Investigation of Calcination of Sepia officinalis Cuttlefish Bone for Reinforcement of Polyvinyl Alcohol Added Nano-Size Montmorillonite
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Formulation
2.2. Preparation of Samples
2.2.1. Preparation of Calcined Cuttlebone
2.2.2. Sample Preparation
2.3. Characterization Techniques
2.3.1. X-ray Diffraction (XRD) Tests
2.3.2. Tensile Tests
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.3.4. Scanning Electron Microscopy Analysis (SEM)
2.3.5. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
3.1. Tensile Test Analysis
3.2. Differential Scanning Calorimetry
3.3. Infrared Spectrometry Analysis
3.4. X-ray Diffraction
3.5. Scanning Electron Microscope
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Qiu, K.; Netravali, A.N. Polyvinyl alcohol based biodegradable polymer nanocomposites. In Biodegradable Polymers: Advancement in Biodegradation Study and Applications; Chu, C.-C., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2015; Volume 1, pp. 325–348. [Google Scholar]
- Ashwin, K.; Karthick, K.; Arumugam, K.P. Biodegradable Polymers and Its Applications. Int. J. Biosci. Biochem. Bioinform. 2011, 1, 173–176. [Google Scholar]
- Ling, M.B. Investigation of Polyvinyl Alcohol (PVOH) Added Kenaf Nanowhisker and Montmorillonite (MMT). Bachelor’s Thesis, Chemical Engineering. Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia, April 2015. [Google Scholar]
- Jiang, X.C.; Xia, C.; Ye, D.; Liu, L. Properties of poly(vinyl alcohol) plasticized by magnesium chloride. Chem. J. Chin. Univ. 2012, 33, 1872–1876. [Google Scholar]
- Muhammad, A.; Zulfiqar Ali, R. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. 2018, 58, 2119–2132. [Google Scholar]
- Ng, H.-M.; Bee, S.-T.; Sin, L.T.; Ratnam, C.T.; Rahmat, A.R. Effect of electron bema irradiation sterilization on biomedical polylactic acid composite filled with Scomberomorus Guttatus-derived hydroxyapatite. Compos. B Eng. 2019, 176, 107273. [Google Scholar] [CrossRef]
- Bee, S.-T.; Liew, S.-Q.; Ang, W.; Sin, L.T.; Bee, S.-L.; Rahmat, A.R. Interactive effect of calcined eggshell and montmorillonite on the characteristics of polyvinyl alcohol blends. J. Vinyl Addit. Technol. 2018, 24, 324–338. [Google Scholar] [CrossRef]
- Bee, S.-L.; Hamid, A.Z.A. Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration. Compos. B Eng. 2019, 163, 562–573. [Google Scholar] [CrossRef]
- Nur Fazreen, A.; Hanafi, I.; Mohamad Kahar, W. Properties of polyvinyl alcohol/palm kernel shell powder biocomposites and their hybrid composites with halloysite nanotubes. BioResources 2017, 12, 9103–9117. [Google Scholar]
- Mojtaba, K.; Hamid, M.; Mohammad Ali, S.; Mehdi, F. Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Adv. 2015, 5, 10479–10487. [Google Scholar]
- Mohamed, A.; Kahder, M.; AlSaad, K.; AlMeer, S. Properties of nanoclay PVA composites materials. QScience Connect 2013, 2013, 1–9. [Google Scholar]
- Zanela, J.; Bilck, A.P.; Casagrande, M.; Grossmann, M.V.E.; Yamashita, F. Polyvinyl alcohol (PVA) molecular weight and extrusion temperature in starch/PVA biodegradable sheets. Polímeros 2018, 28, 256–265. [Google Scholar] [CrossRef]
- Yasmin, A.R.; Kalyani, D.; Chennai, A.U. Naturally Derived Porous Hydroxyapatite/ Polymer Biocomposite of Cuttlebone and Eggshell for Dental and Orthopedic Applications. Int. J. Appl. Sci. Eng. 2015, 3, 471–478. [Google Scholar]
- Bee, S.; Sin, L.T.; Ooi Ker Qi, N.; Ratnam, C.T.; Rahmat, A.R. Interactive effects of carbon nanotube and montmorrilonite reinforcement polyvinyl alcohol composite system. J. Vinyl Addit. Technol. 2018, 26, 77–89. [Google Scholar] [CrossRef]
- Zhang, R.L.; Chen, C.; Li, J.; Wang, X. Preparation of montmorillonite @ carbon composite and its application for U(VI) removal from aqueous solution. Appl. Surf. Sci. 2015, 349, 129–137. [Google Scholar] [CrossRef]
- Islam, M.R.; Pias, S.M.; Alam, R.B.; Khondaker, S.I. Enhanced electrochemical performance of solution-processed single-wall carbon nanotube reinforced polyvinyl alcohol nanocomposite synthesized via solution-cast method. Nano Express 2020, 1, 030013. [Google Scholar] [CrossRef]
- Gautam, A.; Komal, P. Synthesis of montmorillonite clay/poly(vinyl alcohol) nanocomposites and their mechanical properties. J. Nanosci. Nanotechnol. 2019, 19, 8071–8077. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, D.; Lu, J.; Li, T.; Jiao, C.; Li, S.; Lu, P.; Zhang, Z. Preparation and properties of biocomposite films based on poly(vinyl alcohol) incorporated with eggshell powder as a biological filler. J. Polym. Environ. 2020, 28, 2020–2028. [Google Scholar] [CrossRef]
