Photo-Induced Drug Release from Polymeric Micelles and Liposomes: Phototriggering Mechanisms in Drug Delivery Systems
Abstract
:1. Introduction
2. Mechanisms of Photo-Induced Drug Release from Nanocarriers
2.1. Photo-Isomerization
2.2. Photo-Cleavage
2.3. Surface Plasmon Resonance Absorption
2.4. Hydrophobicity Change
2.5. De-Crosslinking
2.6. Summary of Studies
3. Photodynamic Therapy and Nanomedicine in Cancer Treatment
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Temelli, F.; Curtis, J.M.; Chen, L. Encapsulation of Lutein in Liposomes Using Supercritical Carbon Dioxide. Food Res. Int. 2017, 100, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.A.; Baldino, L.; Pinho, S.C.; Reverchon, E. Supercritical CO2 Assisted Process for the Production of Mixed Phospholipid Nanoliposomes: Unloaded and Vitamin D3-Loaded Vesicles. J. Food Eng. 2022, 316, 110851. [Google Scholar] [CrossRef]
- Campardelli, R.; Baldino, L.; Reverchon, E. Supercritical Fluids Applications in Nanomedicine. J. Supercrit. Fluids 2015, 101, 193–214. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Reverchon, E. Supercritical CO2 Assisted Liposomes Formation: Optimization of the Lipidic Layer for an Efficient Hydrophilic Drug Loading. J. CO2 Util. 2017, 18, 181–188. [Google Scholar] [CrossRef]
- Bawa, R. FDA and Nanotech: Baby Steps Lead to Regulatory Uncertainty. In Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences; Bagchi, D., Bagchi, M., Moriyama, H., Shahidi, F., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 2013; pp. 720–732. [Google Scholar] [CrossRef]
- Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjug. Chem. 2016, 27, 2225–2238. [Google Scholar] [CrossRef]
- Amin, M.; Huang, W.; Seynhaeve, A.L.B.; Ten Hagen, T.L.M. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020, 12, 1007. [Google Scholar] [CrossRef]
- Schmaljohann, D. Thermo- and pH-Responsive Polymers in Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Ding, J.; Zhou, W.; Zheng, X.; Tang, G. Mechanisms of Drug Release in pH-Sensitive Micelles for Tumour Targeted Drug Delivery System: A Review. Int. J. Pharm. 2018, 535, 253–260. [Google Scholar] [CrossRef]
- Banerjee, R. Trigger-Responsive Nanoparticles: Control Switches for Cancer Therapy. Nanomedicine 2011, 6, 1657–1660. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Jiang, Y.; Lin, M.; Zhang, J.; Guo, H.; Yang, F.; Leung, W.; Xu, C. Ultrasound-Responsive Materials for Drug/gene Delivery. Front. Pharmacol. 2020, 10, 1650. [Google Scholar] [CrossRef] [PubMed]
- Mehier-Humbert, S.; Bettinger, T.; Yan, F.; Guy, R.H. Plasma Membrane Poration Induced by Ultrasound Exposure: Implication for Drug Delivery. J. Control. Release 2005, 104, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Rapp, T.L.; DeForest, C.A. Targeting Drug Delivery with Light: A Highly Focused Approach. Adv. Drug Deliv. Rev. 2021, 171, 94–107. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, Y.; Wang, Q.; Liu, T.; Sun, J.; Zhang, R. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small 2019, 15, e1903060. [Google Scholar] [CrossRef]
- Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of Magnetic Fields and Nanoparticles to Trigger Drug Release and Improve Tumor Targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1571. [Google Scholar] [CrossRef]
- Solanki, A.; Kim, J.D.; Lee, K.B. Nanotechnology for Regenerative Medicine: Nanomaterials for Stem Cell Imaging. Nanomedicine 2008, 3, 567–578. [Google Scholar] [CrossRef]
- Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. Nanoscale Res. Lett. 2019, 14, 188. [Google Scholar] [CrossRef] [Green Version]
- Seynhaeve, A.L.B.; Amin, M.; Haemmerich, D.; van Rhoon, G.C.; ten Hagen, T.L.M. Hyperthermia and Smart Drug Delivery Systems for Solid Tumor Therapy. Adv. Drug Deliv. Rev. 2020, 163–164, 125–144. [Google Scholar] [CrossRef]
- Kong, G.; Braun, R.D.; Dewhirst, M.W. Hyperthermia Enables Tumor-Specific Nanoparticle Delivery: Effect of Particle Size. Cancer Res. 2000, 60, 4440–4445. [Google Scholar]
- Otto, D.P.; de Villiers, M.M. What Is the Future of Heated Transdermal Delivery Systems? Ther. Deliv. 2014, 5, 961–964. [Google Scholar] [CrossRef]
- Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical Mechanisms of Light-Triggered Release from Nanocarriers. Adv. Drug Deliv. Rev. 2012, 64, 1005–1020. [Google Scholar] [CrossRef] [Green Version]
- Leung, S.J.; Romanowski, M. Light-Activated Content Release from Liposomes. Theranostics 2012, 2, 1020–1036. [Google Scholar] [CrossRef]
- Liu, X.M.; Yang, B.; Wang, Y.L.; Wang, J.Y. Photoisomerisable Cholesterol Derivatives as Photo-Trigger of Liposomes: Effect of Lipid Polarity, Temperature, Incorporation Ratio, and Cholesterol. Biochim. Biophys. Acta-Biomembr. 2005, 1720, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Zhou, M.; Zhang, Q.; Keller, A.; Shen, Y. Zwitterionic Light-Responsive Polymeric Micelles for Controlled Drug Delivery. Colloid Polym. Sci. 2015, 293, 1685–1694. [Google Scholar] [CrossRef]
- Fagan, A.; Bartkowski, M.; Giordani, S. Spiropyran-Based Drug Delivery Systems. Front. Chem. 2021, 9, 720087. [Google Scholar] [CrossRef] [PubMed]
- Dariva, C.G.; Coelho, J.F.J.; Serra, A.C. Near Infrared Light-Triggered Nanoparticles Using Singlet Oxygen Photocleavage for Drug Delivery Systems. J. Control. Release 2019, 294, 337–354. [Google Scholar] [CrossRef]
- Yavlovich, A.; Smith, B.; Gupta, K.; Blumenthal, R.; Prui, A. Light-Sensitive Lipid-Based Nanoparticles for Drug Delivery. Mol. Membr. Biol. 2010, 27, 364–381. [Google Scholar] [CrossRef] [Green Version]
- Hrycay, E.G.; Bandiera, S.M. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer. In Advances in Pharmacology; Elsevier Inc.: Oxford, UK, 2015; pp. 35–84. [Google Scholar]
- Gerasimov, O.V.; Boomer, J.A.; Qualls, M.M.; Thompson, D.H. Cytosolic Drug Delivery Using pH- and Light-Sensitive Liposomes. Adv. Drug Deliv. Rev. 1999, 38, 317–338. [Google Scholar] [CrossRef]
- Anderson, V.C.; Thompson, D.H. Triggered Release of Hydrophilic Agents from Plasmalogen Liposomes Using Visible Light or Acid. Biochim. Biophys. Acta-Biomembr. 1992, 1109, 33–42. [Google Scholar] [CrossRef]
- Thompson, D.H.; Gerasimov, O.V.; Wheeler, J.J.; Rui, Y.; Anderson, V.C. Triggerable Plasmalogen Liposomes: Improvement of System Efficiency. Biochim. Biophys. Acta-Biomembr. 1996, 1279, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Malhotra, S.; Molina, M.; Haag, R. Micro- and Nanogels with Labile Crosslinks-from Synthesis to Biomedical Applications. Chem. Soc. Rev. 2015, 44, 1948–1973. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, Z.; Konetski, D.; Wang, C.; Worrell, B.T.; Bowman, C.N. Liposomes Formed from Photo-Cleavable Phospholipids:: In Situ Formation and Photo-Induced Enhancement in Permeability. RSC Adv. 2018, 8, 14669–14675. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Boyer, J.C.; Branda, N.R.; Zhao, Y. Near-Infrared Light-Triggered Dissociation of Block Copolymer Micelles Using Upconverting Nanoparticles. J. Am. Chem. Soc. 2011, 133, 19714–19717. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in Highly Doped Upconversion Nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Link, S.; El-Sayed, M.A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217. [Google Scholar] [CrossRef]
