Designing Soft Mobile Machines Enabled by Dielectric Elastomer Minimum Energy Structures
Abstract
:1. Introduction
2. Energy Minimization of DEMES
3. Design, Simulation, and Experiment of DEMES Soft Mobile Machines
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Miquel, H.; Barrera, D.; Amat, R.; Kurlyandskaya, G.V.; Sales, S. Magnetic actuator based on giant magnetostrictive material Terfenol-D with strain and temperature monitoring using FBG optical sensor. Measurement 2016, 80, 201–206. [Google Scholar] [CrossRef]
- Messing, R.; Frickel, N.; Belkoura, L.; Strey, R.; Rahn, H.; Odenbach, S.; Schmidt, A.M. Cobalt ferrite nanoparticles as multifunctional cross-linkers in PAAm ferrohydrogels. Macromolecules 2011, 44, 2990–2999. [Google Scholar] [CrossRef]
- Safronov, A.P.; Tyukova, I.S.; Kurlyandskaya, G.V. Coil-to-helix transition of gellan in dilute solutions is a two-step process. Food Hydrocoll. 2018, 74, 108–114. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Beitia, A.B.; García-Arribas, A.; Larrañaga, A. Flexible thin film magnetoimpedance sensors. J. Magn. Magn. Mater. 2016, 415, 91–96. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol. 2013, 31, 287. [Google Scholar] [CrossRef]
- Majidi, C. Soft Robotics: A Perspective-Current Trends and Prospects for the Future. Soft Robotics. 2014, 1, 5. [Google Scholar] [CrossRef]
- McEvoy, M.A.; Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 2015, 347, 1261689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics. 2016, 1, 3690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilievski, F.; Mazzeo, A.D.; Shepherd, R.F.; Chen, X.; Whitesides, G.M. Soft Robotics for Chemists. Angew. Chem. Int. Ed. 2011, 50, 1890. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.F.; IIievski, F.; Choi, W.; Morin, S.A.; Stokes, A.A.; Mazzeo, A.D.; Chen, X.; Wang, M.; Whitesides, G.M. From the Cover: Multigait soft robot. Proc. Natl. Acad. Sci. USA 2011, 108, 20400. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, N.W.; Tolley, M.T.; Overvelde, J.T.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015, 349, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood, R.J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451. [Google Scholar] [CrossRef] [PubMed]
- Felton, S.; Tolley, M.; Demaine, E.; Rus, D.; Wood, R. A method for building self-folding machines. Science 2014, 345, 644. [Google Scholar] [CrossRef] [PubMed]
- Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%. Science 2000, 287, 836. [Google Scholar] [CrossRef] [PubMed]
- Carpi, F.; Bauer, S.; De Rossi, D. Stretching Dielectric Elastomer Performance. Science 2010, 330, 1759. [Google Scholar] [CrossRef] [PubMed]
- Brochu, P.; Pei, Q.B. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 2010, 31, 10. [Google Scholar] [CrossRef]
- Anderson, I.A.; Gisby, T.A.; Mckay, T.G.; O’Brien, B.M.; Calius, E.P. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 2012, 112, 041101. [Google Scholar] [CrossRef]
- Keplinger, C.; Sun, J.Y.; Foo, C.C.; Rothemund, P.; Whitesides, G.M.; Suo, Z.G. Stretchable, transparent, ionic conductors. Science 2013, 341, 984. [Google Scholar] [CrossRef] [Green Version]
- Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 2014, 26, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, J.; Meng, Y.; Xie, Z.; Peng, Z.; Wu, J.; Shi, Y.; Plamthottam, R.; Yang, W.; Pei, Q. A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation. Sci. Adv. 2022, 8, eabm6200. [Google Scholar] [CrossRef] [PubMed]
- Kofod, G.; Wirge, W.; Paajanen, M.; Bauer, S. Energy Minimization for Self-Organized Structure Formation and Actuation. Appl. Phys. Lett. 2007, 90, 081916. [Google Scholar] [CrossRef]
