Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability
Abstract
:1. Introduction
2. DfS: Implementing Design in Sustainability
3. Role of DfS
4. Practice and Implementing of Sustainable Design
5. Product Design and Concurrent Engineering
6. Biocomposites as Sustainable Materials
7. Concurrent Engineering for Biocomposites
8. Integrating DfS with Other Concurrent Engineering Techniques: Biocomposite Product Development
8.1. VOC
8.2. Systematic Exploitation of Proven Ideas or Experience
8.3. Morphological Chart
8.4. Extending the Search Space
8.5. TRIZ
8.6. Multi-Criteria Decision Making (MCDM) Method
8.7. Gallery Method
9. Manufacturing Methods of Natural Fibre-Composites
10. Recent Development of Biocomposites Product Based on DfS
11. Influence of Ecological, Social, Economic and Institutional Factors in Development of Natural Fibre-Composites Products
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renew. Sustain. Energy Rev. 2016, 54, 533–549. [Google Scholar] [CrossRef]
- Sapuan, S.M. Development of Sugar Palm–Based Products: A Community Project. In Sugar Palm Biofibers, Biopolymers, and Biocomposites, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2018; pp. 245–266. ISBN 9780429443923. [Google Scholar]
- Ali, S.S.S.; Razman, M.R.; Awang, A.; Asyraf, M.R.M.; Ishak, M.R.; Ilyas, R.A.; Lawrence, R.J. Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability 2021, 13, 4441. [Google Scholar] [CrossRef]
- Tiseo, I. Annual Production of Plastics Worldwide from 1950 to 2020 (in Million Metric Tons). Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 9 February 2022).
- Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.R.; Zainudin, E.S.; Asrofi, M.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi, A.M.; et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 2019, 8, 2753–2766. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Norrrahim, M.N.F.; Yasim-Anuar, T.A.T.; Kadier, A.; Kalil, M.S.; Atikah, M.S.N.; Ibrahim, R.; Asrofi, M.; Abral, H.; et al. Nanocellulose/starch biopolymer nanocomposites: Processing, manufacturing, and applications. In Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers; Al-Oqla, F.M., Sapuan, S.M., Eds.; Elsevier Inc.: Amsterdam, The Netherland, 2020; pp. 65–88. [Google Scholar]
- Hazrol, M.D.; Sapuan, S.M.; Ilyas, R.A.; Othman, M.L.; Sherwani, S.F.K. Electrical properties of sugar palm nanocrystalline cellulose, reinforced sugar palm starch nanocomposites. Polimery 2020, 55, 33–40. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, M.N.F.; Ilyas, R.A.; Sapuan, S.M. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers 2021, 13, 423. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Khalina, A.; Chandrasekar, M.; Aisyah, H.A.; Rafiqah, S.A.; Ilyas, R.A.; Hanafee, Z.M. Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites. Polimery 2020, 65, 115–124. [Google Scholar] [CrossRef]
- Ilyas, R.; Sapuan, S.M.; Atikah, M.; Asyraf, M.; Rafiqah, S.A.; Aisyah, H.; Nurazzi, N.M.; Norrrahim, M. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text. Res. J. 2021, 91, 152–167. [Google Scholar] [CrossRef]
- Alias, A.H.; Norizan, M.N.; Sabaruddin, F.A.; Asyraf, M.R.M.; Norrrahim, M.N.F.; Ilyas, A.R.; Kuzmin, A.M.; Rayung, M.; Shazleen, S.S.; Nazrin, A.; et al. Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review. Coatings 2021, 11, 1355. [Google Scholar] [CrossRef]
- Mohd Nurazzi, N.M.; Muhammad Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A.; et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; et al. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials 2021, 11, 2186. [Google Scholar] [CrossRef]
- Johari, A.N.; Ishak, M.R.; Leman, Z.; Yusoff, M.Z.M.; Asyraf, M.R.M. Influence of CaCO3 in pultruded glass fibre/unsaturated polyester composite on flexural creep behaviour using conventional and TTSP methods. Polimery 2020, 65, 46–54. [Google Scholar] [CrossRef]
- Salit, M.S.; Syed, M.; Molla, A.; Ali, L. Conceptual Design of an Automotive Composite Brake Pedal. Suranaree J. Sci. Technol. 2005, 12, 173–177. [Google Scholar]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach. J. Mater. Res. Technol. 2020, 9, 2357–2368. [Google Scholar] [CrossRef]
- Pugh, S. Total Design: Integrated Methods for Successful Product Engineering. Qual. Reliab. Eng. Int. 1991, 7, 119. [Google Scholar] [CrossRef]
- Oshkovr, S.A.; Taher, S.T.; Oshkour, A.A.; Ariffin, A.K.; Azhari, C.H. Finite element modelling of axially crushed silk/epoxy composite square tubes. Compos. Struct. 2013, 95, 411–418. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique. J. Mater. Res. Technol. 2019, 8, 5647–5658. [Google Scholar] [CrossRef]
- Cascini, G.; Rissone, P.; Rotini, F.; Russo, D. Systematic design through the integration of TRIZ and optimization tools. Procedia Eng. 2011, 9, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Sapuan, S.M. A conceptual design of the concurrent engineering design system for polymeric-based composite automotive pedals. Am. J. Appl. Sci. 2009, 2, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Azammi, A.M.N.; Sapuan, S.M.; Ishak, M.R.; Sultan, M.T.H. Conceptual design of automobile engine rubber mounting composite using TRIZ-Morphological chart-analytic network process technique. Def. Technol. 2018, 14, 268–277. [Google Scholar] [CrossRef]
