Exploiting Potential Biotechnological Applications of Poly-γ-glutamic Acid Low Molecular Weight Fractions Obtained by Membrane-Based Ultra-Filtration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Poly-γ-Glutamic Acid Purification by Organic Solvent Precipitation
2.3. Poly-γ-Glutamic Acid Fractionation by Ultra-Filtration and Nano-Filtration
2.4. Analytical Methods
2.4.1. Determination of the Dry Weight, Protein and Water Content of the Samples
2.4.2. γ-PGA Concentration Analyses by Ultra-High-Performance Liquid Chromatography
2.4.3. γ-PGA Molecular Weight Analyses by Size Exclusion Chromatography with Triple Detector Array
2.5. Biological Activity Assay
2.5.1. Dehydration Assay
2.5.2. Oxidative Stress Assay
2.6. Film Preparation and Characterization
2.6.1. Preparation of Films by Casting
2.6.2. Preparation of Films by Thermal Compression
2.6.3. Film Moisture Content and Solubility
2.6.4. Film Mechanical Properties
2.6.5. Film Thermal Properties
2.7. Statistical Analysis
3. Results
3.1. γ-PGA Quantitative Determination by UHPLC and Purification by Organic Solvent Precipitation
3.2. γ-PGA Purification by Using Filtration Membranes and Characterization
3.3. γ-PGA Molecular Weight Analysis by SEC-TDA
3.4. Biological Activity: Dehydration and Oxidative Stress Assays
3.5. γ-PGA Film Preparation by FFS Casting/Drying and by Hot Compression
3.6. Film Characterization for Mechanical and Hydrophylicity Properties
3.7. Thermal Properties of γ-PGA Different Samples and of the Derived Films Manufactured by Hot Compression
3.7.1. Thermogravimetric Analysis
3.7.2. Differential Scanning Calorimetry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bajaj, I.; Singhal, R. Poly(glutamic acid)-An emerging biopolymer of commercial interest. Bioresour. Technol. 2011, 102, 5551–5561. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Fan, L.; Zhao, M.; Qiu, Y.; Zhao, L. Enhanced low molecular weight poly-γ-glutammic acid production in recombinant Bacillus subtilis 1A751 with zinc ion. Appl. Biochem. Biotechnol. 2019, 189, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Guo, Y.; Liu, J.; Qiu, H.; Zhao, M.; Zou, W.; Li, S. Microbial synthesis of poly-γ-glutamic acid: Current progress, challenges, and future perspectives. Biotechnol. Biofuels 2016, 9, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-L.; Chen, J.-T.; Wang, L.-F.; Wu, S.; Zhang, G.-Z.; Yu, H.-Q.; Ye, X.-D.; Shi, Q.-S. Conformations and molecular interactions of poly-γ-glutamic acid as soluble microbial product in aqueous solutions. Sci. Rep. 2017, 7, 12787. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.-H.; Huang, K.-Y.; Kunene, S.C.; Lee, T.-Y. Poly-glutamic acid synthesis, gene regulation, phylogenetic relationship, and role in fermentation. Int. J. Mol. Sci. 2017, 18, 2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbah, M.; Di Pierro, P.; Ruffo, F.; Schiraldi, C.; Alfano, A.; Cammarota, M.; Porta, R. Glutamic acid as repeating building block for bio-based films. Polymers 2020, 12, 1613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Guo, Y.; Ding, S.; Chen, G.; Liang, Z.; Zeng, W. An integrated strategy for recovery and purification of poly-γ-glutamic acid from fermentation broth and its techno-economic analysis. Sep. Purif. Technol. 2022, 278, 119575. [Google Scholar] [CrossRef]
- Do, J.H.; Chang, H.N.; Lee, S.Y. Efficient recovery of γ-poly (glutamic acid) from highly viscous culture broth. Biotechnol. Bioeng. 2001, 6, 219–223. [Google Scholar] [CrossRef]
