A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes
Abstract
:1. Introduction
2. Extraction Process and Compositional Properties of Taro Mucilage
3. Characterization of Taro Mucilage
3.1. Fourier Transform Infrared Spectroscopy
3.2. Scanning Electron Microscopy
3.3. Differential Scanning Calorimetry and Thermal Gravimetric Analysis
3.4. Rheological Properties of Taro Mucilage
4. Techno-Functional Property of Taro Mucilage
5. Application of Taro Mucilage
5.1. Application of Mucilage as an Emulsifying Agent
5.2. Application of Taro Mucilage as a Fat Replacer
5.3. Antioxidant Activity of Taro Mucilage
5.4. Application of Taro Mucilage as Dye Remover
6. Health Attributes of Taro Mucilage
7. Conclusion, Future Research Perspective, and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehner, R.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 2019, 53, 1748–1765. [Google Scholar] [CrossRef] [PubMed]
- Lens-Pechakova, L.S. Recent studies on enzyme-catalysed recycling and biodegradation of synthetic polymers. Adv. Ind. Eng. Polym. Res. 2021, 4, 151–158. [Google Scholar] [CrossRef]
- Tosif, M.M.; Najda, A.; Bains, A.; Kaushik, R.; Dhull, S.B.; Chawla, P.; Walasek-Janusz, M. A comprehensive review on plant-derived mucilage: Characterization, functional properties, applications, and its utilization for nanocarrier fabrication. Polymers 2021, 13, 1066. [Google Scholar] [CrossRef] [PubMed]
- Chawla, P.; Najda, A.; Bains, A.; Nurzyńska-Wierdak, R.; Kaushik, R.; Tosif, M.M. Potential of gum arabic functionalized iron hydroxide nanoparticles embedded cellulose paper for packaging of Paneer. Nanomaterials 2021, 11, 1308. [Google Scholar] [CrossRef]
- Dhama, K.; Sharun, K.; Gugjoo, M.B.; Tiwari, R.; Alagawany, M.; Iqbal Yatoo, M.; Thakur, P.; Iqbal, H.M.; Chaicumpa, W.; Michalak, I.; et al. A Comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Rev. Int. 2021, 1–29. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Ezati, P.; Rhim, J.W. Curcumin and its uses in active and smart food packaging applications-A comprehensive review. Food Chem. 2021, 375, 131885. [Google Scholar] [CrossRef] [PubMed]
- Otálora, M.C.; Wilches-Torres, A.; Gómez Castaño, J.A. Spray-Drying Microencapsulation of Pink Guava (Psidium guajava) Carotenoids Using Mucilage from Opuntia ficus-indica Cladodes and Aloe Vera Leaves as Encapsulating Materials. Polymers 2022, 14, 310. [Google Scholar] [CrossRef]
- Ribes, S.; Peña, N.; Fuentes, A.; Talens, P.; Barat, J.M. Chia (Salvia hispanica L.) seed mucilage as a fat replacer in yogurts: Effect on their nutritional, technological, and sensory properties. J. Dairy Sci. 2021, 104, 2822–2833. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches-Torres, A.; Castaño, J.A.G. Extraction and Physicochemical Characterization of Dried Powder Mucilage from Opuntia ficus-indica Cladodes and Aloe Vera Leaves: A Comparative Study. Polymers 2021, 13, 1689. [Google Scholar] [CrossRef]
- Ma, F.; Li, X.; Ren, Z.; Särkkä-Tirkkonen, M.; Zhang, Y.; Zhao, D.; Liu, X. Effects of concentrations, temperature, pH and co-solutes on the rheological properties of mucilage from Dioscorea opposita Thunb. and its antioxidant activity. Food Chem. 2021, 360, 130022. [Google Scholar] [CrossRef]
- Lise, C.C.; Marques, C.; da Cunha, M.A.A.; Mitterer-Daltoé, M.L. Alternative protein from Pereskia aculeata Miller leaf mucilage: Technological potential as an emulsifier and fat replacement in processed mortadella meat. Eur. Food Res. Technol. 2021, 247, 851–863. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Filipini, G.; de las Mercedes Salas-Mellado, M. Development of cake mix with reduced fat and high practicality by adding chia mucilage. Food Biosci. 2021, 42, 101148. [Google Scholar] [CrossRef]
