Effects of Freeze–Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess
Abstract
:1. Introduction
2. Materials
3. Testing Procedure
3.1. Specimen Preparation
3.2. Test Method
4. Results Analysis and Discussion
4.1. Axial Stress–Strain Curves
4.2. Effects of Basalt Fiber Content and Length
4.3. Effects of Lime Content
4.4. Relationship between UCS and Vp
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pécsi, M. Loess is not just the accumulation of dust. Quat. Int. 1990, 7–8, 1–21. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M.; McCulloch, M.T. Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Acta 1983, 47, 1897–1905. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, F.; Ma, W.; Fortier, R.; Mu, Y.H.; Mao, Y.C.; Hou, X. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles. Cold Reg. Sci. Technol. 2018, 151, 159–167. [Google Scholar] [CrossRef]
- Kamei, T.; Ahmed, A.; Shibi, T. Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilised with recycled bassanite. Cold Reg. Sci. Technol. 2012, 82, 124–129. [Google Scholar] [CrossRef]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Impact of wetting-drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils. Eng. Geol. 2014, 174, 11–21. [Google Scholar] [CrossRef]
- Qi, J.L.; Vermeer, P.A.; Cheng, G.D. A review of the influence of freeze-thaw cycles on soil geotechnical properties. Permafr. Periglac. Process. 2006, 17, 245–252. [Google Scholar] [CrossRef]
- Divya, P.V.; Viswanadham, B.V.S.; Gourc, J.P. Centrifuge model study on the performance of fiber reinforced clay-based landfill covers subjected to flexural distress. Appl. Clay Sci. 2017, 142, 173–184. [Google Scholar] [CrossRef]
- Thyagaraj, T.; Soujanya, D. Polypropylene fiber reinforced bentonite for waste containment barriers. Appl. Clay Sci. 2017, 142, 153–162. [Google Scholar] [CrossRef]
- Akbulut, S.; Arasan, S.; Kalkan, E. Modification of clayey soils using scrap tire rubber and synthetic fibers. Appl. Clay Sci. 2007, 38, 23–32. [Google Scholar] [CrossRef]
- Shahbazi, M.; Rowshanzamir, M.; Abtahi, S.M.; Hejazi, S.M. Optimization of carpet waste fibers and steel slag particles to reinforce expansive soil using response surface methodology. Appl. Clay Sci. 2017, 142, 185–192. [Google Scholar] [CrossRef]
- Ramesh, H.N.; Krishna, K.V.M.; Mamatha, H.V. Compaction and strength behavior of lime-coir fiber treated black cotton soil. Geomech. Eng. 2010, 2, 19–28. [Google Scholar] [CrossRef]
- Zaimoglu, A.S. Freezing–thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Reg. Sci. Technol. 2010, 60, 63–65. [Google Scholar] [CrossRef]
- Ghazavi, M.; Roustaie, M. The influence of freeze–thaw cycles on the unconfined compressive strength of fiber-reinforced clay. Cold Reg. Sci. Technol. 2010, 61, 125–131. [Google Scholar] [CrossRef]
- Roustaei, M.; Eslami, A.; Ghazavi, M. Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Reg. Sci. Technol. 2015, 120, 127–137. [Google Scholar] [CrossRef]
- Güllü, H.; Khudir, A. Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime. Cold Reg. Sci. Technol. 2014, 106, 55–65. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.Y.A.Y.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Nurazzi, N.M.; et al. Polylactic acid (pla) biocomposite: Processing, additive manufacturing and advanced applications. Polymers 2021, 13, 1326. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Rafiqah, S.A.; Aisyah, H.A.; Nurazzi, N.M.; Norrrahim, M.N.F. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (arenga pinnata (wurmb.) merr). Text. Res. J. 2021, 91, 152–167. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Aisyah, H.A.; Asyraf, M.R.M.; Hassan, S.A.; Zainudin, E.S.; Sapuan, S.M.; Sharma, S.; Bangar, S.P.; Jumaidin, R.; et al. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 2022, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, T.; Preteseille, M.; Ricordel, S. Contribution of the fiber reinforcement on the fatigue behavior of two cement-modified soils. Int. J. Fatigue 2016, 93, 71–81. [Google Scholar] [CrossRef]