- Moretti, L.; Mazzanti, A.; Rossetti, A.; Schirato, A.; Polito, L.; Pizzetti, F.; Sacchetti, A.; Cerullo, G.; Della Valle, G.; Rossi, F.; et al. Plasmonic Control of Drug Release Efficiency in Agarose Gel Loaded with Gold Nanoparticle Assemblies. Nanophotonics 2021, 10, 247–257. [Google Scholar] [CrossRef]
- Montoto, A.H.; Montes, R.; Samadi, A.; Gorbe, M.; Terrés, J.M.; Cao-Milán, R.; Aznar, E.; Ibañez, J.; Masot, R.; Marcos, M.D.; et al. Gold Nanostars Coated with Mesoporous Silica Are Effective and Nontoxic Photothermal Agents Capable of Gate Keeping and Laser-Induced Drug Release. ACS Appl. Mater. Interfaces 2018, 10, 27644–27656. [Google Scholar] [CrossRef]
- Goodwin, A.P.; Mynar, J.L.; Ma, Y.; Fleming, G.R.; Fréchet, J.M.J. Synthetic Micelle Sensitive to IR Light via a Two-Photon Process. J. Am. Chem. Soc. 2005, 127, 9952–9953. [Google Scholar] [CrossRef]
- Kim, K.N.; Oh, K.S.; Shim, J.; Schlaepfer, I.R.; Karam, S.D.; Lee, J.J. Light-Responsive Polymeric Micellar Nanoparticles with Enhanced Formulation Stability. Polymers 2021, 13, 377. [Google Scholar] [CrossRef]
- He, J.; Tong, X.; Zhao, Y. Photoresponsive Nanogels Based on Photocontrollable Cross-Links. Macromolecules 2009, 42, 4845–4852. [Google Scholar] [CrossRef]
- Lu, D.; Zhu, M.; Wu, S.; Wang, W.; Liana, Q.; Saunders, B.R. Triply Responsive Coumarin-Based Microgels with Remarkably Large Photo-Switchable Swelling. Polym. Chem. 2019, 10, 2516–2526. [Google Scholar] [CrossRef]
- Cui, Z.-K.; Phoeung, T.; Rousseau, P.-A.; Rydzek, G.; Zhang, Q.; Bazuin, C.G.; Lafleur, M. Nonphospholipid Fluid Liposomes with Switchable Photocontrolled Release. Langmuir 2014, 30, 10818–10825. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Shin, E.; Kim, B.S. Light-Responsive Micelles of Spiropyran Initiated Hyperbranched Polyglycerol for Smart Drug Delivery. Biomacromolecules 2014, 15, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Poelma, S.O.; Oh, S.S.; Helmy, S.; Knight, A.S.; Burnett, G.L.; Soh, H.T.; Hawker, C.J.; Alaniz, J.R. Controlled Drug Release to Cancer Cells from Modular One-Photon Visible Light-Responsive Micellar System. Chem. Commun. 2016, 52, 10525–10528. [Google Scholar] [CrossRef] [PubMed]
- Meerovich, I.; Nichols, M.G.; Dash, A.K. Low-Intensity Light-Induced Drug Release from a Dual Delivery System Comprising of a Drug Loaded Liposome and a Photosensitive Conjugate. J. Drug Target. 2020, 28, 655–667. [Google Scholar] [CrossRef]
- Macháček, M.; Carter, K.; Kostelanský, F.; Miranda, D.; Seffouh, A.; Ortega, J.; Šimůnek, T.; Zimčík, P.; Lovell, J.F. Binding of an Amphiphilic Phthalocyanine to Pre-Formed Liposomes Confers Light-Triggered Cargo Release. J. Mater. Chem. B 2018, 6, 7298–7305. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Smith, B.D. Synthesis and Characterization of NVOC-DOPE, a Caged Photoactivatable Derivative of Dioleoylphosphatidylethanolamine. Bioconjug. Chem. 1999, 10, 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.J.; Cha, H.J.; Kim, T.S.; Kim, J.C. Photo-Responsive Liposomes Decorated with Hydrophobically Modified Poly(vinyl Alcohol)-Coumarin Conjugate. J. Ind. Eng. Chem. 2013, 19, 310–315. [Google Scholar] [CrossRef]