- Suresh, J.S.; Devi, M.P.; Mohammed, R.; Bhaskar, C.N. Effect of natural fillers on mechanical properties of epoxy-glass reinforced hybrid composites and their ranking by Topsis. Int. J. Eng. Sci. 2016, 6, 4627–4634. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Appl. Sci. 2021, 11, 2061. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020, 9, 6759–6776. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Kóczán, Z.; Le, D.H.A.; Bak, M.; Bejó, L.; Alpár, T. Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites. J. Polym. Res. 2021, 28, 1–16. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Kóczán, Z.; Alpár, T. Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites. Sci. Rep. 2021, 11, 3618. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.M.F.; Horváth, P.G.; Bak, M.; Le, D.H.A.; Mucsi, Z.M.; Alpár, T. Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites. Cellulose 2021, 28, 7859–7875. [Google Scholar] [CrossRef]
- Spangenberg, J.H.; Fuad-Luke, A.; Blincoe, K. Design for Sustainability (DfS): The interface of sustainable production and consumption. J. Clean. Prod. 2010, 18, 1485–1493. [Google Scholar] [CrossRef]
- Golar, M.; Malik, A.; Muis, H.; Khairil, M.; Ali, S.S.S.; Razman, M.R.; Awang, A. The adaptive-collaborative as a strategy comunications for conflict resolution on the national park. Ecol. Environ. Conserv. 2019, 25, 352–359. [Google Scholar]
- Roslan, Z.; Ramli, Z.; Abdullah, M.S.Y.; Choy, E.A.; Razman, M.R. Community valuation through their willingness to pay for heritage tourism and sustainable development in Jugra, Selangor, Malaysia. J. Food, Agric. Environ. 2017, 15, 116–120. [Google Scholar]
- Spangenberg, J.H. Sustainable development indicators: Towards integrated Systems as a tool for managing and monitoring a complex transition. Int. J. Glob. Environ. Issues 2009, 9, 318–337. [Google Scholar] [CrossRef]
- Hisseine, O.A.; Wilson, W.; Sorelli, L.; Tolnai, B.; Tagnit-Hamou, A. Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Constr. Build. Mater. 2019, 206, 84–96. [Google Scholar] [CrossRef]
- Roslan, Z.B.; Ramli, Z.; Razman, M.R.; Asyraf, M.R.M.; Ishak, M.R.; Ilyas, R.A.; Nurazzi, N.M. Reflections on Local Community Identity by Evaluating Heritage Sustainability Protection in Jugra, Selangor, Malaysia. Sustainability 2021, 13, 8705. [Google Scholar] [CrossRef]
- Ali, S.S.S.; Razman, M.R.; Awang, A. The estimation and relationship of domestic electricity consumption and appliances ownership in Malaysia’s intermediate city. Int. J. Energy Econ. Policy 2020, 10, 116–122. [Google Scholar] [CrossRef]
- Spangenberg, J.H.; Lorek, S. Environmentally sustainable household consumption: From aggregate environmental pressures to priority fields of action. Ecol. Econ. 2002, 43, 127–140. [Google Scholar] [CrossRef]
- Du, K.; Li, J. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Wang, Q.; Qu, J.; Wang, B.; Wang, P.; Yang, T. Green technology innovation development in China in 1990–2015. Sci. Total Environ. 2019, 696, 134008. [Google Scholar] [CrossRef]
- Cecere, G.; Corrocher, N.; Mancusi, M.L. Financial constraints and public funding of eco-innovation: Empirical evidence from European SMEs. Small Bus. Econ. 2020, 54, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Sapuan, S.M. Concurrent Engineering in Natural Fibre Composite Product Development. Appl. Mech. Mater. 2015, 761, 59–62. [Google Scholar] [CrossRef]
- Crul, M.R.M. Design for Sustainability: A Practical Approach for Developing Economies. Available online: http://www.d4s-de.org/manual/d4stotalmanual.pdf (accessed on 1 February 2022).
- Menegaki, A.N.; Tugcu, C.T. Energy consumption and Sustainable Economic Welfare in G7 countries; A comparison with the conventional nexus. Renew. Sustain. Energy Rev. 2017, 69, 892–901. [Google Scholar] [CrossRef]
- Tischner, U. Tools for Ecodesign and Sustainable Product Design. In Sustainable Solutions: Developing Products and Services for the Future; Charter, M., Tischner, U., Eds.; Greenleaf: Sheffield, UK, 2013; pp. 263–281. [Google Scholar]
- Bahr, N.J. System Safety Engineering and Risk Assessment: A Practical Approach, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2014; ISBN 9781466551619. [Google Scholar]
- Jawahir, I.S.; Rouch, K.E.; Dillon, O.W.; Holloway, L.; Hall, A.; Knuf, J. Design for sustainability (DFS): New challenges in developing and implementing a curriculum for next generation design and manufacturing engineers. Int. J. Eng. Educ. 2007, 23, 1053–1064. [Google Scholar]
- Ilyas, R.A.; Asyraf, M.R.M.; Sapuan, S.M.; Afiq, T.M.N.; Suhrisman, A.; Atikah, M.S.N.; Ibrahim, R. Development of Roselle Fiber Reinforced Polymer Biocomposites Mug Pad using Hybrid Design for Sustainability and Pugh Method. In Roselle: Production, Processing, Products and Biocomposites; Sapuan, S.M., Razali, N., Radzi, A.M., Ilyas, R.A., Eds.; Elsevier Academic Press: Amsterdam, The Netherland, 2021; pp. 197–213. ISBN 978-0323852135. [Google Scholar]
- Sapuan, S.M.; Hemapriya, G.; Ilyas, R.A.; Atikah, M.S.N.; Asyraf, M.R.M.; Mansor, M.R. Implementation of design for sustainability in developing trophy plaque using green kenaf polymer composites. In Design for Sustainability; Elsevier: Amsterdam, The Netherland, 2021; pp. 85–103. [Google Scholar]
- Yung, W.K.C.; Chan, H.K.; So, J.H.T.; Wong, D.W.C.; Choi, A.C.K.; Yue, T.M. A life-cycle assessment for eco-redesign of a consumer electronic product. J. Eng. Des. 2011, 22, 69–85. [Google Scholar] [CrossRef]
- Morini, A.A.; Ribeiro, M.J.; Hotza, D. Early-stage materials selection based on embodied energy and carbon footprint. Mater. Des. 2019, 178, 107861. [Google Scholar] [CrossRef]
- Taekema, J.; Karana, E. Creating awareness on natural fibre composites in design. In Proceedings of the DS 70: Proceedings of DESIGN 2012, the 12th International Design Conference, Dubrovnik, Croatia, 21–24 May 2012; pp. 1141–1150.
