Conformational Behavior, Topographical Features, and Antioxidant Activity of Partly De-Esterified Arabinoxylans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Partial De-Esterification of AX by Feruloyl Esterase
2.3. Phenolic Acids Analysis
2.4. Fourier Transform Infra-Red (FTIR) Spectroscopy
2.5. Macromolecular Characteristics
2.6. Atomic Force Microscopy (AFM)
2.7. Antioxidant Activity
2.7.1. ABTS+
2.7.2. DPPH
2.8. Statistical Analysis
3. Results and Discussion
3.1. AX and FAX Phenolic Acids and Macromolecular Characteristics
3.2. Fourier Transform Infra-Red (FTIR) Spectroscopy
3.3. Atomic Force Microscopy (AFM)
3.4. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- RFA Renewable Fuels Association. Annual World Fuel Ethanol Production (Mil. Gal.). Available online: https://ethanolrfa.org/statistics/annual-ethanol-production/ (accessed on 18 June 2021).
- Autio, K. Functional aspects of cereal cell-wall polysaccharides. In Carbohydrates in Food; Eliasson, A.-C., Ed.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2006; pp. 168–195. [Google Scholar]
- Burton, R.A.; Fincher, G.B. Plant cell wall engineering: Applications in biofuel production and improved human health. Curr. Opin. Biotechnol. 2014, 26, 79–84. [Google Scholar] [CrossRef]
- Zhang, Z.; Smith, C.; Li, W. Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res. Int. 2014, 65, 423–436. [Google Scholar] [CrossRef]
- Reis, S.F.; Coelho, E.; Coimbra, M.A.; Abu-Ghannam, N. Influence of grain particle sizes on the structure of arabinoxylans from brewer’s spent grain. Carbohydr. Polym. 2015, 130, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Millan, E.; Landillon, V.; Morel, M.-H.; Rouau, X.; Doublier, J.-L.; Micard, V. Arabinoxylan gels: Impact of the feruloylation degree on their structure and properties. Biomacromolecules 2005, 6, 309–317. [Google Scholar] [CrossRef]
- Morales-Burgos, A.M.; Carvajal-millan, E.; López-Franco, Y.L.; Rascón-chu, A.; Lizardi-mendoza, J.; Sotelo-cruz, N.; Brown-bojórquez, F.; Burgara-estrella, A.; Pedroza-montero, M. Syneresis in gels of highly ferulated arabinoxylans: Characterization of covalent cross-linking, rheology, and microstructure. Polymers 2017, 9, 164. [Google Scholar] [CrossRef]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Yadav, M.P.; López-Franco, Y.L.; Rascon-Chu, A.; Lizardi-Mendoza, J.; Brown-Bojorquez, F.; Silva-Campa, E.; Pedroza-Montero, M. Partial removal of protein associated with arabinoxylans: Impact on the viscoelasticity, cross-linking content, and microstructure of the gels formed. J. Appl. Polym. Sci. 2019, 136, 47300. [Google Scholar] [CrossRef]
- Marquez-Escalante, J.; Carvajal-Millan, E.; Miki-Yoshida, M.; Alvarez-Contreras, L.; Toledo-Guillén, A.R.; Lizardi-Mendoza, J.; Rascón-Chu, A. Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying. Molecules 2013, 18, 5531–5542. [Google Scholar] [CrossRef] [Green Version]
- Carvajal-Millan, E.; Rascón-Chu, A.; Márquez-Escalante, J.A.; Micard, V.; de León, N.P.; Gardea, A. Maize bran gum: Extraction, characterization and functional properties. Carbohydr. Polym. 2007, 69, 280–285. [Google Scholar] [CrossRef]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Rascón-Chu, A.; Astiazarán-García, H.; Valencia-Rivera, D.E.; Brown-Bojorquez, F.; Alday, E.; Velazquez, C. Arabinoxylan-based particles: In vitro antioxidant capacity and cytotoxicity on a human colon cell line. Medicina 2019, 55, 349. [Google Scholar] [CrossRef] [Green Version]
