Preparation and Characterization of Model Tire–Road Wear Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling of Real TRWP
2.3. Preparation of Model TRWP
2.4. Characterization of the Model TRWP
3. Results and Discussion
3.1. Characteristics of Real TRWPs and MPs
3.2. Influence of Mixing Ratio of the MP and TWP on Property of TRWP
3.3. Influence of the Pressing Procedures on Properties of Model TRWP
3.4. Chloroform Treatment Effect of TWP on Properties of TRWP
3.5. Preparation of Model TRWPs Using Asphalt Pavement Wear Particles
3.6. Proper Preparation Process of Model TRWPs Similar to Real TRWPs
3.7. Variety of Applicable TWPs and MPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Son, C.E.; Choi, S.-S. Analytical method for determination of the content of tire wear particle in tire and road wear particles. Elast. Compos. 2021, 56, 1–5. [Google Scholar]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)-A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.; Blomqvist, G.; Järlskog, I.; Lundberg, J.; Janhäll, S.; Elmgren, M.; Johansson, C.; Norman, M.; Silvergren, S. Road dust load dynamics and influencing factors for six winter seasons in Stockholm, Sweden. Atm. Environ. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Klockner, P.; Reemtsma, T.; Eisentraut, P.; Braun, U.; Ruhl, A.S.; Wagner, S. Tire and road wear particles in road environment-Quantification and assessment of particle dynamics by Zn determination after density separation. Chemosphere 2019, 222, 714–721. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzeminska, E.; Wieszala, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Denier van der Gon, H.; Gerlofs-Nijland, M.E.; Gehrig, R.; Gustafsson, M.; Janssen, N.; Harrison, R.M.; Hulskotte, J.; Johansson, C.; Jozwicka, M.; Keuken, M.; et al. The policy relevance of wear emissions from road transport, now and in the future-An international workshop report and consensus statement. J. Air Waste Manag. Assoc. 2012, 63, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kwak, J.; Kim, H.; Lee, J. Properties of roadway particles from interaction between the tire and road pavement. Int. J. Automot. Technol. 2013, 14, 163–173. [Google Scholar] [CrossRef]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef]
- Panko, J.M.; Hitchcock, K.M.; Fuller, G.W.; Green, D. Evaluation of tire wear contribution to PM2.5 in urban environments. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Knight, L.J.; Parker-Jurd, F.N.F.; Al-Sid-Cheikh, M.; Thomson, R.C. Tyre wear particles: An abundant yet widely unreported microplastic? Environ. Sci. Pollut. Res. 2020, 27, 18345–18354. [Google Scholar] [CrossRef]
- Järlskog, I.; Strömvall, A.-M.; Magnusson, K.; Gustafsson, M.; Polukarova, M.; Galfi, H.; Aronsson, M.; Andersson-Sköld, Y. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 2020, 729, 138950. [Google Scholar] [CrossRef]
- Akdogan, Z.; Guven, B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ. Pollut. 2019, 254, 113011. [Google Scholar] [CrossRef]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Siegfried, M.; Koelmans, A.A.; Besseling, E.; Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 2017, 127, 249–257. [Google Scholar] [CrossRef]
- Blanco, I. Lifetime Prediction of Polymers: To Bet, or Not to Bet-Is This the Question? Materials 2018, 11, 1383. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.O.; Alexandrova, O.; Tire Wear Emissions for Asphalt Rubber and Portland Cement Concrete Pavement Surfaces. Arizona Department of Transportation Contract KR-04-0720-TRN Final Report 2006. Available online: https://azdot.gov/sites/default/files/2019/05/tire-wear-emissions-for-asphalt-rubber-portland-cement-concrete-April2006.pdf (accessed on 30 March 2022).