- Yusof, N.S.B.; Sapuan, S.M.; Sultan, M.T.H.; Jawaid, M. Concept Generation of Sugar Palm/Glass Fiber Reinforced Thermoplastic Polyurethane Hybrid Composite Automotive Crash Box. J. Adv. Res. Mater. Sci. 2018, 49, 10–17. [Google Scholar]
- Sapuan, S.M. Composite Materials: Concurrent Engineering Approach; Butterworth-Heinemann: Oxford, UK, 2017; ISBN 9780128026458. [Google Scholar]
- Chen, L.; Olhager, J.; Tang, O. Manufacturing facility location and sustainability: A literature review and research agenda. Int. J. Prod. Econ. 2014, 149, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Sudarsan, R.; Sriram, R.D.; Narayanan, A.; Sarkar, P.; Lee, J.H.; Lyons, K.W.; Kemmerer, S.J. Sustainable manufacturing: Metrics, standards, and infrastructure-workshop summary. In Proceedings of the 2010 IEEE Conference on Automation Science and Engineering (CASE), Toronto, ON, Canada, 21–24 August 2010; pp. 144–149. [Google Scholar]
- Rodrigues, V.P.; Pigosso, D.C.A.; McAloone, T.C. Process-related key performance indicators for measuring sustainability performance of ecodesign implementation into product development. J. Clean. Prod. 2016, 139, 416–428. [Google Scholar] [CrossRef] [Green Version]
- Arnette, A.N.; Brewer, B.L.; Choal, T. Design for sustainability (DFS): The intersection of supply chain and environment. J. Clean. Prod. 2014, 83, 374–390. [Google Scholar] [CrossRef]
- Baumgartner, R.J.; Engert, S. Corporate sustainability strategy-bridging the gap between formulation and implementation Corporate sustainability strategy e bridging the gap between formulation and implementation. Artic. J. Clean. Prod. 2015, 113, 822–834. [Google Scholar] [CrossRef]
- Fargani, H.; Cheung, W.M.; Hasan, R. A proposed implementation process for a sustainable manufacturing framework. In Advances in Transdisciplinary Engineering; IOS Press: Amsterdam, The Netherland, 2017; Volume 6, pp. 365–370. [Google Scholar]
- Herrmann, C.; Schmidt, C.; Kurle, D.; Blume, S.; Thiede, S. Sustainability in manufacturing and factories of the future. Int. J. Precis. Eng. Manuf. Green Technol. 2014, 1, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Rajurkar, K.P. Cryogenic machining of hard-to-cut materials. Wear 2000, 239, 168–175. [Google Scholar] [CrossRef]
- Kaynak, Y.; Karaca, H.E.; Noebe, R.D.; Jawahir, I.S. Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining. Wear 2013, 306, 51–63. [Google Scholar] [CrossRef]
- Renzi, C.; Leali, F.; Cavazzuti, M.; Andrisano, A.O. A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 2014, 72, 403–418. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Asyraf, M.R.M.; Sapuan, S.M.; Afiq, T.M.N.; Suhrisman, A.; Atikah, M.S.N.; Ibrahim, R. Application of Design for Sustainability to Develop Smartphone Holder Using Roselle Fiber-Reinforced Polymer Composites. In Roselle: Production, Processing, Products and Biocomposites; Sapuan, S.M., Razali, N., Radzi, A.M., Ilyas, R.A., Eds.; Elsevier Academic Press: Amsterdam, The Netherland, 2021; pp. 177–196. [Google Scholar]
- Kishawy, H.A.; Hegab, H.; Saad, E. Design for sustainable manufacturing: Approach, implementation, and assessment. Sustainability 2018, 10, 3604. [Google Scholar] [CrossRef] [Green Version]
- Polvorosa, R.; Suárez, A.; de Lacalle, L.N.L.; Cerrillo, I.; Wretland, A.; Veiga, F. Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy. J. Manuf. Process. 2017, 26, 44–56. [Google Scholar] [CrossRef]
- Hegab, H.; Umer, U.; Soliman, M.; Kishawy, H.A. Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718. Int. J. Adv. Manuf. Technol. 2018, 96, 3449–3458. [Google Scholar] [CrossRef]
- Hegab, H.; Kishawy, H.A.; Gadallah, M.H.; Umer, U.; Deiab, I. On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication. Int. J. Adv. Manuf. Technol. 2018, 97, 1593–1603. [Google Scholar] [CrossRef]
- Hegab, H.; Kishawy, H. Towards Sustainable Machining of Inconel 718 Using Nano-Fluid Minimum Quantity Lubrication. J. Manuf. Mater. Process. 2018, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Pereira, O.; Martín-Alfonso, J.E.; Rodríguez, A.; Calleja, A.; Fernández-Valdivielso, A.; de Lacalle, L.N.L. Sustainability analysis of lubricant oils for minimum quantity lubrication based on their tribo-rheological performance. J. Clean. Prod. 2017, 164, 1419–1429. [Google Scholar] [CrossRef]
- Pereira, O.; Rodríguez, A.; Barreiro, J.; Fernández-Abia, A.I.; de Lacalle, L.N.L. Nozzle design for combined use of MQL and cryogenic gas in machining. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 87–95. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M. A review on the viable technology for construction waste recycling. Resour. Conserv. Recycl. 2006, 47, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Eltaggaz, A.; Zawada, P.; Hegab, H.A.; Deiab, I.; Kishawy, H.A. Coolant strategy influence on tool life and surface roughness when machining ADI. Int. J. Adv. Manuf. Technol. 2018, 94, 3875–3887. [Google Scholar] [CrossRef]
- Salwa, H.N.; Sapuan, S.M.; Mastura, M.T.; Zuhri, M.Y.M. Conceptual Design and Selection of Natural Fibre Reinforced Biopolymer Composite (NFBC) Takeout Food Container. J. Renew. Mater. 2021, 9, 803–827. [Google Scholar] [CrossRef]