- Kreyenschulte, D.; Krull, R.; Margaritis, A. Recent advances in microbial biopolymer production and purification. Crit. Rev. Biotechnol. 2014, 34, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pal, P. Fermentative production of poly (γ-glutamic acid) from renewable carbon source and downstream purification through a continuous membrane-integrated hybrid process. Bioresour. Technol. 2015, 177, 141–148. [Google Scholar] [CrossRef]
- Schiraldi, C.; Alfano, A.; Cimini, D.; De Rosa, M.; Panariello, A.; Restaino, O.F.; De Rosa, M. Application of a 22L scale membrane bioreactor and cross-flow ultrafiltration to obtain purified chondroitin. Biotechnol. Prog. 2012, 28, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Restaino, O.F.; Borzacchiello, M.G.; Scognamiglio, I.; Fedele, L.; Alfano, A.; Porzio, E.; Manco, G.; Donatiello, C.; De Rosa, M.; Schiraldi, C. High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers. BMC Biotechnol. 2018, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Shankar, S.; Teng, X.; Rhim, J.-W. Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr. Polym. 2014, 114, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Restaino, O.F.; Finamore, R.; Stellavato, A.; Diana, P.; Bedini, E.; Trifuoggi, M.; De Rosa, M.; Schiraldi, C. European chondroitin sulfate and glucosamine food supplements: A systematic quality and quantity assessment compared to pharmaceuticals. Carbohydr. Polym. 2019, 222, 114984. [Google Scholar] [CrossRef] [PubMed]
- Squillaci, G.; Finamore, R.; Diana, P.; Restaino, O.F.; Schiraldi, C.; Arbucci, S.; Ionata, E.; La Cara, F.; Morana, A. Production and properties of an exopolysaccharide synthesized by the estreme halophilic archaeon Haloterrigena turkmenica. Appl. Microbiol. Biotechnol. 2015, 100, 613–623. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Restaino, O.F.; Schiraldi, C.; Giosafatto, C.V.L.; Ruffo, F.; Porta, R. Lignin/carbohydrate complex isolated from Posidonia oceanica sea balls (Egagropili): Characterization and antioxidant reinforcement of protein-based films. Int. J. Mol. Sci. 2021, 22, 9147. [Google Scholar] [CrossRef]
- Restaino, O.F.; D’Ambrosio, S.; Cassese, E.; Barbuto Ferraiuolo, S.; Alfano, A.; Ventriglia, R.; Marrazzo, A.; Schiraldi, C.; Cimini, D. Molecular weight determination of heparosan- and chondroitin-like capsular polysaccharides: Figuring out differences between wild-type and engineered Escherichia coli strains. Appl. Microbiol. Biotechnol. 2019, 103, 6771–6782. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocoll. 2020, 98, 105302. [Google Scholar] [CrossRef]
- ASTM D882–10 Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Available online: https://www.astm.org/d0882-10.html (accessed on 3 January 2022).
- Manocha, B.; Margaritis, A. A novel Method for the selective recovery and purification of gamma-polyglutamic acid from Bacillus licheniformis fermentation broth. Biotechnol. Prog. 2010, 26, 734–742. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, W.; Huo, P. Preparation, characterization, and antimicrobial activity of poly(γ-glutamic acid)/chitosan blends. Polym. Bull. 2018, 76, 2163–2178. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, J.H.; Kim, K.W.; Lee, B.J.; Kim, D.G.; Kim, Y.O.; Lee, J.H.; Kong, I.S. Physicochemical properties, production, and biological functionality of poly-γ-d-glutamic acid with constant molecular weight from halotolerant Bacillus sp. SJ-10. Int. J. Biol. Macromol. 2018, 108, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Turco, R.; Tesser, R.; Cucciolito, M.E.; Fagnano, M.; Ottaiano, L.; Mallardo, S.; Malinconico, M.; Santagata, G.; Di Serio, M. Cynara cardunculus Biomass Recovery: An Eco-Sustainable, Nonedible Resource of Vegetable Oil for the Production of Poly(lactic acid) Bioplasticizers. ACS Sustain. Chem. Eng. 2019, 7, 4069–4077. [Google Scholar] [CrossRef]