- Marquez-Escalante, J.A.; Carvajal-Millan, E. Feruloylated arabinoxylans from maize distiller’s dried grains with solubles: Effect of feruloyl esterase on their macromolecular characteristics, gelling, and antioxidant properties. Sustainability 2019, 11, 6449. [Google Scholar] [CrossRef] [Green Version]
- Masisi, K.; Beta, T.; Moghadasian, M.H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 2016, 196, 90–97. [Google Scholar] [CrossRef]
- Li, S.; Xiong, Q.; Lai, X.; Li, X.; Wan, M.; Zhang, J.; Yan, Y.; Cao, M.; Lu, L.; Guan, J.; et al. Molecular modification of polysaccharides and resulting bioactivities. Compr. Rev. Food Sci. Food Saf. 2016, 15, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Latha, G.M.; Muralikrishna, G. Effect of finger millet (Eleusine coracana, Indaf-15) malt esterases on the functional characteristics of non-starch polysaccharides. Food Hydrocoll. 2009, 23, 1007–1014. [Google Scholar] [CrossRef]
- Zaidel, D.N.A.; Arnous, A.; Holck, J.; Meyer, A.S. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet. J. Agric. Food Chem. 2011, 59, 11598–11607. [Google Scholar] [CrossRef] [Green Version]
- Izydorczyk, M.S.; Biliaderis, C.G. Cereal arabinoxylans: Advances in structure and physicochemical properties. Carbohydr. Polym. 1995, 28, 33–48. [Google Scholar] [CrossRef]
- Martínez-López, A.L.; Carvajal-Millan, E.; Rascón-Chu, A.; Márquez-Escalante, J.; Martínez-Robinson, K. Gels of ferulated arabinoxylans extracted from nixtamalized and non-nixtamalized maize bran: Rheological and structural characteristics. CyTA J. Food 2013, 11, 22–28. [Google Scholar] [CrossRef] [Green Version]
- De Anda-Flores, Y.; Carvajal-Millan, E.; Lizardi-Mendoza, J.; Rascon-Chu, A.; Martínez-López, A.L.; Marquez-Escalante, J.; Brown-Bojorquez, F.; Tanori-Cordova, J. Covalently cross-Linked nanoparticles based on ferulated arabinoxylans recovered from a distiller’s dried grains byproduct. Processes 2020, 8, 691. [Google Scholar] [CrossRef]
- Vansteenkiste, E.; Babot, C.; Rouau, X.; Micard, V. Oxidative gelation of feruloylated arabinoxylan as affected by protein. Influence on protein enzymatic hydrolysis. Food Hydrocoll. 2004, 18, 557–564. [Google Scholar] [CrossRef]
- Rouau, X.; Cheynier, V.; Surget, A.; Gloux, D.; Barron, C.; Meudec, E.; Louis-Montero, J.; Criton, M. A dehydrotrimer of ferulic acid from maize bran. Phytochemistry 2003, 63, 899–903. [Google Scholar] [CrossRef]
- Morales-Ortega, A.; Carvajal-Millan, E.; López-Franco, Y.; Rascón-Chu, A.; Lizardi-Mendoza, J.; Torres-Chavez, P.; Campa-Mada, A. Characterization of water extractable arabinoxylans from a spring wheat flour: Rheological properties and microstructure. Molecules 2013, 18, 8417–8428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dervilly-Pinel, G.; Thibault, J.-F.; Saulnier, L. Experimental evidence for a semi-flexible conformation for arabinoxylans. Carbohydr. Res. 2001, 330, 365–372. [Google Scholar] [CrossRef]
- Adams, E.L.; Kroon, P.A.; Williamson, G.; Gilbert, H.J.; Morris, V.J. Inactivated enzymes as probes of the structure of arabinoxylans as observed by atomic force microscopy. Carbohydr. Res. 2004, 339, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Rosa, N.N.; Barron, C.; Gaiani, C.; Dufour, C.; Micard, V. Ultra-fine grinding increases the antioxidant capacity of wheat bran. J. Cereal Sci. 2013, 57, 84–90. [Google Scholar] [CrossRef]
- Malunga, L.N.; Beta, T. Antioxidant capacity of water-extractable arabinoxylan from commercial barley, wheat, and wheat fractions. Cereal Chem. J. 2015, 92, 29–36. [Google Scholar] [CrossRef]
- Paz-Samaniego, R.; Carvajal-Millan, E.; Sotelo-Cruz, N.; Brown, F.; Rascón-Chu, A.; López-Franco, Y.L.; Lizardi-Mendoza, J. Maize processing waste water upcycling in Mexico: Recovery of arabinoxylans for probiotic encapsulation. Sustainability 2016, 8, 1104. [Google Scholar] [CrossRef] [Green Version]
