Research on the Constitutive Model of PTFE/Al/Si Reactive Material
Abstract
:1. Introduction
2. Quasi-Static Mechanical Properties Test of PTFE/Al/Si Reactive Material
2.1. Basic Test Principle of Quasi-Static Compression Test
2.2. Sample Preparation and Test Results
3. Dynamic Mechanical Properties Test of PTFE/Al/Si Reactive Material
3.1. Basic Test Principle of Dynamic Compression Test
- (1)
- One-dimensional stress wave assumption. It is assumed that the wave propagating in the bar is a distortionless linear elastic wave, and both the incident bar and the transmission bar remain elastic during the impact. The diameter of the incident bar and transmission bar is much smaller than the wavelength of the incident wave, so the transverse dispersion effect of the stress wave propagation in the bar can be ignored, that is, there is only uniformly distributed axial stress in the bar.
- (2)
- Uniformity assumption. When the incident wave is transmitted into the sample to be tested, the reflected wave and transmitted wave will be generated at the contact interface between the sample and the bar immediately, and then transmitted to the incident bar and the transmission bar. In the process of stress wave propagation, the stress wave in the sample will propagate back and forth between the two interfaces. If the size of the sample to be tested is small enough, the stress and strain distribution along the length direction in the sample will quickly reach homogenization.
3.2. Sample Preparation and Test Results
3.2.1. Test Results under Different Loading Strain Rates
3.2.2. Test Results under Different Temperatures
4. Constitutive Model of the PTFE/Al/Si Reactive Materials
4.1. Selection of Constitutive Model
4.2. Establishment of Johnson-Cook Constitutive Model Parameters
4.2.1. Strain Hardening Effect
4.2.2. Strain Rate Hardening Effect
4.2.3. Thermal Softening Effect
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mock, W., Jr.; Drotar, J. Effect of Aluminum particle size on the impact initiation of pressed PTFE/Al composite rode. In Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Waikoloa, HI, USA, 24–29 June 2007. [Google Scholar]
- DE Technologies, Inc. Reactive Material Enhanced Warheads. Available online: http://www.detk.com/recentprojects/reactive-material-enhanced-warheads/ (accessed on 3 March 2022).
- Wang, H.; Guo, H.; Geng, B.; Yu, Q.; Zheng, Y. Application of PTFE/Al Reactive Materials for Double-Layered Liner Shaped Charge. Materials 2019, 12, 2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronald, A. Advanced Energetic Materials; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Yang, S.; Xu, S.; Zhang, T. Preparation and performance of PTFE/Al reactive materials. J. Natl. Univ. Def. Technol. 2008, 30, 39–42. [Google Scholar]
- Cai, J.; Jiang, F.; Vecchio, K.S.; Meyers, M.A.; Nesterenko, V.F. Mechanical and microstructural properties of PTFE/Al/W system. AIP Conf. Proc. 2007, 955, 723–726. [Google Scholar]
- Cai, J.; Walley, S.M.; Hunt, R.J.A.; Proud, W.G.; Nesterenko, V.F.; Meyers, M.A. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process 2008, 472, 308–315. [Google Scholar] [CrossRef]
- Cai, J.; Nesterenko, V.; Vecchio, K.; Jiang, F.; Herbold, E.; Benson, D.J.; Addiss, J.W.; Walley, S.M.; Proud, W.G. The influence of metallic particle size on the mechanical properties of polytetraflouroethylene-Al–W powder composites. Appl. Phys. Lett. 2008, 92, 031903. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhang, J.; Qiao, L.; Shi, A.S.; Zhang, Y.G.; He, Y.; Guan, Z.W. Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process 2013, 581, 48–55. [Google Scholar] [CrossRef]
- Zhang, X.F.; Shi, A.S.; Qiao, L.; Zhang, J.; Zhang, Y.G.; Guan, Z.W. Experimental study on impact-initiated characters of multifunctional energetic structural materials. J. Appl. Phys. 2013, 113, 83508. [Google Scholar] [CrossRef]
- Casem, D.T. Mechanical Response of an Al-PTFE Composite to Uniaxial Compression over a Range of Strain Rates and Temperatures. Available online: https://www.aerodefensetech.com/component/content/article/adt/tech-briefs/materials/5074 (accessed on 3 March 2022).