- Lo, Y.-L.; Tsai, M.-F.; Soorni, Y.; Hsu, C.; Liao, Z.-X.; Wang, L.-F. Dual Stimuli-Responsive Block Copolymers with Adjacent Redox- And Photo-Cleavable Linkages for Smart Drug Delivery. Biomacromolecules 2020, 21, 3342–3352. [Google Scholar] [CrossRef]
- Nam, J.; La, W.-G.; Hwang, S.; Ha, Y.S.; Park, N.; Won, N.; Jung, S.; Bhang, S.H.; Ma, Y.-J.; Cho, Y.-M.; et al. pH-Responsive Assembly of Gold Nanoparticles and “Spatiotemporally Concerted” Drug Release for Synergistic Cancer Therapy. ACS Nano 2013, 7, 3388–3402. [Google Scholar] [CrossRef] [PubMed]
- Koga, K.; Tagami, T.; Ozeki, T. Gold Nanoparticle-Coated Thermosensitive Liposomes for the Triggered Release of Doxorubicin, and Photothermal Therapy Using a near-Infrared Laser. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 626, 127038. [Google Scholar] [CrossRef]
- Lajunen, T.; Viitala, L.; Kontturi, L.-S.; Laaksonen, T.; Liang, H.; Vuorimaa-Laukkanen, E.; Viitala, T.; Le Guével, X.; Yliperttula, M.; Murtomäki, L.; et al. Light Induced Cytosolic Drug Delivery from Liposomes with Gold Nanoparticles. J. Control. Release 2015, 203, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.F.; Snell, M.E. Hematoporphyrin Derivative: A Possible Aid in the Diagnosis and Therapy of Carcinoma of the Bladder. J. Urol. 1976, 115, 150–151. [Google Scholar] [CrossRef]
- Alsaab, H.O.; Alghamdi, M.S.; Alotaibi, A.S.; Alzhrani, R.; Alwuthaynani, F.; Althobaiti, Y.S.; Almalki, A.H.; Sau, S.; Iyer, A.K. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers 2020, 12, 2793. [Google Scholar] [CrossRef]
- Baskaran, R.; Lee, J.; Yang, S.-G. Clinical Development of Photodynamic Agents and Therapeutic Applications. Biomater. Res. 2018, 22, 25. [Google Scholar] [CrossRef]
- Moghassemi, S.; Dadashzadeh, A.; Azevedo, R.B.; Feron, O.; Amorim, C.A. Photodynamic Cancer Therapy Using Liposomes as an Advanced Vesicular Photosensitizer Delivery System. J. Control. Release 2021, 339, 75–90. [Google Scholar] [CrossRef]
- Düzgüneş, N.; Piskorz, J.; Skupin-Mrugalska, P.; Goslinski, T.; Mielcarek, J.; Konopka, K. Photodynamic Therapy of Cancer with Liposomal Photosensitizers. Ther. Deliv. 2018, 9, 823–832. [Google Scholar] [CrossRef]
- Huggett, M.T.; Jermyn, M.; Gillams, A.; Illing, R.; Mosse, S.; Novelli, M.; Kent, E.; Bown, S.G.; Hasan, T.; Pogue, B.W.; et al. Phase I/II Study of Verteporfin Photodynamic Therapy in Locally Advanced Pancreatic Cancer. Br. J. Cancer 2014, 110, 1698–1704. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, K.; Takeuchi, Y.; Yonezawa, S.; Hikita, T.; Kurohane, K.; Namba, Y.; Oku, N. Antiangiogenic Photodynamic Therapy (PDT) Using Visudyne Causes Effective Suppression of Tumor Growth. Cancer Lett. 2004, 205, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Lou, P.-J.; Jones, L.; Hopper, C. Clinical Outcomes of Photodynamic Therapy for Head-and-Neck Cancer. Technol. Cancer Res. Treat. 2003, 2, 311–317. [Google Scholar] [CrossRef]
- Lambert, A.; Nees, L.; Nuyts, S.; Clement, P.; Meulemans, J.; Delaere, P.; Vander Poorten, V. Photodynamic Therapy as an Alternative Therapeutic Tool in Functionally Inoperable Oral and Oropharyngeal Carcinoma: A Single Tertiary Center Retrospective Cohort Analysis. Front. Oncol. 2021, 11, 626394. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov; National Library of Medicine (U.S.). Wound Healing in Healthy Volunteers. Identifier: NCT03433820. Available online: https://clinicaltrials.gov/ct2/show/NCT03433820 (accessed on 11 March 2022).