- Martínez-López, A.L.; Carvajal-Millan, E.; Lizardi-Mendoza, J.; López-Franco, Y.; Rascón-Chu, A.; Salas-Muñoz, E.; Ramírez-Wong, B. Ferulated arabinoxylans as by-product from maize wet-milling process: Characterization and gelling capability. In Maize: Cultivation, Uses and Health Benefits; Jimenez-Lopez, J.C., Ed.; Nova Science Pub Inc.: Granade, Spain, 2012; pp. 65–73. ISBN 9781620815144. [Google Scholar]
- Adams, E.L.; Kroon, P.A.; Williamson, G.; Morris, V.J. AFM studies of water-soluble wheat arabinoxylans—Effects of esterase treatment. Carbohydr. Res. 2005, 340, 1841–1845. [Google Scholar] [CrossRef]
- Xiang, Z.; Anthony, R.; Tobimatsu, Y.; Runge, T. Emulsifying properties of an arabinoxylan-protein gum from distillers’ grains and the co-production of animal feed. Cellulose 2014, 21, 3623–3635. [Google Scholar] [CrossRef]
- Cai, Z.; Wei, Y.; Zhang, H.; Rao, P.; Wang, Q. Holistic review of corn fiber gum: Structure, properties, and potential applications. Trends Food Sci. Technol. 2021, 111, 756–770. [Google Scholar] [CrossRef]
- Picout, D.R.; Ross-Murphy, S.B. On the chain flexibility of arabinoxylans and other β-(1→4) polysaccharides. Carbohydr. Res. 2002, 337, 1781–1784. [Google Scholar] [CrossRef]
- Bustamante, P.; Navarro-Lupión, J.; Escalera, B. A new method to determine the partial solubility parameters of polymers from intrinsic viscosity. Eur. J. Pharm. Sci. 2005, 24, 229–237. [Google Scholar] [CrossRef]
- Kang, J.; Guo, Q.; Shi, Y.C. Molecular and conformational properties of hemicellulose fiber gum from dried distillers grains with solubles. Food Hydrocoll. 2018, 80, 53–59. [Google Scholar] [CrossRef]
- Iravani, S.; Fitchett, C.S.; Georget, D.M.R. Physical characterization of arabinoxylan powder and its hydrogel containing a methyl xanthine. Carbohydr. Polym. 2011, 85, 201–207. [Google Scholar] [CrossRef]
- Kacuráková, M. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Sene, C.; McCann, M.C.; Wilson, R.H.; Grinter, R. Fourier-transform raman and fourier-transform infrared spectroscopy (An investigation of five higher plant cell walls and their components). Plant Physiol. 1994, 106, 1623–1631. [Google Scholar] [CrossRef] [Green Version]
- Sárossy, Z.; Tenkanen, M.; Pitkänen, L.; Bjerre, A.B.; Plackett, D. Extraction and chemical characterization of rye arabinoxylan and the effect of β-glucan on the mechanical and barrier properties of cast arabinoxylan films. Food Hydrocoll. 2013, 30, 206–216. [Google Scholar] [CrossRef]
- Kačuráková, M.; Wellner, N.; Ebringerová, A.; Hromádková, Z.; Wilson, R.H.; Belton, P.S. Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocoll. 1999, 13, 35–41. [Google Scholar] [CrossRef]
- González-Estrada, R.; Calderón-Santoyo, M.; Carvajal-Millan, E.; De Jesús Ascencio Valle, F.; Ragazzo-Sánchez, J.A.; Brown-Bojorquez, F.; Rascón-Chu, A. Covalently cross-linked arabinoxylans films for Debaryomyces hansenii entrapment. Molecules 2015, 20, 11373–11386. [Google Scholar] [CrossRef] [Green Version]
- Robert, P.; Marquis, M.; Barron, C.; Guillon, F.; Saulnier, L. FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. J. Agric. Food Chem. 2005, 53, 7014–7018. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.L.; Kroon, P.A.; Williamson, G.; Morris, V.J. Characterisation of heterogeneous arabinoxylans by direct imaging of individual molecules by atomic force microscopy. Carbohydr. Res. 2003, 338, 771–780. [Google Scholar] [CrossRef]