- Wang, S.N.; Chen, F.Y.; Xue, Q.P.; Zhang, P. Splitting tensile strength of cement soil reinforced with basalt fibers. Materials 2020, 13, 3110. [Google Scholar] [CrossRef]
- Gao, C.H.; Du, G.Y.; Guo, Q.A.; Xia, H.; Pan, H.S.; Cai, J. Dynamic and static splitting-tensile properties of basalt fiber-reinforced cemented clay under freeze-thaw cycles. J. Mater. Civ. Eng. 2020, 32, 06020014. [Google Scholar] [CrossRef]
- Wang, D.X.; Wang, H.W.; Larsson, S.; Benzerzour, M.; Maherzi, W.; Amar, M. Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite. Constr. Build Mater. 2020, 241, 118085. [Google Scholar] [CrossRef]
- Tao, Z.F.; Zhang, Y.; Chen, X.R.; Gu, X.M. Effects of freeze-thaw cycles on the mechanical properties of cement-fiber composite treated silty clay. Constr. Build. Mater. 2022, 316, 125867. [Google Scholar] [CrossRef]
- Xu, D.S.; Yan, J.M.; Liu, Q. Behavior of discrete fiber-reinforced sandy soil in large-scale simple shear tests. Geosynth. Int. 2021, 28, 598–608. [Google Scholar] [CrossRef]
- Jiang, F.L.; Tan, B.A.; Wang, Z.; Liu, Y.; Hao, Y.Y.; Zhang, C.; Wu, H.N.; Hong, C.S. Preparation and related properties of geopolymer solidified uranium tailings bodies with various fibers and fiber content. Environ. Sci. Pollut. R. 2022, 29, 20603–20616. [Google Scholar] [CrossRef]
- Gao, L.; Hu, G.H.; Xu, N.; Fu, J.Y.; Xiang, C.; Yang, C. Experimental study on unconfined compressive strength of basalt fiber reinforced clay soil. Adv. Mater. Sci. Eng. 2015, 2015, 561293. [Google Scholar] [CrossRef] [Green Version]
- Orakoglu, M.E.; Liu, J.K. Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. Ksce. J. Civ. Eng. 2017, 21, 2128–2140. [Google Scholar] [CrossRef]
- Davar, A.; Tanzadeh, J.; Fadaee, O. Experimental evaluation of the basalt fibers and diatomite powder compound on enhanced fatigue life and tensile strength of hot mix asphalt at low temperatures. Constr. Build Mater. 2017, 153, 238–246. [Google Scholar] [CrossRef]
- Boz, A.; Sezer, A.; Ozdemir, T.; Hizal, G.E.; Dolmaci, O.A. Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arab. J. Geosci. 2018, 11, 122. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Z.P.; Chen, H.; Shao, L.T.; Zhou, X.G.; Wang, S.H. Study on strength behavior of basalt fiber-reinforced loess by digital image technology (dit) and scanning electron microscope (sem). Arab. J. Sci. Eng. 2021, 46, 11319–11338. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Z.P.; Chen, H.; Shao, L.T.; Zhou, X.G.; Wang, S.H. Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology. Ksce. J. Civ. Eng. 2021, 25, 3714–3726. [Google Scholar] [CrossRef]
- Güllü, H. On the prediction of shear wave velocity at local site of strong ground motion stations: An application using artificial intelligence. Bull. Earthq. Eng. 2013, 11, 969–997. [Google Scholar] [CrossRef]
- Vishwakarma, S.K.; Panigrahi, T.R.; Kaur, R. Sh-wave propagation in linearly varying fiber-reinforced viscoelastic composite structure uninitial stress. Arab. J. Geosci. 2019, 12, 10. [Google Scholar] [CrossRef]
- Çelik, M.Y. Water absorption and p-wave velocity changes during freeze–thaw weathering process of crosscut travertine rocks. Environ. Earth Sci. 2017, 76, 409. [Google Scholar] [CrossRef]
- Kahraman, S. The correlations between the saturated and dry p-wave velocity of rocks. Ultrasonics 2007, 46, 341–348. [Google Scholar] [CrossRef]