- Dantas, T.L.; Alonso Buriti, F.C.; Florentino, E.R. Okra (Abelmoschus esculentus L.) as a potential functional food source of mucilage and bioactive compounds with technological applications and health benefits. Plants 2021, 10, 1683. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.Á.M.; Tomazini, L.F.; Mizuta, A.G.; Corrêa, R.C.G.; Madrona, G.S.; de Moraes, F.F.; Peralta, R.M. Direct microencapsulation of an annatto extract by precipitation of psyllium husk mucilage polysaccharides. Food Hydrocoll. 2021, 112, 106333. [Google Scholar] [CrossRef]
- Ribeiro Pereira, P.; Bertozzi de Aquino Mattos, É.; Nitzsche Teixeira Fernandes Corrêa, A.C.; Afonso Vericimo, M.; Margaret Flosi Paschoalin, V. Anticancer and Immunomodulatory Benefits of Taro (Colocasia esculenta) Corms, an underexploited tuber crop. Int. J. Mol. Sci. 2021, 22, 265. [Google Scholar] [CrossRef]
- Dereje, B. Composition, morphology and physicochemical properties of starches derived from indigenous Ethiopian tuber crops: A review. Int. J. Biol. Macromol. 2021, 187, 911–921. [Google Scholar] [CrossRef]
- Li, X.; Ren, Z.; Wang, R.; Liu, L.; Zhang, J.; Ma, F.; Khan, M.Z.H.; Zhao, D.; Liu, X. Characterization and antibacterial activity of edible films based on carboxymethyl cellulose, Dioscorea opposita mucilage, glycerol and ZnO nanoparticles. Food Chem. 2021, 349, 129208. [Google Scholar] [CrossRef]
- Anwar, M.; McConnell, M.; Bekhit, A.E.D. New freeze-thaw method for improved extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta): Optimization and comprehensive characterization of physico-chemical and structural properties. Food Chem. 2021, 349, 129210. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, D.; Huang, L. Metabolome Profiling of Eight Chinese Yam (Dioscorea polystachya Turcz.) Varieties Reveals Metabolite Diversity and Variety Specific Uses. Life 2021, 11, 687. [Google Scholar] [CrossRef]
- Yasumatsu, K.; Sawada, K.; Moritaka, S.; Misaki, M.; Toda, J.; Wada, T.; Ishii, K. Whipping and emulsifying properties of soybean products. Agric. Biol. Chem. 1972, 36, 719–727. [Google Scholar] [CrossRef]
- Tavares, S.A.; Pereira, J.; Guerreiro, M.C.; Pimenta, C.J.; Pereira, L.; Missagia, S.V. Physical and chemical characteristics of the mucilage of lyophilized yam. Ciência E Agrotecnologia 2011, 35, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Contado, E.W.N.D.F.; Pereira, J.; Evangelista, S.R.; Lima Júnior, F.A.; Romano, L.M.; Couto, E.M. Centesimal composition of lyophylized yam (Dioscorea spp.) mucilage compared with a commercial improver used in breadmaking and sensorial evaluation of pan breads. Ciência E Agrotecnologia 2009, 33, 1813–1818. [Google Scholar] [CrossRef]
- Rodríguez-González, S.; Martínez-Flores, H.E.; Chávez-Moreno, C.K.; Macías-Rodríguez, L.I.; Zavala-Mendoza, E.; Garnica-Romo, M.G.; Chacón-García, L. Extraction and characterization of mucilage from wild species of O puntia. J. Food Process Eng. 2014, 37, 285–292. [Google Scholar] [CrossRef]
- Chiang, C.F.; Lai, L.S. Effect of enzyme-assisted extraction on the physicochemical properties of mucilage from the fronds of Asplenium australasicum (J. Sm.) Hook. Int. J. Biol. Macromol. 2019, 124, 346–353. [Google Scholar] [CrossRef]
- Gheribi, R.; Khwaldia, K. Cactus mucilage for food packaging applications. Coatings 2019, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Qiao, L.; Wu, A.M. Effective extraction of Arabidopsis adherent seed mucilage by ultrasonic treatment. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Moreno, L.; Medina, O.; Rojas, A.L. Mucilage and cellulosic derivatives as clarifiers for the improvement of the non-centrifugal sugar production process. Food Chem. 2022, 367, 130657. [Google Scholar] [CrossRef] [PubMed]
- Rostami, H.; Gharibzahedi, S.M.T. Mathematical modeling of mucilage extraction kinetic from the waste hydrolysates of fruiting bodies of Zizyphus jujuba mill. J. Food Processing Preserv. 2017, 41, e13064. [Google Scholar] [CrossRef]