- Wu, J.; Li, Y.; Fang, X.; Wang, H.; Feng, B.; Wu, S. Effect of Al Particle Size on the Quasi-static Compression Reaction and Drop Hammer Impact Sensitivity of Al-PTFE. Chin. J. Energ. Mater. 2018, 26, 524–529. [Google Scholar]
- Wu, J.; Wang, H.; Fang, X.; Li, Y.; Mao, Y.; Yang, L.; Yin, Q.; Wu, S.; Yao, M.; Song, J. Investigation on the Thermal Behavior, Mechanical Properties and Reaction Characteristics of Al-PTFE Composites Enhanced by Ni Particle. Materials 2018, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Ames, R. Energy release characteristics of impact-initiated energetic materials. MRS Online Proc. Libr. Arch. 2005, 896, 308:1–308:10. [Google Scholar] [CrossRef]
- Mock, W., Jr.; Holt, W.H. Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders. AIP Conf. Proc. 2006, 845, 1097–1100. [Google Scholar]
- Mock, W.; Drotar, J.T. Eect of aluminum particle size on the impact initiation of pressed PTFE/Al composite rods. AIP Conf. Proc. 2007, 955, 971–974. [Google Scholar]
- Li, W.; Ren, H.; Ning, J.; Liu, Y. Dynamic Mechanical Behavior and Impact Ignition Characteristics of Al/PTFE Reactive Materials. Chin. J. Energ. Mater. 2020, 28, 38–45. [Google Scholar]
- Ren, H.; Li, W.; Liu, X.; Chen, Z. Reaction behaviors of Al/PTFE materials enhanced by W particles. Acta Armamentarii 2016, 37, 872–878. [Google Scholar]
- Zhou, J.; He, Y.; He, Y.; Wang, C. Investigation on Impact Initiation Characteristics of Fluoropolymer-matrix Reactive Materials. Propellants Explos. Pyrotech. 2017, 42, 603–615. [Google Scholar] [CrossRef]
- Ge, C.; Wubuliaisan, M.; Tian, C.; Dong, Y.; Song, Q. Impact-induced initiation thresholds of polytetrafluoroethylene/Al composite by gas gun. Explos. Shock Waves 2018, 38, 1–8. [Google Scholar]
- Zhou, J.; Ding, L.; Tang, W.; Ran, X. Experimental Study of Mechanical Properties and Impact-Induced Reaction Character-istics of PTFE/Al/CuO Reactive Materials. Materials 2019, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Zhou, J.; Tang, W.; Ran, X.; Hu, Y. Impact Energy Release Characteristics of PTFE/Al/CuO Reactive Materials Measured by a New Energy Release Testing Device. Polymers 2019, 11, 149. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Zhou, J.; Ran, X.; Wu, Y.; Liu, P.; Tang, W.; Chen, P.; Wang, H. Research on the Ignition Height and Reaction Flame Temperature of PTFE/Al/Si/CuO with Different Mass Ratios of PTFE/Si. Materials 2021, 14, 3464. [Google Scholar] [CrossRef]
- Ran, X.; Ding, L.; Zhou, J.; Tang, W. Research on the Energy Release Characteristics of Six Kinds of Reactive Materials. Materials 2019, 12, 3940. [Google Scholar] [CrossRef] [Green Version]
- Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. B 1949, 62, 676. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, S.; Li, E. Effect of the Constitutive Relation of Material in Numerical Computation. Acta Armamentarii 1998, 19, 69–72. [Google Scholar]
- Xu, S. Study on the Mechanical Performance of Polytetrafluorethyleoe/Al Energetic Reactive Materials. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2010. [Google Scholar]
- Kuang, Z.; Gu, H.; Li, Z. Mechanical Behavior of Materials; Higher Education Press: Beijing, China, 1998. [Google Scholar]
- Johnson, G.; Cook, W. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperature. In Proceedings of the 7th International Symposium on Ballistics (ISB’7), Hague, The Netherlands, 19–21 April 1983. [Google Scholar]
No. | Diameter (mm) | Height (mm) | Mass (g) |
