholar] [CrossRef]
- Pernice, W.H.P.; Li, M.; Tang, H.X. Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. Opt. Express 2009, 17, 1806–1816. [Google Scholar] [CrossRef]
- Kizilkan, E.; Strueben, J.; Staubitz, A.; Gorb, S.N. Bioinspired photocontrollable microstructured transport device. Sci. Robot 2017, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Angelini, A.; Agero, U.; Lupi, F.F.; Fretto, M.; Pirri, F.; Frascella, F. Real-time and reversible light-actuated microfluidic channel squeezing in dye-doped PDMS. Soft Matter 2020, 16, 4383. [Google Scholar] [CrossRef]
- Durgun, E.; Grossman, J.C. Photoswitchable molecular rings for solar-thermal energy storage. J. Phys. Chem. Lett. 2013, 4, 854–860. [Google Scholar] [CrossRef] [Green Version]
- Uba, I.; Ghebreyessus, K.; Geddis, D.; Hommerich, U. Tunable Optoelectronic properties of Polydimethylsiloxane-Arylazopyrazole flexible composite. SoutheastCon 2021, 2021, 1–5. [Google Scholar]
- Ghebreyessus, K.; Uba, I.; Geddis, D.; Hommerich, U. Solid-state photoswitching in arylazopyrazole-embedded polydimethylsiloxane composite thin films. J. Solid State Chem. 2021, 303, 122519. [Google Scholar] [CrossRef]
- Weston, C.E.; Richardson, R.D.; Haycock, P.R.; White, A.J.P.; Fuchter, M.J. Arylazopyrazoles: Azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives. J. Am. Chem. Soc. 2014, 136, 11878–11881. [Google Scholar] [CrossRef]
- Kawano, K.; Kitoh, T. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger Equation; John Wiley & Sons Inc.: New York, NY, USA, 2001. [Google Scholar]
- Wang, Z.-J.; Dong, J.-F. Analysis of guided modes in asymmetric left-handed slab waveguides. PIER 2006, 62, 203–215. [Google Scholar] [CrossRef] [Green Version]
Parameter | Trans State | Cis State |
---|---|---|
ncore | 2.00 | 1.65 |
nclad | 1.60 | 1.60 |
m′ | 1, 2, 3 | 1 |
* v | 7.0 | 2.4 |
* b | 0.885, 0.541, 0.06 | 0.544 |
* k | 0.008, 0.015, 0.021 | 0.005 |
* γ | 0.020, 0.016, 0.005 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uba, I.; Geddis, D.; Ghebreyessus, K.; Hömmerich, U.; Dumas, J. A Study of Wave Confinement and Optical Force in Polydimethlysiloxane–Arylazopyrazole Composite for Photonic Applications. Polymers 2022, 14, 896. https://doi.org/10.3390/polym14050896
Uba I, Geddis D, Ghebreyessus K, Hömmerich U, Dumas J. A Study of Wave Confinement and Optical Force in Polydimethlysiloxane–Arylazopyrazole Composite for Photonic Applications. Polymers. 2022; 14(5):896. https://doi.org/10.3390/polym14050896
Chicago/Turabian StyleUba, Ikemefuna, Demetris Geddis, Kesete Ghebreyessus, Uwe Hömmerich, and Jerald Dumas. 2022. "A Study of Wave Confinement and Optical Force in Polydimethlysiloxane–Arylazopyrazole Composite for Photonic Applications" Polymers 14, no. 5: 896. https://doi.org/10.3390/polym14050896
APA StyleUba, I., Geddis, D., Ghebreyessus, K., Hömmerich, U., & Dumas, J. (2022). A Study of Wave Confinement and Optical Force in Polydimethlysiloxane–Arylazopyrazole Composite for Photonic Applications. Polymers, 14(5), 896. https://doi.org/10.3390/polym14050896