- Bayar, N.; Bouallegue, T.; Achour, M.; Kriaa, M.; Bougatef, A.; Kammoun, R. Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chem. 2017, 235, 275–282. [Google Scholar] [CrossRef]
- Lin, H.; Huang, A.S. Chemical composition and some physical properties of a water-soluble gum in taro (Colocasia esculenta). Food Chem. 1993, 48, 403–409. [Google Scholar] [CrossRef]
- Andrade, L.A.; de Oliveira Silva, D.A.; Nunes, C.A.; Pereira, J. Experimental techniques for the extraction of taro mucilage with enhanced emulsifier properties using chemical characterization. Food Chem. 2020, 327, 127095. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.A.; Nunes, C.A.; Pereira, J. Relationship between the chemical components of taro rhizome mucilage and its emulsifying property. Food Chem. 2015, 178, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njintang, N.Y.; Boudjeko, T.; Tatsadjieu, L.N.; Nguema-Ona, E.; Scher, J.; Mbofung, C.M. Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L. Schott) corms. J. Food Sci. Technol. 2014, 51, 900–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manhivi, V.E.; Venter, S.; Amonsou, E.O.; Kudanga, T. Composition, thermal and rheological properties of polysaccharides from amadumbe (Colocasia esculenta) and cactus (Opuntia spp.). Carbohydr. Polym. 2018, 195, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Charles, A.L.; Huang, T.C.; Chang, Y.H. Structural analysis and characterization of a mucopolysaccharide isolated from roots of cassava (Manihot esculenta Crantz L.). Food Hydrocoll. 2008, 22, 184–191. [Google Scholar] [CrossRef]
- Wu, Y.; Eskin, N.A.M.; Cui, W.; Pokharel, B. Emulsifying properties of water soluble yellow mustard mucilage: A comparative study with gum Arabic and citrus pectin. Food Hydrocoll. 2015, 47, 191–196. [Google Scholar] [CrossRef]
- Huang, C.C.; Lai, P.; Chen, I.H.; Liu, Y.F.; Wang, C.C. Effects of mucilage on the thermal and pasting properties of yam, taro, and sweet potato starches. LWT-Food Sci. Technol. 2010, 43, 849–855. [Google Scholar] [CrossRef]
- Sarkar, G.; Saha, N.R.; Roy, I.; Bhattacharyya, A.; Bose, M.; Mishra, R.; Rana, D.; Bhattacharjee, D.; Chattopadhyay, D. Taro corms mucilage/HPMC based transdermal patch: An efficient device for delivery of diltiazem hydrochloride. Int. J. Biol. Macromol. 2014, 66, 158–165. [Google Scholar] [CrossRef]
- Ellerbrock, R.H.; Ahmed, M.A.; Gerke, H.H. Spectroscopic characterization of mucilage (Chia seed) and polygalacturonic acid. J. Plant Nutr. Soil Sci. 2019, 182, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Munir, H.; Akhter, N.; Akram, N.; Anjum, F.; Iqbal, Y.; Afzal, M. Nanoparticles encapsulation of Phoenix dactylifera (Date palm) mucilage for colonic drug delivery. Int. J. Biol. Macromol. 2021, 191, 861–871. [Google Scholar] [CrossRef]
- Mijinyawa, A.H.; Durga, G.; Mishra, A. Isolation, characterization, and microwave assisted surface modification of Colocasia esculenta (L.) Schott mucilage by grafting polylactide. Int. J. Biol. Macromol. 2018, 119, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Ghumman, S.A.; Bashir, S.; Noreen, S.; Khan, A.M.; Malik, M.Z. Taro-corms mucilage-alginate microspheres for the sustained release of pregabalin: In vitro & in vivo evaluation. Int. J. Biol. Macromol. 2019, 139, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Kurd, F.; Fathi, M.; Shekarchizadeh, H. Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. Int. J. Biol. Macromol. 2017, 95, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Hadad, S.; Goli, S.A.H. Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. Int. J. Biol. Macromol. 2018, 114, 408–414. [Google Scholar] [CrossRef] [PubMed]
- de Alvarenga Pinto Cotrim, M.; Mottin, A.C.; Ayres, E. September. Preparation and characterization of okra mucilage (Abelmoschus esculentus) edible films. Macromol. Symp. 2018, 367, 90–100. [Google Scholar] [CrossRef]