- Maheshwari, S.U.; Samuel, V.K.; Nagiah, N. Fabrication and evaluation of (PVA/HAp/PCL) bilayer composites as potential scaffolds for bone tissue regeneration application. Ceram. Int. 2014, 40, 8469–8477. [Google Scholar] [CrossRef]
- Sabbagh, F.; Khatir, N.M.; Karim, A.K.; Omidvar, A.; Nazari, Z.; Jaberi, R. Mechanical properties and swelling behavior of acrylamide hydrogels using montmorillonite and kaolinite as clays. J. Environ. Treat. Tech. 2019, 7, 211–219. [Google Scholar]
- Soltani, Z.; Ziaie, F.; Ghaffari, M.; Afarideh, H.; Ehsani, M. Mechanical and thermal properties and morphological studies of 10MeV electron beam irradiated LDPE/hydroxyapatite nano-composite. Radiat. Phys. Chem. 2013, 83, 79–85. [Google Scholar] [CrossRef]
- Xue, K.; Teng, S.H.; Niu, N.; Wang, P. Biomimetic synthesis of novel polyvinyl alcohol/hydroxyapatite composite microspheres for biomedical applications. Mater. Res. Express. 2018, 5, 115401. [Google Scholar] [CrossRef]
- Tee, T.T.; Lee, T.S.; Gobinath, R.; Bee, S.T.; Hui, D.; Rahmat, A.R.; Kong, I.; Fang, Q. Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol-starch blends prepared via solution cast approach. Compos. B Eng. 2013, 47, 238–247. [Google Scholar] [CrossRef]
- Lim, L.S. Effects of Microwave Radiation on Properties of Polyvinyl Alcohol-Carbon Nanotube-Hydroxyapatite Blends. Bachelor’s Thesis, Chemical Engineering. Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia, September 2018. [Google Scholar]
- Guo, W.; Liu, J.; Zhang, P.; Song, L.; Wang, X.; Hu, Y. Multi-functional hydroxyapatite/polyvinyl alcohol composite aerogels with self-cleaning, superior fire resistance and low thermal conductivity. Compos. Sci. Technol. 2018, 158, 128–136. [Google Scholar] [CrossRef]
- Wei, W.; Song, W.; Zhang, S. Preparation and characterization of hydroxyapatite-poly(vinyl alcohol) composites reinforced with cellulose nanocrystals. BioResources 2014, 9, 6087–6099. [Google Scholar] [CrossRef]
Loading Level of MMT (phr) | Loading Level of Calcined Cuttlebone (phr) | Melting Temperature (°C) | Onset Temperature (°C) | End Temperature (°C) |
---|---|---|---|---|
1 | 2 | 228.52 | 216.77 | 231.71 |
2 | 2 | 227.94 | 213.23 | 234.22 |
3 | 2 | 228.90 | 216.44 | 235.01 |
1 | 5 | 228.36 | 222.65 | 234.38 |
2 | 5 | 228.64 | 217.77 | 234.57 |
3 | 5 | 228.47 | 216.75 | 234.60 |
Loading Level of MMT (phr) | Loading Level of Calcined Cuttlebone (phr) | Wavenumber (cm−1) | ||
---|---|---|---|---|
O-H Stretching | C-H Stretching | C-O Stretching | ||
1 | 2 | 3260.79 | 2908.67 | 1084.52 |
2 | 2 | 3262.55 | 2938.45 | 1085.55 |
3 | 2 | 3262.08 | 2915.67 | 1045.98 |
1 | 5 | 3254.23 | 2939.87 | 1087.66 |
2 | 5 | 3258.88 | 2916.46 | 1081.41 |
3 | 5 | 3258.81 | 2940.05 | 1088.10 |
Loading Level of Calcined Cuttlebone (phr) | Loading Level of MMT (phr) | d-Spacing, d (Å) | Crystallite Size, L (Å) |
---|---|---|---|
2 | 1 | 4.58116 | 611.41 |
2 | 2 | 4.56907 | 84.86 |
2 | 3 | 4.46249 | 611.05 |
5 | 1 | - | - |
5 | 2 | - | - |
5 | 3 | 4.50829 | 41.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thum, J.-Y.; Sin, L.T.; Bee, S.-T.; Lim, J.-V.; Bee, S.-L. Investigation of Calcination of Sepia officinalis Cuttlefish Bone for Reinforcement of Polyvinyl Alcohol Added Nano-Size Montmorillonite. Polymers 2022, 14, 1089. https://doi.org/10.3390/polym14061089
Thum J-Y, Sin LT, Bee S-T, Lim J-V, Bee S-L. Investigation of Calcination of Sepia officinalis Cuttlefish Bone for Reinforcement of Polyvinyl Alcohol Added Nano-Size Montmorillonite. Polymers. 2022; 14(6):1089. https://doi.org/10.3390/polym14061089
Chicago/Turabian StyleThum, Jia-Yi, Lee Tin Sin, Soo-Tueen Bee, Jun-Ven Lim, and Soo-Ling Bee. 2022. "Investigation of Calcination of Sepia officinalis Cuttlefish Bone for Reinforcement of Polyvinyl Alcohol Added Nano-Size Montmorillonite" Polymers 14, no. 6: 1089. https://doi.org/10.3390/polym14061089
APA StyleThum, J. -Y., Sin, L. T., Bee, S. -T., Lim, J. -V., & Bee, S. -L. (2022). Investigation of Calcination of Sepia officinalis Cuttlefish Bone for Reinforcement of Polyvinyl Alcohol Added Nano-Size Montmorillonite. Polymers, 14(6), 1089. https://doi.org/10.3390/polym14061089