- Hsu, C.; Chen, C.-W.; Yu, H.-P.; Lin, Y.-F.; Lai, P.-S. Bioluminescence Resonance Energy Transfer Using Luciferase-Immobilized Quantum Dots for Self-Illuminated Photodynamic Therapy. Biomaterials 2013, 34, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Reshetov, V.; Lassalle, H.P.; François, A.; Dumas, D.; Hupont, S.; Gräfe, S.; Filipe, V.; Jiskoot, W.; Guillemin, F.; Zorin, V.; et al. Photodynamic Therapy with Conventional and Pegylated Liposomal Formulations of Mthpc(temoporfin): Comparison of Treatment Efficacy and Distribution Characteristics in Vivo. Int. J. Nanomedicine 2013, 8, 3817–3831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, D.; Botter, S.M.; Campanile, C.; Robl, B.; Gräfe, S.; Pellegrini, G.; Born, W.; Fuchs, B. Foscan and Foslip Based Photodynamic Therapy in Osteosarcoma in Vitro and in Intratibial Mouse Models. Int. J. cancer 2017, 140, 1680–1692. [Google Scholar] [CrossRef] [Green Version]
- Hinger, D.; Gräfe, S.; Navarro, F.; Spingler, B.; Pandiarajan, D.; Walt, H.; Couffin, A.-C.; Maake, C. Lipid Nanoemulsions and Liposomes Improve Photodynamic Treatment Efficacy and Tolerance in CAL-33 Tumor Bearing Nude Mice. J. Nanobiotechnology 2016, 14, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bovis, M.J.; Woodhams, J.H.; Loizidou, M.; Scheglmann, D.; Bown, S.G.; MacRobert, A.J. Improved in Vivo Delivery of M-THPC via Pegylated Liposomes for Use in Photodynamic Therapy. J. Control. Release 2012, 157, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fens, M.H.A.M.; Lou, B.; van Kronenburg, N.C.H.; Maas-Bakker, R.F.M.; Kok, R.J.; Oliveira, S.; Hennink, W.E.; van Nostrum, C.F. Π-Π-Stacked Poly(Ε-Caprolactone)-B-Poly(Ethylene Glycol) Micelles Loaded with a Photosensitizer for Photodynamic Therapy. Pharmaceutics 2020, 12, 338. [Google Scholar] [CrossRef] [Green Version]
- Barnes, L.D.; Giuliano, E.A.; Ota, J. Cellular Localization of Visudyne as a Function of Time after Local Injection in an in Vivo Model of Squamous Cell Carcinoma: An Investigation into Tumor Cell Death. Vet. Ophthalmol. 2010, 13, 158–165. [Google Scholar] [CrossRef]
Stimulus | Advantage | Challenge | Reference |
---|---|---|---|
pH |
|
| [9,10,11] |
Ultrasound (US) |
|
| [11,12,13] |
Light |
|
| [14,15] |
Magnetic Field |
|
| [11,16,17,18] |
Hyperthermia |
|
| [19,20,21] |
Mechanism | Nanocarrier | Loaded/Conjugated Drug | Active Moiety | Light Wavelength | Reference |
---|---|---|---|---|---|
photo-isomerization | Liposome (AzoC10N+/Schol) | Sulforhodamine B | Monoacylated azobenzene amphiphile | 350 nm | [45] |
Micelle (SP-hb-PG) | Pyrene | Spiropyran | 254 nm | [46] | |
Micelle (SP-PMPC) | Doxorubicin | Spiropyran | 365 nm | [25] | |
Micelle (PEG-DASA) | Nile Red Paclitaxel | Donor–acceptor Stenhouse adducts (DASA) | Visible light | [47] | |