---|---|---|---|
#5-1 | 9.92 | 10.02 | 1.736 |
#5-2 | 9.92 | 9.98 | 1.735 |
#5-3 | 9.92 | 10.01 | 1.736 |
No. | Elastic Modulus E (MPa) | Hardening Modulus Es (MPa) | Nominal Yield Strength σs (MPa) | Yield Strain εs |
---|---|---|---|---|
#5-1 | 387.2 | 2.7 | 12.9 | 0.0546 |
#5-2 | 375.9 | 3.8 | 12.9 | 0.0556 |
#5-3 | 369.6 | 3.0 | 13.0 | 0.0526 |
No. | Mass (g) | Diameter (mm) | Thickness (mm) | Loading Strain Rates (s−1) |
---|---|---|---|---|
#1 | 0.186 | 6.04 | 3.10 | 3500 |
#2 | 0.181 | 6.04 | 3.08 | |
#3 | 0.188 | 6.04 | 3.10 | |
#4 | 0.204 | 6.04 | 3.11 | 4500 |
#5 | 0.196 | 6.04 | 3.05 | |
#6 | 0.197 | 6.04 | 3.06 | |
#7 | 0.196 | 6.04 | 3.02 | 5500 |
#8 | 0.189 | 6.04 | 3.06 | |
#9 | 0.195 | 6.04 | 2.92 |
No. | Loading Strain Rates (s−1) | Hardening Modulus (MPa) | Yield Strength (MPa) | Critical Strain |
---|---|---|---|---|
#1 | 3416 | 174 | 17.9 | 0.5523 |
#2 | 3524 | 180 | 18.4 | 0.5533 |
#3 | 3560 | 185 | 18.2 | 0.5706 |
#4 | 4290 | 204 | 18.5 | 0.6593 |
#5 | 4468 | 206 | 18.8 | 0.6210 |
#6 | 4526 | 209 | 19.2 | 0.6312 |
#7 | 5650 | 211 | 19.1 | 0.7348 |
#8 | 5792 | 219 | 19.5 | 0.7519 |
#9 | 5813 | 227 | 20.1 | 0.7880 |
No. | Mass (g) | Diameter (mm) | Thickness (mm) | Temperature (°C) |
---|---|---|---|---|
#10 | 0.191 | 6.04 | 3.08 | 100 |
#11 | 0.190 | 6.04 | 3.11 | |
#12 | 0.189 | 6.04 | 3.10 | |
#13 | 0.189 | 6.04 | 3.07 | 150 |
#14 | 0.195 | 6.04 | 3.08 | |
#15 | 0.187 | 6.04 | 3.05 | |
#16 | 0.184 | 6.04 | 3.03 | 200 |
#17 | 0.187 | 6.04 | 3.08 | |
#18 | 0.185 | 6.04 | 3.04 |
Temperature (°C) | Loading Strain Rates (s−1) | Hardening Modulus (MPa) | Yield Strength (MPa) | Critical Strain |
---|---|---|---|---|
100 | 4421 | 197 | 16.8 | 0.5963 |
4716 | 201 | 17.5 | 0.5869 | |
4887 | 206 | 18.2 | 0.5974 | |
150 | 4338 | 179 | 18.1 | 0.5304 |
4567 | 181 | 18.3 | 0.5418 | |
4612 | 185 | 17.9 | 0.5867 | |
200 | 4677 | 165 | 16.8 | 0.5412 |
4815 | 169 | 17.2 | 0.6011 | |
4879 | 173 | 17.5 | 0.6089 |
No. | A | B | n | Adjusted R2 |
---|---|---|---|---|
#5-1 | 13.0 | 5.093 | 0.264 | 0.96378 |
#5-2 | 13.0 | 7.064 | 0.324 | 0.98591 |
#5-3 | 13.0 | 6.076 | 0.296 | 0.97085 |
Loading Strain Rate (s−1) | (MPa) | (MPa) |
---|---|---|
0.001 | 16.9 | 17.4 |
3416 | 52.5 | 68.1 |
3524 | 54.3 | 71.1 |
3560 | 57.8 | 79.8 |
4290 | 55.3 | 74.8 |
4468 | 58.1 | 78.5 |
4526 | 60.2 | 82.0 |
5650 | 58.7 | 79.2 |
5792 | 59.9 | 83.7 |
5813 | 60.5 | 85.6 |
Temperature (°C) | (MPa) | (MPa) |
---|---|---|
25 | 60.2 | 82.0 |
100 | 56.5 | 78.5 |
150 | 51.3 | 71.2 |
200 | 47.3 | 61.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Cui, X.; Tang, W.; Zhong, X.; Zhao, Y.; Huang, Y.; Shi, P.; Xue, X. Research on the Constitutive Model of PTFE/Al/Si Reactive Material. Polymers 2022, 14, 1358. https://doi.org/10.3390/polym14071358
Ding L, Cui X, Tang W, Zhong X, Zhao Y, Huang Y, Shi P, Xue X. Research on the Constitutive Model of PTFE/Al/Si Reactive Material. Polymers. 2022; 14(7):1358. https://doi.org/10.3390/polym14071358
Chicago/Turabian StyleDing, Liangliang, Xiaoxiao Cui, Wenhui Tang, Xue Zhong, Yuli Zhao, Yongzheng Huang, Peng Shi, and Xiaoguang Xue. 2022. "Research on the Constitutive Model of PTFE/Al/Si Reactive Material" Polymers 14, no. 7: 1358. https://doi.org/10.3390/polym14071358
APA StyleDing, L., Cui, X., Tang, W., Zhong, X., Zhao, Y., Huang, Y., Shi, P., & Xue, X. (2022). Research on the Constitutive Model of PTFE/Al/Si Reactive Material. Polymers, 14(7), 1358. https://doi.org/10.3390/polym14071358