- Salwa, H.N.; Sapuan, S.M.; Mastura, M.T.; Zuhri, M.Y.M. Life cycle assessment of sugar palm fiber reinforced-sago biopolymer composite takeout food container. Appl. Sci. 2020, 10, 7951. [Google Scholar] [CrossRef]
- Shaharuzaman, M.A.; Sapuan, S.M.; Mansor, M.R. Prioritizing the product design specification of side-door impact beam using analytic hierarchy process method. Mech. Eng. Res. Day 2018, 2018, 34–35. [Google Scholar]
- Prasad, B. Concurrent Engineering Fundamentals: Integrated Product and Process Organization, Volume I, 1st ed.; International Series in Industrial and Systems Engineering: Upper Saddle River, NJ, USA, 1995; Volume I, ISBN 978-0-13-147463-5. [Google Scholar]
- Hambali, A.; Sapuan, S.M.; Ismail, N.; Nukman, Y. Application of analytical hierarchy process in the design concept selection of automotive composite bumper beam during the conceptual design stage. Sci. Res. Essays 2009, 4, 198–211. [Google Scholar]
- Sapuan, S.M.; Maleque, M.A.; Hameedullah, M.; Suddin, M.N.; Ismail, N. A note on the conceptual design of polymeric composite automotive bumper system. J. Mater. Process. Technol. 2005, 159, 145–151. [Google Scholar] [CrossRef]
- Shaharuzaman, M.A.; Sapuan, S.M.; Mansor, M.R.; Zuhri, M.Y.M. Conceptual design of natural fiber composites as a side-door impact beam using hybrid approach. J. Renew. Mater. 2020, 8, 549–563. [Google Scholar] [CrossRef]
- Benabdellah, A.C.; Benghabrit, A.; Bouhaddou, I.; Benghabrit, O. Design for relevance concurrent engineering approach: Integration of IATF 16949 requirements and design for X techniques. Res. Eng. Des. 2020, 31, 323–351. [Google Scholar] [CrossRef]
- Rihar, L.; Kušar, J. Implementing concurrent engineering and QFD method to achieve realization of sustainable project. Sustainability 2021, 13, 1091. [Google Scholar] [CrossRef]
- Johnson, K.W.; Langdon, P.M.; Ashby, M.F. Grouping materials and processes for the designer: An application of cluster analysis. Mater. Des. 2002, 23, 1–10. [Google Scholar] [CrossRef]
- Haik, Y. Engineering Design Process; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 2003. [Google Scholar]
- Boyer, R.R.; Cotton, J.D.; Mohaghegh, M.; Schafrik, R.E. Materials considerations for aerospace applications. MRS Bull. 2015, 40, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- Ashby, M.F. Materials Selection in Mechanical Design, 5th ed.; Elsevier: Amsterdam, The Netherland, 2011; Volume 86, ISBN 9781856176637. [Google Scholar]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E.; Deng, Y. A review on pineapple leaves fibre and its composites. Int. J. Polym. Sci. 2015, 2015, 950567. [Google Scholar] [CrossRef] [Green Version]
- Asyraf, M.R.M.; Ishak, M.R.; Syamsir, A.; Nurazzi, N.M.; Sabaruddin, F.A.; Shazleen, S.S.; Norrrahim, M.N.F.; Rafidah, M.; Ilyas, R.A.; Rashid, M.Z.A.; et al. Mechanical properties of oil palm fibre-reinforced polymer composites: A review. J. Mater. Res. Technol. 2022, 17, 33–65. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Norrrahim, M.N.F.; Nurazzi, N.M.; Shazleen, S.S.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. Int. J. Biol. Macromol. 2021, 193, 1587–1599. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Puttegowda, M.; Rangappa, S.M.; Jawaid, M.; Shivanna, P.; Basavegowda, Y.; Saba, N. Potential of natural/synthetic hybrid composites for aerospace applications. In Sustainable Composites for Aerospace Applications; Jawaid, M., Sultan, M.T.H., Eds.; Elsevier: Amsterdam, The Netherland, 2018; pp. 315–351. [Google Scholar]
- Van de Velde, K.; Kiekens, P.; Van Langenhove, L. Basalt fibres as reinforcement for composites. In Proceedings of the 10th International Conference on Composites/Nano Engineering, New Orleans, LA, USA, 20–26 June 2003; University of New Orleans: New Orleans, LA, USA, 2003; pp. 5–6. [Google Scholar]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Fatimah Athiyah, S.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef]
- Supian, A.B.M.; Sapuan, S.M.; Jawaid, M.; Zuhri, M.Y.M.; Ilyas, R.A.; Syamsir, A. Crashworthiness Response of Filament Wound Kenaf/Glass Fibre-reinforced Epoxy Composite Tubes with Influence of Stacking Sequence under Intermediate-velocity Impact Load. Fibers Polym. 2021, 23, 222–233. [Google Scholar] [CrossRef]
- Syamsir, A.; Amat, A.H.; Usman, F.; Itam, Z.; Kamal, N.L.M.; Zahari, N.M.; Chairi, M.; Imani, R. Effect of fiber orientation on ultimate tensile strength and Young’s modulus of fabricated glass fiber reinforced polymer plates. AIP Conf. Proc. 2021, 2339, 020123. [Google Scholar] [CrossRef]
- Mohamad, D.; Beddu, S.; Syamsir, A.; Zahari, N.M.; Abu Seman, S.A.H.; Razali, M.F.; Abas, A.; Ng, F.C. Performance Evaluation of Composite Cross-Arm Structure under Different Magnitude of Loading. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 920, 012005. [Google Scholar] [CrossRef]
- Mohd Nurazzi, N.; Khalina, A.; Sapuan, S.M.; Dayang Laila, A.H.A.M.; Rahmah, M.; Hanafee, Z. A review: Fibres, polymer matrices and composites. Pertanika J. Sci. Technol. 2017, 25, 1085–1102. [Google Scholar]
- Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Rahman, M.Z.A.; Anwar, U.M.K.; Siregar, J.P. Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydr. Polym. 2013, 91, 699–710. [Google Scholar] [CrossRef]
- Misri, S.; Leman, Z.; Sapuan, S.M.; Ishak, M.R. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. IOP Conf. Ser. Mater. Sci. Eng. 2010, 11, 012015. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Gning, P.B.; Guillaumat, L. A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Compos. Sci. Technol. 2012, 72, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Acharya, S.K. Soma Dalbehera Study on mechanical properties of natural fiber reinforced woven jute-glass hybrid epoxy composites. Adv. Polym. Sci. Technol. 2014, 4, 1–6. [Google Scholar]
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Potential natural fiber polymeric nanobiocomposites: A review. Polymers 2020, 12, 1072. [Google Scholar] [CrossRef]
- Azman, M.A.; Asyraf, M.R.M.; Khalina, A.; Petrů, M.; Ruzaidi, C.M.; Sapuan, S.M.; Wan Nik, W.B.; Ishak, M.R.; Ilyas, R.A.; Suriani, M.J. Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers 2021, 13, 1917. [Google Scholar] [CrossRef]
- Kamarudin, K.M.; Ridgway, K.; Hassan, M.R. Modelling Constraints in the Conceptual Design Process with TRIZ and F3. Procedia CIRP 2016, 39, 3–8. [Google Scholar] [CrossRef]
- Strong, B. Plastics: Materials and Processing, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006; Volume 14, ISBN 0131145584. [Google Scholar]
- Bahri, M.T.S.; Guan, N.Y.; Wahib, K.N.A.; Rahman, R.; Bakar, S.A.; Sapuan, S.M.; Nata, D.H.M.S. Creativity in Design of Safety Helmet for Oil Palm Workers. In Advances in Intelligent Systems and Computing; Springer International Publishing: New York, NY, USA, 2019; Volume 824, pp. 1044–1047. [Google Scholar]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Evaluation of Design and Simulation of Creep Test Rig for Full-Scale Crossarm Structure. Adv. Civ. Eng. 2020, 2020, 6980918. [Google Scholar] [CrossRef]
- Majava, J.; Isoherranen, V. Customer care excellence in the new product development process: A case study. Int. J. Value Chain Manag. 2018, 9, 26. [Google Scholar] [CrossRef]
- Mazani, N.; Sapuan, S.M.; Sanyang, M.L.; Atiqah, A.; Ilyas, R.A. Design and Fabrication of a Shoe Shelf From Kenaf Fiber Reinforced Unsaturated Polyester Composites. In Lignocellulose for Future Bioeconomy; Ariffin, H., Sapuan, S.M., Hassan, M.A., Eds.; Elsevier Inc.: Amsterdam, The Netherland, 2019; pp. 315–332. ISBN 9780128163542. [Google Scholar]
- Pahl, G.; Beitz, W. Engineering Design: A Systematic Approach; Springer: London, UK, 1996; ISBN 1846283183. [Google Scholar]
- Yeh, C.H.; Huang, J.C.Y.; Yu, C.K. Integration of four-phase QFD and TRIZ in product R&D: A notebook case study. Res. Eng. Des. 2011, 22, 125–141. [Google Scholar] [CrossRef]
- Daly, S.R.; Seifert, C.M.; Yilmaz, S.; Gonzalez, R. Comparing ideation techniques for beginning designers. J. Mech. Des. Trans. ASME 2016, 138, 101108. [Google Scholar] [CrossRef] [Green Version]
- Ullman, D. The mechanical design process. Des. Stud. 2003, 15, 448. [Google Scholar] [CrossRef]
- Ulrich, K.; Eppinger, S. Product Design and Development; McGraw Hill: New York, NY, USA, 1995. [Google Scholar]
- Cross, N. Engineering design methods. Des. Stud. 2005, 11, 210. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Razman, M.R. Integration of TRIZ, Morphological Chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos. 2020, 41, 2917–2932. [Google Scholar] [CrossRef]
- Rosli, M.U.; Ariffin, M.K.A.; Sapuan, S.M.; Sulaiman, S. Integrated AHP-TRIZ innovation method for automotive door panel design. Int. J. Eng. Technol. 2013, 5, 3158–3167. [Google Scholar]
- Li, M.; Ming, X.; He, L.; Zheng, M.; Xu, Z. A TRIZ-based trimming method for patent design around. CAD Comput. Aided Des. 2015, 62, 20–30. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Ang, M.C.; Ng, K.W.; Abdul Wahab, A.N. Reducing home energy usage based on TRIZ concept. Adv. Environ. Biol. 2015, 9, 6–11. [Google Scholar]
- San, Y.T.; Jin, Y.T.; Li, S.C. TRIZ: Systematic Innovation in Manufacturing; Firstfruit Sdn Bhd: Petaling Jaya, Malaysia, 2011; ISBN 9838040266. [Google Scholar]
- Li, T. Applying TRIZ and AHP to develop innovative design for automated assembly systems. Int. J. Adv. Manuf. Technol. 2010, 46, 301–313. [Google Scholar] [CrossRef]
- Hambali, A.; Amira Farhana, M.T. Development of integrated analytic network process (Anp) and theory of inventive problem solving (Triz) in the conceptual design selection. J. Eng. Sci. Technol. 2018, 13, 2716–2733. [Google Scholar]
- Abidin, M.Z.; Rusli, R.; Shariff, A.M. Technique for Order Performance by Similarity to Ideal Solution (TOPSIS)-entropy Methodology for Inherent Safety Design Decision Making Tool. Procedia Eng. 2016, 148, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, V.; Jain, P.K.; Tandon, P. Product design concept evaluation using rough sets and VIKOR method. Adv. Eng. Inform. 2016, 30, 16–25. [Google Scholar] [CrossRef]
- McKoy, F.L.; Vargas-Hernández, N.; Summers, J.D.; Shah, J.J. Influence of design representation on effectiveness of idea generation. Proc. ASME Des. Eng. Tech. Conf. 2001, 4, 39–48. [Google Scholar]