- Turco, R.; Zannini, D.; Mallardo, S.; Dal Poggetto, G.; Tesser, R.; Santagata, G.; Malinconico, M.; Di Serio, M. Biocomposites based on Poly(lactic acid), Cynara Cardunculus seed oil and fibrous presscake: A novel eco-friendly approach to hasten PLA biodegradation in common soil. Polym. Degrad. Stab. 2021, 188, 109576. [Google Scholar] [CrossRef]
- Quispe, M.M.; Lopez, O.V.; Boina, D.A.; Stumbé, J.-F.; Villar, M.A. Glycerol-based additives of poly(3-hydroxybutyrate) films. Polym. Test. 2021, 93, 107005. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chiu, J.-Y. Glycerol-modified γ-PGA and gellan composite hydrogel materials with tunable physicochemical and thermal properties for soft tissue engineering application. Polymer 2021, 230, 124049. [Google Scholar] [CrossRef]
- Wu, H.; Reeves-McLaren, N.; Jones, S.; Ristic, R.I.; Fairclough, J.P.A.; West, A.R. Phase Transformations of Glutamic Acid and Its Decomposition Products. Cryst. Growth Des. 2010, 10, 988–994. [Google Scholar] [CrossRef]
- Wersig, T.; Hacker, M.C.; Kressler, J.; Mäder, K. Poly(glycerol adipate)-indomethacin drug conjugates-synthesis and in vitro characterization. Int. J. Pharm. 2017, 531, 225–234. [Google Scholar] [CrossRef]
- Ashiuchi, M. Analytical approaches to poly-γ-glutamate: Quantification, molecular size determination and stereochemistry investigation. J. Chrom. B 2011, 879, 3096–3101. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, G.; Zhang, Y.; Wu, K.; Liang, Z. Studies on the UV spectrum of poly (γ-glutamic acid) based on development of a simple quantitative method. Int. J. Biol. Macrom. 2012, 51, 83–90. [Google Scholar] [CrossRef]
- Zhao, H.; Brown, P.H.; Suck, P. On the distribution of protein refractive index increments. Biophys. J. 2011, 100, 2309–2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajestani, M.I.; Mousavi, S.M.; Mousavi, S.B.; Jafari, A.; Shojaosadati, S.A. Purification of extra cellular poly-γ-glutamic acid using anion exchange chromatography. Int. J. Biol. Macromol. 2018, 113, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Melis, J.; Morillo, M.; de Ilarduya, A.M.; Muñoz-Guerra, S. Poly (α-alkyl γ-glutamate) s of microbial origin: I. Ester derivatization of poly (γ-glutamic acid) and thermal degradation. Polymer 2001, 42, 9319–9327. [Google Scholar] [CrossRef]
- Lee, W.; Ahn, Y.; Chung, J.W.; Kwak, S.Y. Remarkable thermoplasticity of branched cellulose copolymers: Graft-chain-dependent structural transition and thermoplasticity. Carbohydr. Polym. 2021, 261, 117862. [Google Scholar] [CrossRef] [PubMed]
Sample | Volume (L) | pH | Conductivity (mS/cm) | Dry Weight (g) | Total γ-PGA (g) | % γ-PGA Recovery/Initial Sample | Mass Yield (%) |
---|---|---|---|---|---|---|---|
γ-PGA | 10.0 | 6.2 | 14.0 | 272.5 | 140.3 | - | - |
Microfiltered γ-PGA | 9.3 | 6.2 | 14.0 | 233.7 | 120.3 | 85.7 | 85.7 |
100 kDa Retentate (R1) | 0.7 | 6.3 | 4.5 | 31.3 | 21.8 | 15.5 | 11.4 |
100 kDa Permeate (P1) | 11.6 | 6.3 | 8.8 | 187.7 | 94.5 | 67.4 | 68.9 |
3 kDa Retentate (R2) | 1.0 | 6.5 | 5.8 | 27.1 | 15.9 | 11.3 | 10.0 |
3 kDa Permeate (P2) | 11.6 | 6.3 | 7.6 | 152.5 | 76.6 | 54.6 | 56.0 |
Nano-filtration Retentate (R3) | 2.6 | 6.4 | 4.0 | 110.0 | 70.7 | 50.4 | 40.4 |