- Takarli, M.; Prince, W. Permeability and p-wave velocity change in granitic rocks under freeze–thaw cycles. Geomech. Geoengin. 2007, 2, 227–234. [Google Scholar] [CrossRef]
- Walbert, C.; Eslami, J.; Beaucour, A.-L.; Bourges, A.; Noumowe, A. Evolution of the mechanical behaviour of limestone subjected to freeze–thaw cycles. Environ. Earth Sci. 2015, 74, 6339–6351. [Google Scholar] [CrossRef]
- Dalinkevich, A.A.; Gumargalieva, K.Z.; Marakhovsky, S.S.; Soukhanov, A.V. Modern basalt fibrous materials and basalt fiber-based polymeric composites. J. Nat. Fibers 2009, 6, 248–271. [Google Scholar] [CrossRef]
- Wu, Q.; Chi, K.; Wu, Y.; Lee, S. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Mater. Des. 2014, 60, 334–342. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, D.; Liu, W.; Yang, Y.; Yang, H. Use of basalt fiber-reinforced tailings for improving the stability of tailings dam. Materials 2019, 12, 1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.G.; Chen, Y.M. Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. J. Geotech. Geoenviron. 2007, 133, 959–972. [Google Scholar] [CrossRef]
- Ahmadi, M.M.; Paydar, N.A. Requirements for soil-specific correlation between shear wave velocity and liquefaction resistance of sands. Soil. Dyn. Earthq. Eng. 2014, 57, 152–163. [Google Scholar] [CrossRef]
- Akbari Paydar, N.; Ahmadi, M.M. Effect of fines type and content of sand on correlation between shear wave velocity and liquefaction resistance. Geotech. Geol. Eng. 2016, 34, 1857–1876. [Google Scholar] [CrossRef]
- Lings, M.L.; Greening, P.D. A novel bender/extender element for soil testing. Geotechnique 2001, 51, 713–717. [Google Scholar] [CrossRef]
- Gu, X.; Yang, J.; Huang, M. Laboratory measurements of small strain properties of dry sands by bender element. Soils Found. 2013, 53, 735–745. [Google Scholar] [CrossRef]
- Wang, W.; Cao, G.; Li, Y.; Zhou, Y.; Lu, T.; Wang, Y.; Zheng, B. Experimental study of dynamic characteristics of tailings with different reconsolidation degrees after liquefaction. Front. Earth Sc-Switz 2022, 10, 876401. [Google Scholar] [CrossRef]
- Lu, T.; Wang, W.S.; Wei, Z.A.; Yang, Y.H.; Cao, G.S. Experimental study on static and dynamic mechanical properties of phosphogypsum. Environ. Sci. Pollut. R. 2021, 28, 17468–17481. [Google Scholar] [CrossRef] [PubMed]
- Santamarina, J.C.; Klein, K.A.; Fam, M.A. Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring; Willey & Sons: Chichester, UK, 2001. [Google Scholar]
- Kewalramani, M.A.; Gupta, R. Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 2006, 15, 374–379. [Google Scholar] [CrossRef]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Impact of freeze-thaw cycles on mechanical behaviour of lime stabilized gypseous soils. Cold Reg. Sci. Technol. 2014, 99, 38–45. [Google Scholar] [CrossRef]
- Hotineanu, A.; Bouasker, M.; Aldaood, A.; Al-Mukhtar, M. Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays. Cold Reg. Sci. Technol. 2015, 119, 151–157. [Google Scholar] [CrossRef]
- Geng, W.L.; Wang, W.S.; Wei, Z.A.; Huang, G.; Jing, X.F.; Jiang, C.B.; Tian, S. Experimental study of mesostructure deformation characteristics of unsaturated tailings with different moisture content. Water-Sui 2021, 13, 15. [Google Scholar] [CrossRef]
- Chaduvula, U.; Viswanadham, B.V.S.; Kodikara, J. A study on desiccation cracking behavior of polyester fiber-reinforced expansive clay. Appl. Clay. Sci. 2017, 142, 163–172. [Google Scholar] [CrossRef]
- Abu-Farsakh, M.; Dhakal, S.; Chen, Q.M. Laboratory characterization of cementitiously treated/stabilized very weak subgrade soil under cyclic loading. Soils Found. 2015, 55, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Yarbaşı, N.; Kalkan, E.; Akbulut, S. Modification of the geotechnical properties, as influenced by freeze–thaw, of granular soils with waste additives. Cold Reg. Sci. Technol. 2007, 48, 44–54. [Google Scholar] [CrossRef]