- Natural Fiber Composites (NFC) Market Size, Share & Trends Report Natural Fiber Composites (NFC) Market Size, Share & Trends Analysis Report by Raw Material, by Matrix, by Technology, by Application, and Segment Forecasts, 2018–2024. Available online: https://www.grandviewresearch.com/industry-analysis/natural-fiber-composites-market#:~:text=Theglobalnaturalfibercomposites,keytrendsescalatingmarketgrowth (accessed on 9 February 2022).
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyas, R.A.; Zuhri, M.Y.M.; Norrrahim, M.N.F.; Misenan, M.S.M.; Jenol, M.A.; Samsudin, S.A.; Nurazzi, N.M.; Asyraf, M.R.M.; Supian, A.B.M.; Bangar, S.P.; et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers 2022, 14, 182. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Aisyah, H.A.; Asyraf, M.R.M.; Hassan, S.A.; Zainudin, E.S.; Sapuan, S.M.; Sharma, S.; Bangar, S.P.; Jumaidin, R.; et al. Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers 2022, 14, 202. [Google Scholar] [CrossRef]
- Kaiser, M.R.; Anuar, H.B.; Samat, N.B.; Razak, S.B.A. Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran. Polym. J. 2013, 22, 123–131. [Google Scholar] [CrossRef]
- Bax, B.; Müssig, J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos. Sci. Technol. 2008, 68, 1601–1607. [Google Scholar] [CrossRef] [Green Version]
- Amir, A.L.; Ishak, M.R.; Yidris, N.; Zuhri, M.Y.M.; Asyraf, M.R.M. Advances of composite cross arms with incorporation of material core structures: Manufacturability, recent progress and views. J. Mater. Res. Technol. 2021, 13, 1115–1131. [Google Scholar] [CrossRef]
- Amir, A.L.; Ishak, M.R.; Yidris, N.; Zuhri, M.Y.M.; Asyraf, M.R.M. Potential of Honeycomb-Filled Composite Structure in Composite Cross-Arm Component: A Review on Recent Progress and Its Mechanical Properties. Polymers 2021, 13, 1341. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Azrina, A.; Razman, M.R. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose 2021, 28, 2675–2695. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Singh, K.K.; Venugopal, R. Experimental and numerical analysis of flexural test of unfilled glass fiber reinforced polymer composite laminate. Mater. Today Proc. 2018, 5, 184–192. [Google Scholar] [CrossRef]
- Nunes, S.G.; de Amorim, W.F.; Manes, A.; Amico, S.C. The effect of thickness on vacuum infusion processing of aramid/epoxy composites for ballistic application. J. Compos. Mater. 2019, 53, 383–391. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M.; Berglin, L. Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos. Part A Appl. Sci. Manuf. 2013, 50, 93–101. [Google Scholar] [CrossRef]
- Oksman, K.; Skrifvars, M.; Selin, J.F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 2003, 63, 1317–1324. [Google Scholar] [CrossRef]
- Soares, B.; Preto, R.; Sousa, L.; Reis, L. Mechanical behavior of basalt fibers in a basalt-UP composite. Procedia Struct. Integr. 2016, 1, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.; Graham-Jones, J.; Summerscales, J.; Hall, W. Resin transfer moulding (RTM) to produce surfboard fins with natural fibres. In Proceedings of the 9th International Conference on Composite Science and Technology: 2020-Scientific and Industrial Challenges, Naples, Italy, 24–26 April 2013; The Institute of Materials, Minerals and Mining: Naples, Italy, 2013; pp. 577–583. [Google Scholar]
- Asyraf, M.R.M.; Ishak, M.R.; Syamsir, A.; Amir, A.L.; Nurazzi, N.M.; Norrrahim, M.N.F.; Asrofi, M.; Rafidah, M.; Ilyas, R.A.; Rashid, M.Z.A. Filament-wound glass-fibre reinforced polymer composites: Potential applications for cross arm structure in transmission towers. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Rafidah, M.; Ilyas, R.A.; Razman, M.R. Potential application of green composites for cross arm component in transmission tower: A brief review. Int. J. Polym. Sci. 2020, 2020, 8878300. [Google Scholar] [CrossRef]
- Summerscales, J.; Grove, S. Manufacturing methods for natural fibre composites. In Natural Fibre Composites: Materials, Processes and Applications; Hodzic, A., Shanks, R., Eds.; Woodhead Publishing: Amsterdam, The Netherland, 2013; pp. 176–215. ISBN 9780857095244. [Google Scholar]
- Haddad, M.; Zitoune, R.; Eyma, F.; Castanié, B. Influence of Machining Process and Machining Induced Surface Roughness on Mechanical Properties of Continuous Fiber Composites. Exp. Mech. 2015, 55, 519–528. [Google Scholar] [CrossRef]
- Rajmohan, T.; Vinayagamoorthy, R.; Mohan, K. Review on effect machining parameters on performance of natural fibre–reinforced composites (NFRCs). J. Thermoplast. Compos. Mater. 2019, 32, 1282–1302. [Google Scholar] [CrossRef]
- Wang, D.; Onawumi, P.Y.; Ismail, S.O.; Dhakal, H.N.; Popov, I.; Silberschmidt, V.V.; Roy, A. Machinability of natural-fibre-reinforced polymer composites: Conventional vs ultrasonically-assisted machining. Compos. Part A Appl. Sci. Manuf. 2019, 119, 188–195. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Sreekumar Matrices for Natural-Fibre Reinforced Composites; Woodhead Publishing Limited: Brimingham, UK, 2008; ISBN 9781845692674.
