A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microfluidic Devices
2.3. The Hydrolysis Processes of GDL
2.4. Influence of Constituent Concentration on the Gelling Time of Alginate Aqueous Solution
2.5. Influence of Constituent Concentration on the Formation of Alginate Microcapsules
2.6. Preparation of Alginates Microcapsules by On-Line Mixing
2.7. Preparation of Alginate Microcapsules with Citral
2.8. The Sustained Release of Citral from Alginate Microcapsules
2.9. Antioxidant Properties of Oil with Citral-Containing Microcapsules
2.10. Characterization
3. Results and Discussion
3.1. The pH Change Kinetics of GDL-Contained Solution
3.2. The Influence of Constituent Concentration on the Gel Time of Alginate Hydrogel
3.3. Influence of Alginate Sodium, GDL, and EDTA-Ca on the Formation of O/W/O Emulsions and Alginate Microcapsules
3.4. Morphology and Size Analysis of O/W/O Emulsions and Alginate Microcapsules
3.5. Preparation of Microcapsules Based on Micro-Mixer
3.6. Sustained-Release from Citral-Containing Alginate Microcapsules
3.7. Improving of Antioxidant Properties of Oil by Citral
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, Z.X.; Bhandari, B. Encapsulation of polyphenols-a review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Wang, K.; Huang, Y.; Chen, Z. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde. J. Colloid Interface Sci. 2021, 582, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.M.; Barreiro, M.F.; Coelho, M.; Rodrigues, A.E. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem. Eng. J. 2014, 245, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Jamekhorshid, A.; Sadrameli, S.M.; Farid, M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 2014, 31, 531–542. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Li, Y.Y.; Gong, J.H.; Ma, J.H. Microfluidic fabrication of monodisperse microcapsules for thermo-triggered release of liposoluble drugs. Polymers 2020, 12, 2200. [Google Scholar] [CrossRef]
- Tao, N.G.; Jia, L.; Zhou, H.E. Anti-fungal activity of citrus reticulata blanco essential oil against penicillium italicum and penicillium digitatum. Food Chem. 2014, 153, 265–271. [Google Scholar] [CrossRef]
- Adukwu, E.C.; Bowles, M.; Edwards-Jones, V.; Bone, H. Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl. Microbiol. Biotechnol. 2016, 100, 9619–9627. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Habib, S.; Sahu, D.; Gupta, J. Chemical properties and therapeutic potential of citral, a monoterpene isolated from lemongrass. Med. Chem. 2021, 17, 2–12. [Google Scholar] [CrossRef]
- Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef]
- Thielmann, J.; Muranyi, P. Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene. J. Essent. Oil Res. 2019, 31, 361–378. [Google Scholar] [CrossRef]
- Ay, E.; Gerard, V.; Graff, B.; Morlet-Savary, F.; Mutilangi, W.; Galopin, C.; Lalevee, J. Citral photodegradation in solution: Highlighting of a radical pathway in parallel to cyclization pathway. J. Agric. Food Chem. 2019, 67, 3752–3760. [Google Scholar] [CrossRef] [PubMed]
- Pihlasalo, J.; Klika, K.D.; Murzin, D.Y.; Nieminen, V. Conformational equilibria of citral. J. Mol. Struct. THEOCHEM 2007, 814, 33–41. [Google Scholar] [CrossRef]
- Weerawatanakorn, M.; Wu, J.C.; Pan, M.H.; Ho, C.T. Reactivity and stability of selected flavor compounds. J. Food Drug Anal. 2015, 23, 176–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, J.; Xie, Y.F.; Yu, H.; Guo, Y.H.; Cheng, Y.L.; Qian, H.; Yao, W.R. A novel method to prolong bread shelf life: Sachets containing essential oils components. LWT 2020, 131, 109744. [Google Scholar] [CrossRef]