- Chae, E.; Jung, U.; Choi, S.-S. Quantification of tire tread wear particles in microparticles produced on the road usingoleamide as a novel marker. Environ. Pollut. 2021, 288, 117811. [Google Scholar] [CrossRef] [PubMed]
- Kovochich, M.; Parker, J.A.; Oh, S.C.; Lee, J.P.; Wagner, S.; Reemtsma, T.; Unice, K.M. Characterization of individual tire and road wear particles in environmental road dust, tunnel dust, and sediment. Environ. Sci. Technol. Lett. 2021, 8, 1057–1064. [Google Scholar] [CrossRef]
- Jung, U.Y.; Choi, S.-S. A variety of particles including tire wear particles produced on the road. Elast. Compos. 2021, 56, 85–91. [Google Scholar]
- Ryu, G.; Kim, D.; Song, S.; Lee, H.H.; Ha, J.U.; Kim, W. Wear particulate matters and physical properties of silica filled ENR/BR tread compounds according to the BR contents. Elast. Compos. 2021, 56, 243–249. [Google Scholar]
- Lee, G.-B.; Shin, B.; Han, E.; Kang, D.; An, D.J.; Nah, C. Effect of blade materials on wear behaviors of styrene-butadiene rubber and butadiene rubber. Elast. Compos. 2021, 56, 172–178. [Google Scholar]
Sieve Size (μm) | Mixing Ratio of MP/TWP (Weight) | ||
---|---|---|---|
2/1 | 5/1 | 10/1 | |
1000 | 7.4 | - | - |
500 | 52.3 | 2.3 | 1.5 |
212 | 2.9 | 21.5 | 10.7 |
106 | 2.5 | - | 0.5 |
63 | 7.6 | - | 0.2 |
38 | 9.2 | 1.4 | - |
20 | 18.1 | 63.8 | 74.8 |
<20 | - | 11 | 12.3 |
Sample No. | Component Ratio (%) | |||
---|---|---|---|---|
Volatile Component | Polymer | Carbon Black | Ash | |
Single step pressing | ||||
1 | 6.8 | 51.7 | 25.5 | 16.0 |
2 | 6.0 | 52.5 | 25.2 | 16.3 |
3 | 8.0 | 49.6 | 24.2 | 18.2 |
Average | 6.9 ± 1.0 | 51.3 ± 1.5 | 25.0 ± 0.7 | 16.8 ± 1.2 |
Double step pressing | ||||
1 | 7.1 | 51.7 | 25.4 | 15.8 |
2 | 6.9 | 50.4 | 25.1 | 17.6 |
3 | 4.9 | 51.3 | 25.5 | 18.3 |
Average | 6.3 ± 1.2 | 51.2 ± 0.7 | 25.3 ± 0.2 | 17.2 ± 1.3 |
Sample No. | Component Ratio (%) | |||
---|---|---|---|---|
Volatile Component | Polymer | Carbon Black | Ash | |
Single step pressing | ||||
1 | 3.8 | 49.7 | 25.6 | 20.9 |
2 | 5.1 | 51.7 | 28.5 | 14.7 |
3 | 5.0 | 53.0 | 28.8 | 13.2 |
Average | 4.3 ± 0.8 | 51.5 ± 1.7 | 27.6 ± 1.8 | 16.3 ± 4.1 |
Double step pressing | ||||
1 | 3.9 | 57.4 | 25.1 | 13.6 |
2 | 5.5 | 52.5 | 28.4 | 13.6 |
3 | 4.9 | 52.9 | 28.2 | 14.0 |
Average | 4.8 ± 0.8 | 54.3 ± 2.7 | 27.2 ± 1.9 | 13.7 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, C.E.; Choi, S.-S. Preparation and Characterization of Model Tire–Road Wear Particles. Polymers 2022, 14, 1512. https://doi.org/10.3390/polym14081512
Son CE, Choi S-S. Preparation and Characterization of Model Tire–Road Wear Particles. Polymers. 2022; 14(8):1512. https://doi.org/10.3390/polym14081512
Chicago/Turabian StyleSon, Chae Eun, and Sung-Seen Choi. 2022. "Preparation and Characterization of Model Tire–Road Wear Particles" Polymers 14, no. 8: 1512. https://doi.org/10.3390/polym14081512
APA StyleSon, C. E., & Choi, S. -S. (2022). Preparation and Characterization of Model Tire–Road Wear Particles. Polymers, 14(8), 1512. https://doi.org/10.3390/polym14081512