Photo-cleavage | Liposome (PC/Chol) | Co-loaded with doxorubicin hydrochloride + ZnPcRLA | ZnPcRLA | 685 nm | [48] |
Liposome (DOPC/EYPC/Chol) | Basic orange 14 Doxorubicin | Cationic amphiphilic phthalocyanine | 665 nm | [49] | |
Liposome (NVOC-DOPE) | Calcein | NVOC-DOPE | λ > 300 nm (UV) | [50] | |
Liposome (Egg PC) | 5(6)-carboxyfluorescein | Hydrophobically modified poly(vinyl alcohol)-epoxypropoxy coumarin | 254 nm | [51] | |
Micelle (PCL-ONB-SS-PMAA) | Doxorubicin | o-nitrobenzyl ester | 365 nm | [52] | |
Surface plasmon resonance absorption | Gold nanoparticles | Doxorubicin | Gold nanoparticles | 660 nm | [53] |
Liposome (DPPC/DSPE-PEG2000) | Doxorubicin | Gold nanoparticles | 660 nm | [54] | |
Liposome (DPPC/DSPC/DSPE-PEG2000) | Calcein | Gold nanoparticles | 656 nm850 nm | [55] |
Photosensitizer | Nanocarrier | Tumor Model | Reference |
---|---|---|---|
Foslip® (m-THPC) | Liposome (DPPC, DPPG) | HT29 (human-derived colon adenocarcinoma cell line) | [67] |
143B (human-derived osteosarcoma cell line) | [68] | ||
CAL-33 (human-derived tongue squamous carcinoma cell line) | [69] | ||
Fospeg® (m-THPC) | Liposome (DPPC, DPPG, PEG-DSPE) | HT29 (human-derived colon adenocarcinoma cells) | [67] |
143B (human-derived osteosarcoma cell line) & K7M2L2 (mouse-derived osteosarcoma cell line) | [68] | ||
MC28 (methylcholanthrene-induced fibrosarcoma cell line) | [70] | ||
Foscan (m-THPC) | Lipidots nanoemulsion (Lecithin-PEG) | CAL-33 (human-derived tongue squamous carcinoma cell line) | [69] |
Polymeric micelles (P(CL-TMC-Bz)-PEG) and (Bz-PCL-PEG) | A431 (human-derived squamous cell line) | [71] | |
Visudyne® (verteporfin) | Liposomes (DMPC, EPG) | Meth-A sarcoma | [62] |
A431 (human-derived squamous cell line) | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salkho, N.M.; Awad, N.S.; Pitt, W.G.; Husseini, G.A. Photo-Induced Drug Release from Polymeric Micelles and Liposomes: Phototriggering Mechanisms in Drug Delivery Systems. Polymers 2022, 14, 1286. https://doi.org/10.3390/polym14071286
Salkho NM, Awad NS, Pitt WG, Husseini GA. Photo-Induced Drug Release from Polymeric Micelles and Liposomes: Phototriggering Mechanisms in Drug Delivery Systems. Polymers. 2022; 14(7):1286. https://doi.org/10.3390/polym14071286
Chicago/Turabian StyleSalkho, Najla M., Nahid S. Awad, William G. Pitt, and Ghaleb A. Husseini. 2022. "Photo-Induced Drug Release from Polymeric Micelles and Liposomes: Phototriggering Mechanisms in Drug Delivery Systems" Polymers 14, no. 7: 1286. https://doi.org/10.3390/polym14071286
APA StyleSalkho, N. M., Awad, N. S., Pitt, W. G., & Husseini, G. A. (2022). Photo-Induced Drug Release from Polymeric Micelles and Liposomes: Phototriggering Mechanisms in Drug Delivery Systems. Polymers, 14(7), 1286. https://doi.org/10.3390/polym14071286