Nano-filtration Permetate (P3) | 8.7 | 6.4 | 7.0 | 36.2 | 4.6 | 3.3 | 13.3 |
Procedure | Sample | GLY (%) | T (µm) | TS MPa | EB (%) | YM (MPa) | MC (%) | WS (%) |
---|---|---|---|---|---|---|---|---|
Casting/Drying | COM-PGA | 0 | ND * | |||||
5 | ND * | |||||||
10 | ND * | |||||||
MET-PGA | 0 | 128 ± 4 a | 1.1 ± 0.1 a | 20 ± 3 a | 302 ± 20 a | 15 ± 1 a | 82 ± 1 a | |
5 | 143 ± 9 b | <1.0 | 56 ± 5 b | ND *** | 17 ± 1 a | 84 ± 2 a | ||
10 | ND * | |||||||
R1 | 0 | 149 ± 1 b | 7.3 ± 2.0 b | 0.5 ± 0.1 c | 1927 ± 176 b | 16 ± 1 a | 99 ± 1 b | |
5 | 178 ± 2 c | 6.1 ± 0.5 b | 13 ± 1 a | 678 ± 29 c | 16 ± 1 a | 99 ± 1 b | ||
10 | 193 ± 4 d | 1.2 ± 0.4 a | 100 ± 27 d | 230 ± 80 a | 16 ± 1 a | 99 ± 1 b | ||
R2 | 0 | ND ** | ||||||
5 | ND ** | |||||||
10 | 89 ± 1 d | 1.1 ± 0.2 a | 58 ± 1b | 318 ± 45 a | 13 ± 1 a | 99 ± 1 b | ||
Procedure | Sample | GLY (%) | T (µm) | TS MPa | EB (%) | YM (MPa) | MC (%) | S (%) |
Hot compression | COM-PGA | 0 | 364 ± 61 a | <1.0 | 8 ± 1 a | ND *** | 8 ± 1 a | 92 ± 2 a |
5 | 421 ± 20 a | <1.0 | 17 ± 3 b | ND *** | 11 ± 1 b | 96 ± 1 a | ||
10 | ND * | |||||||
MET-PGA | 0 | ND ** | ||||||
5 | 472 ± 17 b | <1.0 | 8 ± 1 a | ND *** | 7 ± 1 a | 91 ± 1 a | ||
10 | 591 ± 17 c | <1.0 | 10 ± 1 a | ND *** | 9 ± 1 ab | 99 ± 1 a | ||
R1 | 0 | 499 ± 10 b | <1.0 | 38 ± 2 c | ND *** | 11 ± 1 b | 62 ± 1 b | |
5 | 537 ± 32 bc | <1.0 | 113 ± 6 d | ND *** | 11 ± 1 b | 71 ± 1 c | ||
10 | 454 ± 10 ab | <1.0 | 159 ± 8 e | ND *** | 11 ± 1 b | 99 ± 1 a | ||
R2 | 0 | 463 ± 13 b | <1.0 | 31 ± 9 c | ND *** | 12 ± 2 b | 99 ± 1 a | |
5 | 415 ± 10 a | <1.0 | 77 ± 1 f | ND *** | 12 ± 2 b | 99 ± 1 a | ||
10 | 430 ± 14 ab | <1.0 | 785 ± 20 g | ND *** | 13 ± 2 b | 99 ± 1 a |
Samples | (DSC) Tg (°C) | (TGA) Tpeak (°C) |
---|---|---|
MET-PGA | 125 | 300–350 |
MET-PGA+10%GLY | 50 | 300–350 |
R1 γ-PGA | 163 | 300–330 |
R1 γ-PGA +10%GLY | 60 | 280–330 |
R2 γ-PGA | 82 | 300–340 |
R2 γ-PGA +10%GLY | 56 | 280–340 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restaino, O.F.; Hejazi, S.; Zannini, D.; Giosafatto, C.V.L.; Di Pierro, P.; Cassese, E.; D’ambrosio, S.; Santagata, G.; Schiraldi, C.; Porta, R. Exploiting Potential Biotechnological Applications of Poly-γ-glutamic Acid Low Molecular Weight Fractions Obtained by Membrane-Based Ultra-Filtration. Polymers 2022, 14, 1190. https://doi.org/10.3390/polym14061190
Restaino OF, Hejazi S, Zannini D, Giosafatto CVL, Di Pierro P, Cassese E, D’ambrosio S, Santagata G, Schiraldi C, Porta R. Exploiting Potential Biotechnological Applications of Poly-γ-glutamic Acid Low Molecular Weight Fractions Obtained by Membrane-Based Ultra-Filtration. Polymers. 2022; 14(6):1190. https://doi.org/10.3390/polym14061190
Chicago/Turabian StyleRestaino, Odile Francesca, Sondos Hejazi, Domenico Zannini, Concetta Valeria Lucia Giosafatto, Prospero Di Pierro, Elisabetta Cassese, Sergio D’ambrosio, Gabriella Santagata, Chiara Schiraldi, and Raffaele Porta. 2022. "Exploiting Potential Biotechnological Applications of Poly-γ-glutamic Acid Low Molecular Weight Fractions Obtained by Membrane-Based Ultra-Filtration" Polymers 14, no. 6: 1190. https://doi.org/10.3390/polym14061190
APA StyleRestaino, O. F., Hejazi, S., Zannini, D., Giosafatto, C. V. L., Di Pierro, P., Cassese, E., D’ambrosio, S., Santagata, G., Schiraldi, C., & Porta, R. (2022). Exploiting Potential Biotechnological Applications of Poly-γ-glutamic Acid Low Molecular Weight Fractions Obtained by Membrane-Based Ultra-Filtration. Polymers, 14(6), 1190. https://doi.org/10.3390/polym14061190