- Capitani, M.I.; Corzo-Rios, L.J.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A.; Nolasco, S.M.; Tomás, M.C. Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. J. Food Eng. 2015, 149, 70–77. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Kumar, B.; Rhim, J.W. Green and facile synthesis of carboxymethylcellulose/ZnO nanocomposite hydrogels crosslinked with Zn2+ ions. Int. J. Biol. Macromol. 2020, 162, 229–235. [Google Scholar] [CrossRef]
- Alpizar-Reyes, E.; Carrillo-Navas, H.; Gallardo-Rivera, R.; Varela-Guerrero, V.; Alvarez-Ramirez, J.; Pérez-Alonso, C. Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid. J. Food Eng. 2009, 2017, 68–75. [Google Scholar] [CrossRef]
- Keshani-Dokht, S.; Emam-Djomeh, Z.; Yarmand, M.S.; Fathi, M. Extraction, chemical composition, rheological behavior, antioxidant activity and functional properties of Cordia myxa mucilage. Int. J. Biol. Macromol. 2018, 118, 485–493. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Kumar, B.; Gaikwad, K.K. Active barrier chitosan films containing gallic acid based oxygen scavenger. J. Food Meas. Charact. 2021, 15, 585–593. [Google Scholar] [CrossRef]
- Kumar, B.; Negi, Y.S. Water absorption and viscosity behaviour of thermally stable novel graft copolymer of carboxymethyl cellulose and poly (sodium 1-hydroxy acrylate). Carbohydr. Polym. 2018, 181, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Priyadarshi, R.; Deeba, F.; Kulshreshtha, A.; Gaikwad, K.K.; Kim, J.; Kumar, A.; Negi, Y.S. Nanoporous sodium carboxymethyl cellulose-g-poly (Sodium acrylate)/fecl3 hydrogel beads: Synthesis and characterization. Gels 2020, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.O.; John, O.O.; Luke, C.; Ochieng, A.; Bassey, B.J. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. J. Environ. Manag. 2016, 177, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Soukoulis, C.; Gaiani, C.; Hoffmann, L. Plant seed mucilage as emerging biopolymer in food industry applications. Curr. Opin. Food Sci. 2018, 22, 28–42. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Patil, P.D.; Patel, B.N. Lepidium sativum Linn.: A current addition to the family of mucilage and its applications. Int. J. Biol. Macromol. 2014, 65, 72–80. [Google Scholar] [CrossRef]
- Raj, V.; Shim, J.J.; Lee, J. Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydr. Polym. 2020, 246, 116653. [Google Scholar] [CrossRef]
- Contreras-Padilla, M.; Rodríguez-García, M.E.; Gutiérrez-Cortez, E.; del Carmen Valderrama-Bravo, M.; Rojas-Molina, J.I.; Rivera-Muñoz, E.M. Physicochemical and rheological characterization of Opuntia ficus mucilage at three different maturity stages of cladode. Eur. Polym. J. 2016, 78, 226–234. [Google Scholar] [CrossRef]
- Medina-Torres, L.; Núñez-Ramírez, D.M.; Calderas, F.; González-Laredo, R.F.; Minjares-Fuentes, R.; Valadez-García, M.A.; Bernad-Bernad, M.J.; Manero, O. Microencapsulation of gallic acid by spray drying with aloe vera mucilage (aloe barbadensis miller) as wall material. Ind. Crops Prod. 2019, 138, 111461. [Google Scholar] [CrossRef]
- Doost, A.S.; Nasrabadi, M.N.; Goli, S.A.H.; Van Troys, M.; Dubruel, P.; De Neve, N.; Van der Meeren, P. Maillard conjugation of whey protein isolate with water-soluble fraction of almond gum or flaxseed mucilage by dry heat treatment. Food Res. Int. 2020, 128, 108779. [Google Scholar] [CrossRef] [Green Version]
- Drozłowska, E.; Bartkowiak, A.; Łopusiewicz, Ł. Characterization of flaxseed oil bimodal emulsions prepared with flaxseed oil cake extract applied as a natural emulsifying agent. Polymers 2020, 12, 2207. [Google Scholar] [CrossRef]