- Rocha, C.S.; Antunes, P.; Partidário, P. Design for sustainability models: A multiperspective review. J. Clean. Prod. 2019, 234, 1428–1445. [Google Scholar] [CrossRef] [Green Version]
- Mansor, M.R.; Sapuan, S.M.; Zainudin, E.S.; Nuraini, A.A. Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ-Morphological Chart-Analytic Hierarchy Process method. Mater. Des. 2014, 54, 473–482. [Google Scholar] [CrossRef]
- Davoodi, M.M.; Sapuan, S.M.; Yunus, R. Conceptual design of a polymer composite automotive bumper energy absorber. Mater. Des. 2008, 29, 1447–1452. [Google Scholar] [CrossRef] [Green Version]
- Mansor, M.R.; Sapuan, S.M.; Hambali, A. Conceptual design of kenaf polymer composites automotive spoiler using TRIZ and Morphology Chart methods. Appl. Mech. Mater. 2015, 761, 63–67. [Google Scholar] [CrossRef]
- Mastura, M.T.; Sapuan, S.M.; Mansor, M.R.; Nuraini, A.A. Conceptual design of a natural fibre-reinforced composite automotive anti-roll bar using a hybrid approach. Int. J. Adv. Manuf. Technol. 2017, 91, 2031–2048. [Google Scholar] [CrossRef]
- Ishak, N.M.; Sivakumar, D.; Mansor, M.R. The application of TRIZ on natural fibre metal laminate to reduce the weight of the car front hood. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 105. [Google Scholar] [CrossRef]
- Sapuan, S.M.; Purushothman, K.R.; Sanyang, M.L.; Mansor, M.R. Design and fabrication of kenaf fibre reinforced polymer composites for portable laptop table. In Lignocellulosic Composite Materials; Kalia, S., Ed.; Springer Nature: Gewerbestrasse, Switzerland, 2018; pp. 323–356. [Google Scholar]
- Lee, C.H.; Khalina, A.; Nurazzi, N.M.; Norli, A.; Harussani, M.M.; Rafiqah, S.; Aisyah, H.A.; Ramli, N. The Challenges and Future Perspective of Woven Kenaf Reinforcement in Thermoset Polymer Composites in Malaysia: A Review. Polymers 2021, 13, 1390. [Google Scholar] [CrossRef]
- Ramesh, M.; Deepa, C.; Kumar, L.R.; Sanjay, M.R.; Siengchin, S. Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: A critical review. J. Ind. Text. 2020, 1528083720924730. [Google Scholar] [CrossRef]
- Kannojiya, R.; Gaurav, K.; Ranjan, R.; Tiyer, N.K.; Pandey, K.M. Extraction of Pineapple Fibres for Making Commercial Products. J. Environ. Res. Dev. J. 2013, 7, 1385–1390. [Google Scholar]
- Hao, L.C.; Sapuan, S.M.; Hassan, M.R.; Sheltami, R.M. Natural Fiber Reinforced Vinyl Polymer Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 9780081021606. [Google Scholar]
- Ali, S.S.S.; Razman, M.R.; Awang, A. The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia. Int. J. Energy Econ. Policy 2020, 10, 84–89. [Google Scholar] [CrossRef]
- Kamaruddin, N.; Othman, M.S.H. Quantifying of farmers’ acceptance and perception in developing kenaf, hibiscus cannabinus, industry in Malaysia. Int. J. Green Econ. 2012, 6, 401–416. [Google Scholar] [CrossRef]
- Abdelrhman, H.A.; Shahwahid, M.; Paridah, M.T.; Samad, A.R.A.; Habib, M.A.A.E.I.; Ogeri, A. Financial and Technical Assessment of Kenaf Cultivation for Producing Fiber Utilized in Automotive Components. Bus. Econ. J. 2016, 7, 1000254. [Google Scholar] [CrossRef]
- Growing Demand for Kenaf. Freemalaysiatoday. 29 April 2010. Available online: https://www.freemalaysiatoday.com/category/nation/2019/12/04/growing-demand-for-kenaf/ (accessed on 2 February 2022).
- Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.Y.A.Y.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Nurazzi, N.M.; et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers 2021, 13, 1326. [Google Scholar] [CrossRef]
- Huzaifah, M.R.M.; Sapuan, S.M.; Leman, Z.; Ishak, M.R. Comparative study on chemical composition, physical, tensile, and thermal properties of sugar palm fiber (Arenga pinnata) obtained from different geographical locations. BioResources 2017, 12, 9366–9382. [Google Scholar] [CrossRef]
- Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Rahman, M.Z.A.; Anwar, U.M.K. Characterization of sugar palm (Arenga pinnata) fibres. J. Therm. Anal. Calorim. 2011, 109, 981–989. [Google Scholar] [CrossRef]
- Norizan, M.N.; Alias, A.H.; Sabaruddin, F.A.; Asyraf, M.R.M.; Shazleen, S.S.; Mohidem, N.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Rushdan, A.I.; Ishak, M.R.; et al. Effect of Silane Treatments on Mechanical Performance of Kenaf Fibre Reinforced Polymer Composites: A Review. Funct. Compos. Struct. 2021, 3, 045003. [Google Scholar] [CrossRef]
- Hassan, M.A.; Ismail, A.E. Challenges for Kenaf Fiber as a Reinforcement: A Review. Appl. Mech. Mater. 2015, 773–774, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Ramachandralu, K. Development of Surgical Clothing from Bamboo Fibres. In Medical and Healthcare Textiles; Woodhead Publishing: Cambridge, UK, 2010; pp. 171–180. ISBN 9781845692247. [Google Scholar]
- Klar, S.; Krupnikov, Y.; Ryan, J.B.; Searles, K.; Shmargad, Y. Using social media to promote academic research: Identifying the benefits of twitter for sharing academic work. PLoS ONE 2020, 15, e0229446. [Google Scholar] [CrossRef]
Ref. | Sustainable Technology | Application |
---|---|---|
[67] | Application of various coolant pressures | Advance the machinability of Inconel 718 and Waspalloy |
[68,69,70] | Implementing of MQL-nano-fluid | Improving the machinability of Inconel 718 and Ti-6Al-4V to improve tool wear, surface quality and power consumption |
[71] | Implementing biodegradable oils with minimum quantity lubrication (MQL) | Accomplish sustainable machining (Inconel 718) |
[72] | Hybridizing both techniques of MQL and cryogenic | Achieve environmentally efficient machining even in difficult-to-cut materials |
[73] | Applying of 6R approach with the waste management process | Enhancing the construction waste recycling |
[74] | Conducting vegetable oil with MQL | Attain the sustainable machining by ADI |
Product | Final Concept Design | Bio-Based Material | Concurrent Engineering Techniques | No. of Concept Designs | Application | Ref. | ||
---|---|---|---|---|---|---|---|---|
Problem Identifier Tool | Refine Problem Identifier Tool | Selection Concept Design Tool | ||||||
Parking brake lever | Kenaf fibre polymer composite | TRIZ (Contra-diction Matrix) | Morpho-logical Chart | Analytic Hierarchy Process (AHP) | 5 | Auto-motive | [152] | |
Automobile engine rubber composite | Kenaf fibre polymer composite | TRIZ (Contra-diction Matrix) | Morpho-logical Chart | Analytic Network Process (ANP) | 4 | Auto-motive | [24] | |
Automotive bumper beam | Hybrid natural fibre polymer composite | Voice of customer | Finite Element Analysis | TOPSIS | 8 | Auto-motive | [153] | |
Car spoiler | - | Kenaf fibre polymer composite | TRIZ (Contra-diction Matrix) | - | Morpho-logical Chart | 1 | Auto-motive | [154] |
Side door impact beam | Natural fibre-composite | TRIZ + Biomi-metics | Finite Element Analysis | VIKOR | 8 | Auto-motive | [81] | |
Anti-roll bar | Hybrid natural-carbon fibre reinforced composite | TRIZ-Blue Ocean Strategy (BOS) four-action frame-work | Morphological Chart | AHP | 42 | Auto-motive | [155] | |
Car front hood | - | Natural fibre-aluminium laminate | TRIZ (If-Then-But Method) | TRIZ (Contra-diction matrix) | - | 1 | Auto-motive | [156] |
Fire extinguisher | Hybrid natural fibre polymer composite | TRIZ (Contra-diction matrix) | Morpho-logical Chart | ANP | 4 | Build-ing safety | [118] | |
Shoe rack | Kenaf fibre reinforced UPE composite | Brain-storming + Mind-mapping + TRIZ | Morpho-logical Chart | Weighted Objectives Method | 3 | House-hold | [111] | |
Portable laptop table | Kenaf fibre polymer composite | Brain-storming | - | Pugh evaluation method | 9 | House-hold | [157] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asyraf, M.R.M.; Syamsir, A.; Zahari, N.M.; Supian, A.B.M.; Ishak, M.R.; Sapuan, S.M.; Sharma, S.; Rashedi, A.; Razman, M.R.; Zakaria, S.Z.S.; et al. Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers 2022, 14, 920. https://doi.org/10.3390/polym14050920
Asyraf MRM, Syamsir A, Zahari NM, Supian ABM, Ishak MR, Sapuan SM, Sharma S, Rashedi A, Razman MR, Zakaria SZS, et al. Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers. 2022; 14(5):920. https://doi.org/10.3390/polym14050920
Chicago/Turabian StyleAsyraf, Muhammad Rizal Muhammad, Agusril Syamsir, Nazirul Mubin Zahari, Abu Bakar Mohd Supian, Mohamad Ridzwan Ishak, Salit Mohd Sapuan, Shubham Sharma, Ahmad Rashedi, Muhammad Rizal Razman, Sharifah Zarina Syed Zakaria, and et al. 2022. "Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability" Polymers 14, no. 5: 920. https://doi.org/10.3390/polym14050920
APA StyleAsyraf, M. R. M., Syamsir, A., Zahari, N. M., Supian, A. B. M., Ishak, M. R., Sapuan, S. M., Sharma, S., Rashedi, A., Razman, M. R., Zakaria, S. Z. S., Ilyas, R. A., & Rashid, M. Z. A. (2022). Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers, 14(5), 920. https://doi.org/10.3390/polym14050920