- Cao, G.S.; Wang, W.S.; Yin, G.Z.; Wei, Z.A. Experimental study of shear wave velocity in unsaturated tailings soil with variant grain size distribution. Constr. Build Mater. 2019, 228, 116744. [Google Scholar] [CrossRef]
- Cao, G.S.; Wei, Z.A.; Wang, W.S.; Zheng, B.B. Shearing resistance of tailing sand waste pollutants mixed with different contents of fly ash. Environ. Sci. Pollut. R. 2020, 27, 8046–8057. [Google Scholar] [CrossRef]
- Boz, A.; Sezer, A. Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay. Cold Reg. Sci. Technol. 2018, 151, 359–366. [Google Scholar] [CrossRef]
- Choobbasti, A.J.; Samakoosh, M.A.; Kutanaei, S.S. Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Constr. Build. Mater. 2019, 211, 1094–1104. [Google Scholar] [CrossRef]
Reinforcement Material | Type of Soil | Test Content | Author and Year |
---|---|---|---|
Basalt fiber | Cement soil | Splitting tensile strength | Wang et al., 2020 [20] |
Clay | Static and dynamic tensile strength, freeze-thaw damage | Gao et al., 2020 [21] | |
Kaolinite | Uniaxial and triaxial compressive strength | Wang et al., 2020 [22] | |
Silty clay | Uniaxial compressive strength | Tao et al., 2022 [23] | |
Sand | Simple shear strength | Xu et al., 2021 [24] | |
Uranium tailing | Compressive strength, radon exhalation rate | Jiang et al., 2022 [25] | |
Clay | Uniaxial compressive strength | Gao et al., 2015 [26] | |
Clay | Triaxial compressive strength, freeze–thaw damage | Orakoglu and Liu 2017 [27] | |
Asphalt | Tensile strength, fatigue damage | Davar et al., 2017 [28] | |
Clay | Uniaxial compressive strength | Boz et al., 2018 [29] | |
Loess | Triaxial compressive strength | Xu et al., 2021 [30,31] |
Parameter | Value |
---|---|
Specific gravity | 2.71 |
Maximum dry density (g/cm3) | 1.71 |
Cohesion (kPa) | 22.3 |
Internal friction angle (°) | 21.5 |
Liquid limit (%) | 33.9 |
Plastic limit (%) | 20.9 |
Moisture content range of sample (%) | 12–15 |
Elastic Modulus (GPa) | Tensile Strength (MPa) | Fracture Strength (MPa) | Density (g/cm3) |
---|---|---|---|
89 | 2650 | 3200 | 2.7 |
Loess Sample No. | Basalt Fiber Content (%) | Fiber Length (mm) | Lime Content (%) | Freeze–Thaw Cycles | |||
---|---|---|---|---|---|---|---|
N1 | 0 | 0 | 0 | 0 | 1 | 5 | 10 |
N2 | 0.5 | 6 | 1 | 0 | 1 | 5 | 10 |
N3 | 1 | 6 | 1 | 0 | 1 | 5 | 10 |
N4 | 1.5 | 6 | 1 | 0 | 1 | 5 | 10 |
N5 | 0.5 | 6 | 3 | 0 | - | 5 | 10 |
N6 | 1 | 6 | 3 | 0 | - | 5 | 10 |
N7 | 1.5 | 6 | 3 | 0 | - | 5 | 10 |
N8 | 0.5 | 12 | 1 | 0 | 1 | 5 | 10 |
N9 | 1 | 12 | 1 | 0 | 1 | 5 | 10 |
N10 | 1.5 | 12 | 1 | 0 | 1 | 5 | 10 |
N11 | 0.5 | 12 | 3 | 0 | - | 5 | 10 |
N12 | 1 | 12 | 3 | 0 | - | 5 | 10 |
N13 | 1.5 | 12 | 3 | 0 | - | 5 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cao, G.; Li, Y.; Zhou, Y.; Lu, T.; Zheng, B.; Geng, W. Effects of Freeze–Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess. Polymers 2022, 14, 1465. https://doi.org/10.3390/polym14071465
Wang W, Cao G, Li Y, Zhou Y, Lu T, Zheng B, Geng W. Effects of Freeze–Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess. Polymers. 2022; 14(7):1465. https://doi.org/10.3390/polym14071465
Chicago/Turabian StyleWang, Wensong, Guansen Cao, Ye Li, Yuxi Zhou, Ting Lu, Binbin Zheng, and Weile Geng. 2022. "Effects of Freeze–Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess" Polymers 14, no. 7: 1465. https://doi.org/10.3390/polym14071465
APA StyleWang, W., Cao, G., Li, Y., Zhou, Y., Lu, T., Zheng, B., & Geng, W. (2022). Effects of Freeze–Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess. Polymers, 14(7), 1465. https://doi.org/10.3390/polym14071465