- Dehghani, S.; Noshad, M.; Rastegarzadeh, S.; Hojjati, M.; Fazlara, A. Electrospun chia seed mucilage/PVA encapsulated with green cardamonmum essential oils: Antioxidant and antibacterial property. Int. J. Biol. Macromol. 2020, 161, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Naji-Tabasi, S.; Razavi, S.M.A. Functional properties and applications of basil seed gum: An overview. Food Hydrocoll. 2017, 73, 313–325. [Google Scholar] [CrossRef]
- Li, J.M.; Nie, S.P. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll. 2016, 53, 46–61. [Google Scholar] [CrossRef]
- Salehi, F. Effect of common and new gums on the quality, physical, and textural properties of bakery products: A review. J. Texture Stud. 2016, 51, 361–370. [Google Scholar] [CrossRef]
- Amiri Aghdaei, S.S.; Aalami, M.; Babaei Geefan, S.; Ranjbar, A. Application of Isfarzeh seed (Plantago ovate L.) mucilage as a fat mimetic in mayonnaise. J. Food Sci. Technol. 2014, 51, 2748–2754. [Google Scholar] [CrossRef] [Green Version]
- Saengphol, E.; Pirak, T. Hoary basil seed mucilage as fat replacer and its effect on quality characteristics of chicken meat model. Agric. Nat. Resour. 2014, 52, 382–387. [Google Scholar] [CrossRef]
- Chiang, J.H.; Ong, D.S.M.; Ng, F.S.K.; Hua, X.Y.; Tay, W.L.W.; Henry, C.J. Application of chia (Salvia hispanica) mucilage as an ingredient replacer in foods. Trends Food Sci. Technol. 2021, 115, 105–116. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Wahanik, A.L.; Gomes-Ruffi, C.R.; Clerici, M.T.P.S.; Chang, Y.K.; Steel, C.J. Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT-Food Sci. Technol. 2015, 63, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Nagata, C.L.P.; Andrade, L.A.; Pereira, J. Optimization of taro mucilage and fat levels in sliced breads. J. Food Sci. Technol. 2015, 52, 5890–5897. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Hui, D.; Eskin, N.A.M.; Cui, S.W. Water-soluble yellow mustard mucilage: A novel ingredient with potent antioxidant properties. Int. J. Biol. Macromol. 2016, 91, 710–715. [Google Scholar] [CrossRef]
- Beigomi, M.; Mohsenzadeh, M.; Salari, A. Characterization of a novel biodegradable edible film obtained from Dracocephalum moldavica seed mucilage. Int. J. Biol. Macromol. 2018, 108, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Liguori, G.; Gentile, C.; Gaglio, R.; Perrone, A.; Guarcello, R.; Francesca, N.; Fretto, S.; Inglese, P.; Settanni, L. Effect of addition of Opuntia ficus-indica mucilage on the biological leavening, physical, nutritional, antioxidant and sensory aspects of bread. J. Biosci. Bioeng. 2020, 129, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, B.A.; Fooladi, A.A.I. Shirazi balangu (Lallemantia royleana) seed mucilage: Chemical composition, molecular weight, biological activity and its evaluation as edible coating on beefs. Int. J. Biol. Macromol. 2018, 114, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.R.; Rahmati-Joneidabad, M.; Noshad, M. Effect of chia seed mucilage/bacterial cellulose edible coating on bioactive compounds and antioxidant activity of strawberries during cold storage. Int. J. Biol. Macromol. 2021, 190, 618–623. [Google Scholar] [CrossRef]
- Nguimbou, R.M.; Boudjeko, T.; Njintang, N.Y.; Himeda, M.; Scher, J.; Mbofung, C.M. Mucilage chemical profile and antioxidant properties of giant swamp taro tubers. J. Food Sci. Technol. 2014, 51, 3559–3567. [Google Scholar] [CrossRef] [Green Version]
- Mohite, A.M. Formulation of edible films from fenugreek mucilage and taro starch. SN Appl. Sci. 2020, 2, 1900. [Google Scholar] [CrossRef]
- Moghaddas, S.M.T.H.; Elahi, B.; Javanbakht, V. Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. J. Alloy. Compd. 2020, 821, 153519. [Google Scholar] [CrossRef]
- Mirzaei, S.; Javanbakht, V. Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane. Int. J. Biol. Macromol. 2019, 134, 1187–1204. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Mohammadi, S. Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohydr. Polym. 2015, 134, 213–221. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 2008, 104, 305–344. [Google Scholar] [CrossRef]