- Miss-Zacarías, D.M.; Iñiguez-Moreno, M.; Calderón-Santoyo, M.; Ragazzo-Sánchez, J.A. Optimization of ultrasound-assisted microemulsions of citral using biopolymers: Characterization and antifungal activity. J. Dispersion Sci. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Ding, H.H.; Zhao, Y.S.; Li, Y.G.; Wang, W. Fabrication of protective textile with N-doped TiO2 embedded citral microcapsule coating and its air purification properties. Fibers Polym. 2020, 21, 334–342. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R.; Vadivel, V. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT 2020, 118, 108851. [Google Scholar] [CrossRef]
- Maswal, M.; Dar, A.A. Formulation challenges in encapsulation and delivery of citral for improved food quality. Food Hydrocoll. 2014, 37, 182–195. [Google Scholar] [CrossRef]
- Sosa, N.; Zamora, M.C.; Chirife, J.; Schebor, C. Spray-drying encapsulation of citral in sucrose or trehalose matrices: Physicochemical and sensory characteristics. J. Food Sci. Technol. 2011, 46, 2096–2102. [Google Scholar] [CrossRef]
- Yang, X.; Tian, H.; Ho, C.-T.; Huang, Q. Stability of citral in emulsions coated with cationic biopolymer layers. J. Agric. Food Chem. 2012, 60, 402–409. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, M.J.; Chu, L.Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc. Chem. Res. 2014, 47, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.Y.; Choi, T.M.; Shim, T.S.; Frijns, R.A.M.; Kim, S.H. Microfluidic production of multiple emulsions and functional microcapsules. Lab Chip 2016, 16, 3415–3440. [Google Scholar] [CrossRef] [PubMed]
- Mou, C.L.; Wang, W.; Li, Z.L.; Ju, X.J.; Xie, R.; Deng, N.N.; Wei, J.; Liu, Z.; Chu, L.Y. Trojan-horse-like stimuli-pesponsive microcapsules. Adv. Sci. 2018, 5, 1700960. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K.; Saha, S. Controllable fabrication of biodegradable janus and multi-layered particles with hierarchically porous structure. J. Colloid Interface Sci. 2020, 566, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, J.P.; Ju, X.J.; Xie, R.; Yang, L.H.; Liang, B.; Chu, L.Y. Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules with non-toxic solvent. J. Colloid Interface Sci. 2009, 336, 100–106. [Google Scholar] [CrossRef]
- Anani, J.; Noby, H.; Zkria, A.; Yoshitake, T.; ElKady, M. Monothetic analysis and response surface methodology optimization of calcium alginate microcapsules characteristics. Polymers 2022, 14, 709. [Google Scholar] [CrossRef]
- Aderibigbe, B.A.; Buyana, B. Alginate in wound dressings. Pharmaceutics 2018, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Szekalska, M.; Pucilowska, A.; Szymanska, E.; Ciosek, P.; Winnicka, K. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci. 2016, 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Oberoi, K.; Tolun, A.; Altintas, Z.; Sharma, S. Effect of alginate-microencapsulated hydrogels on the survival of lactobacillus rhamnosus under simulated gastrointestinal conditions. Foods 2021, 10, 1999. [Google Scholar] [CrossRef]
- Eqbal, M.D.; Gundabala, V. Controlled fabrication of multi-core alginate microcapsules. J. Colloid Interface Sci. 2017, 507, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, K.; He, X.; Yang, Z.; Ji, H. One-step microfluidic synthesis of spherical and bullet-like alginate microcapsules with a core–shell structure. Colloids Surf. A 2021, 608, 125612. [Google Scholar] [CrossRef]
- Bremond, N.; Santanach-Carreras, E.; Chu, L.Y.; Bibette, J. Formation of liquid-core capsules having a thin hydrogel membrane: Liquid pearls. Soft Matter 2010, 6, 2484–2488. [Google Scholar] [CrossRef]