- Kofod, G.; Paajanen, M.; Bauer, S. Self-organized minimum-energy structures for dielectric elastomer actuators. Appl. Phys. A 2007, 85, 141–143. [Google Scholar] [CrossRef]
- Araromi, O.A.; Gavrilovich, I.; Shintake, J.; Rosset, S.; Shea, H.R. Towards a deployable satellite gripper based on multisegment dielectric elastomer minimum energy structures. Proc. SPIE 2014, 9056, 1–10. [Google Scholar]
- Zhao, J.; Niu, J.; McCoul, D.; Ren, Z.; Pei, Q. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint. Appl. Phys. Lett. 2015, 106, 133504. [Google Scholar] [CrossRef]
- Neguyen, C.H.; Alici, G.; Mutlu, R. A Compliant Translational Mechanism Based on Dielectric Elastomer Actuators. J. Mech. Des. 2014, 136, 061009-1–061009-9. [Google Scholar] [CrossRef]
- Follador, M.; Conn, A.T.; Mazzolai, B.; Rossiter, J. Active-elastic bistable minimum energy structures. Appl. Phys. Lett. 2014, 105, 141903. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Zhang, L.; Geng, L.; Wang, Y.; Ni, N.; Zhou, J. Analysis, experiment, and correlation of a petal-shaped actuator based on dielectric elastomer minimum-energy structures. Appl. Phys. A 2016, 122, 323. [Google Scholar] [CrossRef]
- Vatanjou, H.; Hojjat, Y.; Karafi, M. Nonlinear dynamic analysis of dielectric elastomer minimum energy structures. Appl. Phys. A 2016, 125, 583. [Google Scholar] [CrossRef]
- Rosset, S.; Araromi, O.A.; Shintake, J.; Shea, H.R. Model and design of dielectric elastomer minimum energy structures. Smart Mater. Struct. 2014, 23, 085021. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, B.; McKay, T.; Calius, E.; Xie, S.; Anderson, I. Finite element modeling of dielectric elastomer minimum energy structures. Appl. Phys. A 2009, 94, 507–514. [Google Scholar] [CrossRef]
- Suo, Z.; Zhao, X.; Greene, W.H. A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 2008, 56, 467. [Google Scholar] [CrossRef]
- Zhao, X.; Hong, W.; Suo, Z. Electromechanical coexistent states and hysteresis in dielectric elastomer. Phys. Rev. B 2007, 76, 134113. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Hong, W.; Zhao, X.; Zhang, Z.; Suo, Z. Propagation of instability in dielectric elastomers. Int. J. Solids Struct. 2008, 45, 3739–3750. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Suo, Z.; Zhou, J.; Klein, P. A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers. Int. J. Solids Struct. 2012, 49, 2187–2194. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.H.; Suo, Z.G. Method to analyze programmable deformation of dielectric elastomer layers. Appl. Phys. Lett. 2008, 93, 251902. [Google Scholar] [CrossRef]
- Sun, W.; Liu, F.; Ma, Z.; Li, C.; Zhou, J. Soft electroactive actuators and hard ratchet-wheels enable unidirectional locomotion of hybrid machine. AIP Adv. 2017, 7, 015308. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Liu, F.; Ma, Z.; Li, C.; Zhou, J. Soft mobile robots driven by foldable dielectric elastomer actuators. J. Appl. Phys. 2016, 120, 084901. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; An, N.; Sun, W.; Zhou, J. Designing Soft Mobile Machines Enabled by Dielectric Elastomer Minimum Energy Structures. Polymers 2022, 14, 1466. https://doi.org/10.3390/polym14071466
Liu F, An N, Sun W, Zhou J. Designing Soft Mobile Machines Enabled by Dielectric Elastomer Minimum Energy Structures. Polymers. 2022; 14(7):1466. https://doi.org/10.3390/polym14071466
Chicago/Turabian StyleLiu, Fan, Ning An, Wenjie Sun, and Jinxiong Zhou. 2022. "Designing Soft Mobile Machines Enabled by Dielectric Elastomer Minimum Energy Structures" Polymers 14, no. 7: 1466. https://doi.org/10.3390/polym14071466
APA StyleLiu, F., An, N., Sun, W., & Zhou, J. (2022). Designing Soft Mobile Machines Enabled by Dielectric Elastomer Minimum Energy Structures. Polymers, 14(7), 1466. https://doi.org/10.3390/polym14071466