- Englberger, L.; Schierle, J.; Kraemer, K.; Aalbersberg, W.; Dolodolotawake, U.; Humphries, J.; Graham, R.; Reid, A.P.; Lorens, A.; Albert, K.; et al. Carotenoid and mineral content of Micronesian giant swamp taro (Cyrtosperma) cultivars. J. Food Compos. Anal. 2008, 21, 93–106. [Google Scholar] [CrossRef]
- Kundu, N.; Campbell, P.; Hampton, B.; Lin, C.Y.; Ma, X.; Ambulos, N.; Zhao, X.F.; Goloubeva, O.; Holt, D.; Fulton, A.M. Antimetastatic activity isolated from Colocasia esculenta (taro). Anti-Cancer Drugs 2012, 23, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dybka-Stępień, K.; Otlewska, A.; Góźdź, P.; Piotrowska, M. The Renaissance of Plant Mucilage in Health Promotion and Industrial Applications: A Review. Nutrients 2021, 13, 3354. [Google Scholar] [CrossRef] [PubMed]
Extraction Method | Extraction Condition | Yield of Mucilage | Chemical Composition | References |
---|---|---|---|---|
Solvent treatment (ethyl alcohol), high- and low-temperature methods, filtration, and lyophilization | Mucilage was extracted at different five conditions (a) at room temperature, (b) at room temperature with ethanol precipitation, (c) at high temperature, (d) at high temperature with ethanol precipitation, and (e) at low temperature with ethanol precipitation | (a) 8.05% (b) 1.65% (c) 4.09% (d) 0.55% (e) 1.33% | Amino acids (proline, alanine, threonine, lysine, tyrosine, valine, phenylalanine, glycine, serine, arginine, and leucine)Monosaccharides (galactose, arabinose, and glucose) | [31] |
Filtration and lyophilization | Filtrated mucilage was lyophilized for 72 h | 9.63% | Amino acids (leucine, isoleucine, cysteine, tryptophan, and lysine) and monosaccharides (xylose, rhamnose, arabinose, fucose, mannose, galactose, fructose, and glucose. | [32] |
Coldwater, filtration, and centrifugation | The filtrate was centrifuged at 13,000× g for 10 min at 4 °C | 3.23% | Monosaccharides (arabinose, galactose, mannose, and rhamnose) | [37] |
Coldwater, filtration, and centrifugation | The filtrate was centrifuged at 5000× g for 20 min at 4 °C | 4.44% | Monosaccharides (glucose, galactose, arabinose, xylose, mannose, and glucuronic acid) | [34] |
Solvent treatment | Six varieties were used to extract mucilage in a saline buffer containing 50 mM Tris pH 8, supplemented with solvents. The mixture was incubated overnight at 4 °C with agitation followed by centrifugation at 3000× g for 20 min. | 3–18% | Sugars (arabinose, rhamnose, fucose, xylose, galacturonic acid, guluronic acid, mannose, galactose, and glucose) | [33] |
High temperature | Mucilage was extracted by using two different solvents (a) methanol (b) acetone | 9.4%1.2% | - | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosif, M.M.; Najda, A.; Klepacka, J.; Bains, A.; Chawla, P.; Kumar, A.; Sharma, M.; Sridhar, K.; Gautam, S.P.; Kaushik, R. A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers 2022, 14, 1163. https://doi.org/10.3390/polym14061163
Tosif MM, Najda A, Klepacka J, Bains A, Chawla P, Kumar A, Sharma M, Sridhar K, Gautam SP, Kaushik R. A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers. 2022; 14(6):1163. https://doi.org/10.3390/polym14061163
Chicago/Turabian StyleTosif, Mansuri M., Agnieszka Najda, Joanna Klepacka, Aarti Bains, Prince Chawla, Ankur Kumar, Minaxi Sharma, Kandi Sridhar, Surya Prakash Gautam, and Ravinder Kaushik. 2022. "A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes" Polymers 14, no. 6: 1163. https://doi.org/10.3390/polym14061163
APA StyleTosif, M. M., Najda, A., Klepacka, J., Bains, A., Chawla, P., Kumar, A., Sharma, M., Sridhar, K., Gautam, S. P., & Kaushik, R. (2022). A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers, 14(6), 1163. https://doi.org/10.3390/polym14061163