- Chan, E.S.; Lee, B.B.; Ravindra, P.; Poncelet, D. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method. J. Colloid Interface Sci. 2009, 338, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, F.; Ju, X.J.; Xie, R.; Wang, W.; Niu, C.H.; Chu, L.Y. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions. J. Colloid Interface Sci. 2013, 404, 85–90. [Google Scholar] [CrossRef]
- Mou, C.L.; Deng, Q.Z.; Hu, J.X.; Wang, L.Y.; Deng, H.B.; Xiao, G.; Zhan, Y. Controllable preparation of monodisperse alginate microcapsules with oil cores. J. Colloid Interface Sci. 2020, 569, 307–319. [Google Scholar] [CrossRef]
- Chu, L.-Y.; Utada, A.S.; Shah, R.K.; Kim, J.-W.; Weitz, D.A. Controllable monodisperse multiple emulsions. Angew. Chem. 2007, 46, 8970–8974. [Google Scholar] [CrossRef]
- Utada, A.S.; Lorenceau, E.; Link, D.R.; Kaplan, P.D.; Stone, H.A.; Weitz, D.A. Monodisperse double emulsions generated from a microcapillary device. Science 2005, 308, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.C.; Hati, A.G.; Melo, T.B.; Stokke, B.T.; Sikorski, P. Competitive ligand exchange of crosslinking ions for ionotropic hydrogel formation. J. Mater. Chem. B 2016, 4, 6175–6182. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yin, X.Q.; Chen, J.; Feng, D.C.; Zhu, L. Encapsulation efficiency and release of citral using methylcellulose as emulsifier and interior wall material in composite polysaccharide microcapsules. Adv. Polym. Technol. 2018, 37, 3199–3209. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Del Gaudio, P.; Colombo, P.; Colombo, G.; Russo, P.; Sonvico, F. Mechanisms of formation and disintegration of alginate beads obtained by prilling. Int. J. Pharm. 2005, 302, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Min, Z.; Guo, Z.; Wang, K.; Zhang, A.; Li, H.; Fang, Y. Antioxidant effects of grape vine cane extracts from different Chinese grape varieties on edible oils. Molecules 2014, 19, 15213–15223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turco, G.; Marsich, E.; Bellomo, F.; Semeraro, S.; Donati, I.; Brun, F.; Grandolfo, M.; Accardo, A.; Paoletti, S. Alginate/hydroxyapatite biocomposite for bone ingrowth: A trabecular structure with high and isotropic connectivity. Biomacromolecules 2009, 10, 1575–1583. [Google Scholar] [CrossRef]
- Kuo, C.K.; Ma, P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 22, 511–521. [Google Scholar] [CrossRef]
- Utada, A.S.; Fernandez-Nieves, A.; Stone, H.A.; Weitz, D.A. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 2007, 99, 094502. [Google Scholar] [CrossRef]
- Jeong, H.H.; Issadore, D.; Lee, D. Recent developments in scale-up of microfluidic emulsion generation via parallelization. Korean J. Chem. Eng. 2016, 33, 1757–1766. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-L.; Mou, C.-L.; Chen, S.-H.; Li, Y.-D.; Deng, H.-B. A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules. Polymers 2022, 14, 1165. https://doi.org/10.3390/polym14061165
Ma W-L, Mou C-L, Chen S-H, Li Y-D, Deng H-B. A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules. Polymers. 2022; 14(6):1165. https://doi.org/10.3390/polym14061165
Chicago/Turabian StyleMa, Wen-Long, Chuan-Lin Mou, Shi-Hao Chen, Ya-Dong Li, and Hong-Bo Deng. 2022. "A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules" Polymers 14, no. 6: 1165. https://doi.org/10.3390/polym14061165
APA StyleMa, W.-L., Mou, C.-L., Chen, S.-H., Li, Y.-D., & Deng, H.-B. (2022). A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules. Polymers, 14(6), 1165. https://doi.org/10.3390/polym14061165