- Gunning, A.P.; Kirby, A.R.; Mackie, A.R.; Kroon, P.; Williamson, G.; Morris, V.J. Watching molecular processes with the atomic force microscope: Dynamics of polymer adsorption and desorption at the single molecule level. J. Microsc. 2004, 216, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Escalante, J.A.; Carvajal-Millan, E.; Yadav, M.P.; Kale, M.; Rascon-Chu, A.; Gardea, A.A.; Valenzuela-Soto, E.M.; Lopez-Franco, Y.L.; Lizardi-Mendoza, J.; Faulds, C.B. Rheology and microstructure of gels based on wheat arabinoxylans enzymatically modified in arabinose to xylose ratio. J. Sci. Food Agric. 2018, 98, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Nieduszynski, I.A.; Marchessault, R.H. Structure of β,D(1→4)-xylan hydrate. Biopolymers 1972, 11, 1335–1344. [Google Scholar] [CrossRef]
- Yui, T.; Imada, K.; Shibuya, N.; Ogawa, K. Conformation of an arabinoxylan isolated from the rice endosperm cell wall by X-ray diffraction and a conformational analysis. Biosci. Biotechnol. Biochem. 1995, 59, 965–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Rascon-Chu, A.; Astiazaran-Garcia, H.F.; Valencia-Rivera, D.E. Ferulated arabinoxylans and their gels: Functional properties and potential application as antioxidant and anticancer agent. Oxid. Med. Cell. Longev. 2018, 2018, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; He, Y.; Lu, F. The structure-antioxidant activity relationship of dehydrodiferulates. Food Chem. 2018, 269, 480–485. [Google Scholar] [CrossRef]
Sample | FA * | di-FA | Total di-FA | ||
---|---|---|---|---|---|
5-5′ | 8-O-4′ * | 8-5′ | |||
AX | 7.30 ± 0.18 | 0.100 ± 0.005 | 0.021 ± 0.006 | 0.090 ± 0.002 | 0.212 ± 0.009 |
FAX | 5.48 ± 0.18 | 0.104 ± 0.001 | 0.033 ± 0.001 | 0.088 ± 0.001 | 0.224 ± 0.003 |
Sample | AX | FAX |
---|---|---|
A/X ratio | 1.16 | 1.15 |
Mw (kDa) | 661 | 562 |
PI (Mw/Mn) | 2.4 | 2.4 |
[η] (mL/g) | 149 | 155 |
RG (nm) | 40 | 36 |
Rh (nm) | 22.5 | 21.9 |
C∞ | 14.2 | 13.4 |
q (nm) | 4.1 | 3.9 |
Mark–Houwink–Sakurada α | 0.536 | 0.521 |
Mark–Houwink–Sakurada K | 1.394 × 10−1 | 1.872 × 10−1 |
Sample | ABTS+ (µmol TEAC/g) * | DPPH (µmol TEAC/g) * |
---|---|---|
AX | 51.1 ± 1.7 | 35.0 ± 2.9 |
FAX | 35.9 ± 3.0 | 20.7 ± 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Anda-Flores, Y.; Carvajal-Millan, E.; Lizardi-Mendoza, J.; Rascon-Chu, A.; Tanori-Cordova, J.; Martínez-López, A.L.; Burgara-Estrella, A.J.; Pedroza-Montero, M.R. Conformational Behavior, Topographical Features, and Antioxidant Activity of Partly De-Esterified Arabinoxylans. Polymers 2021, 13, 2794. https://doi.org/10.3390/polym13162794
De Anda-Flores Y, Carvajal-Millan E, Lizardi-Mendoza J, Rascon-Chu A, Tanori-Cordova J, Martínez-López AL, Burgara-Estrella AJ, Pedroza-Montero MR. Conformational Behavior, Topographical Features, and Antioxidant Activity of Partly De-Esterified Arabinoxylans. Polymers. 2021; 13(16):2794. https://doi.org/10.3390/polym13162794
Chicago/Turabian StyleDe Anda-Flores, Yubia, Elizabeth Carvajal-Millan, Jaime Lizardi-Mendoza, Agustin Rascon-Chu, Judith Tanori-Cordova, Ana Luisa Martínez-López, Alexel J. Burgara-Estrella, and Martin R. Pedroza-Montero. 2021. "Conformational Behavior, Topographical Features, and Antioxidant Activity of Partly De-Esterified Arabinoxylans" Polymers 13, no. 16: 2794. https://doi.org/10.3390/polym13162794
APA StyleDe Anda-Flores, Y., Carvajal-Millan, E., Lizardi-Mendoza, J., Rascon-Chu, A., Tanori-Cordova, J., Martínez-López, A. L., Burgara-Estrella, A. J., & Pedroza-Montero, M. R. (2021). Conformational Behavior, Topographical Features, and Antioxidant Activity of Partly De-Esterified Arabinoxylans. Polymers, 13(16), 2794. https://doi.org/10.3390/polym13162794