Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticle Synthesis of ZnO by Controlled Atmospheric Arc Discharge (DARC-AC)
2.2. Surface Modification of ZnO Nanoparticles Using GPTMS
2.3. Production of Hybrid and Nanocomposite Material
2.4. Characterization
2.4.1. Morphological and Structural Properties
2.4.2. Mechanical Properties
2.4.3. Thermal Properties
3. Results and Discussion
3.1. Synthesis of ZnO Nanoparticles by DARC-AC
3.2. Surface Modification of ZnO Nanoparticles by GPTMS
3.3. Production of Hybrid and Nanocomposite Material
Polymerization Reaction Study
3.4. Mechanical Properties
3.5. Thermal Properties
3.6. Morphological Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Bakkardouch, F.E.; Atmani, H.; El Khalloufi, M.; Jouaiti, A.; Laallam, L. Modified cellulose-based hybrid materials: Effect of ZnO and CuO nanoparticles on the thermal insulation property. Mater. Chem. Phys. 2021, 271, 124881. [Google Scholar] [CrossRef]
- Afshari, A.; Akbari, M.; Toghraie, D.; Yazdi, M.E. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J. Therm. Anal. Calorim. 2018, 132, 1001–1015. [Google Scholar] [CrossRef]
- Zawisza, B.; Sitko, R.; Queralt, I.; Margui, E.; Gagor, A. Cellulose mini-membranes modified with TiO2 for separation, determination, and speciation of arsenates and selenites. Microchim. Acta 2020, 187, 430. [Google Scholar] [CrossRef]
- Ingle, A.P.; Duran, N.; Rai, M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl. Microbiol. Biotechnol. 2014, 98, 1001–1009. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- El-nahhal, I.M.; Salem, J.K.; Kuhn, S.; Hammad, T.; Hempelmann, R.; Al, S. Synthesis & characterization of silica coated and functionalized silica coated zinc oxide nanomaterials. Powder Technol. 2016, 287, 439–446. [Google Scholar] [CrossRef]
- Saravanan, P.; Jayamoorthy, K.; Anandakumar, S. Fluorescence quenching of APTES by Fe2O3 nanoparticles-Sensor and antibacterial applications. J. Lumin. 2016, 178, 241–248. [Google Scholar] [CrossRef]
- Ji, T.; Ma, C.; Brisbin, L.; Mu, L.; Robertson, C.G.; Dong, Y.; Zhu, J. Organosilane grafted silica: Quantitative correlation of microscopic surface characters and macroscopic surface properties. Appl. Surf. Sci. 2017, 399, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Jena, K.K.; Narayan, R.; Raju, K.V.S.N. Surface functionalized zinc oxide (ZnO) nanoparticle filled organic–inorganic hybrid materials with enhanced thermo-mechanical properties. Prog. Org. Coat. 2015, 89, 82–90. [Google Scholar] [CrossRef]
- Jaramillo, A.F.; Riquelme, S.A.; Medina, C.; Rojas, D.; Montalba, C. Comparative Study of the Antimicrobial Effect of Nanocomposites and Composite Based on Poly (butylene adipate-co- terephthalate) Using Cu and Cu/Cu2O Nanoparticles and CuSO4. Nanoscale Res. Lett. 2019, 14, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felipe Jaramillo, A.; Riquelme, S.; Montoya, L.F.; Sánchez-Sanhueza, G.; Medinam, C.; Rojas, D.; Salazar, F.; Sanhueza, J.P.; Francisco Meléndrez, M. Influence of the concentration of copper nanoparticles on the thermo-mechanical and antibacterial properties of nanocomposites based on poly(butylene adipate-co-terephthalate). Polym. Compos. 2018, 40, 1870–1882. [Google Scholar] [CrossRef]
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Song, B.; Zhang, S.; Zhang, F.; Liu, C.; Zhang, N.; Yao, H.; Shi, Y. Using 3-Isocyanatopropyltrimethoxysilane to Decorate Graphene Oxide with Nano-Titanium Dioxide for Enhancing the Anti-Corrosion Properties of Epoxy Coating. Polymers 2020, 12, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostovoy, A.S.; Vikulova, M.A.; Lopukhova, M.I. Reinforcing effects of aminosilane-functionalized h-BN on the physicochemical and mechanical behaviors of epoxy nanocomposites. Sci. Rep. 2020, 10, 10676. [Google Scholar] [CrossRef] [PubMed]
- Amirbeygi, H.; Khosravi, H.; Tohidlou, E. Reinforcing effects of aminosilane-functionalized graphene on the tribological and mechanical behaviors of epoxy nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47410. [Google Scholar] [CrossRef]
- Mostovoy, A.; Yakovlev, A.; Tseluikin, V.; Lopukhova, M. Epoxy Nanocomposites Reinforced with Functionalized Carbon Nanotubes. Polymers 2020, 12, 1816. [Google Scholar] [CrossRef]
- Toledo, L.; Palacio, D.; Sánchez, S.; Urbano, B.F. Pluronic-coated nanoparticles for enhanced spatial distribution and increased softness of nanocomposite hydrogels. J. Mater. Sci. 2020, 55, 8968–8982. [Google Scholar] [CrossRef]
- Jaramillo, A.F.; Montoya, L.F.; Prabhakar, J.M.; Sanhueza, J.P.; Fernández, K.; Rohwerder, M.; Rojas, D.; Montalba, C.; Melendrez, M.F. Formulation of a multifunctional coating based on polyphenols extracted from the Pine radiata bark and functionalized zinc oxide nanoparticles: Evaluation of hydrophobic and anticorrosive properties. Prog. Org. Coat. 2019, 135, 191–204. [Google Scholar] [CrossRef]
- Jaramillo, A.F.; Medina, C.; Flores, P.; Canales, C.; Maldonado, C.; Castaño Rivera, P.; Rojas, D.; Meléndrez, M.F. Improvement of thermomechanical properties of composite based on hydroxyapatite functionalized with alkylsilanes in epoxy matrix. Ceram. Int. 2020, 46, 8368–8378. [Google Scholar] [CrossRef]
- Kumar, S.K.; Jouault, N.; Benicewicz, B.; Neely, T. Nanocomposites with Polymer Grafted Nanoparticles. Macromolecules 2013, 46, 3199–3214. [Google Scholar] [CrossRef]
- Solis-Pomar, F.; Jaramillo, A.; Lopez-Villareal, J.; Medina, C.; Rojas, D.; Mera, A.C.; Meléndrez, M.F.; Pérez-Tijerina, E. Rapid synthesis and photocatalytic activity of ZnO nanowires obtained through microwave-assisted thermal decomposition. Ceram. Int. 2016, 42, 18045–18052. [Google Scholar] [CrossRef]
- Meléndrez, M.F.; Solis-Pomar, F.; Gutierrez-Lazos, C.D.; Flores, P.; Jaramillo, A.F.; Fundora, A.; Pérez-Tijerina, E. A new synthesis route of ZnO nanonails via microwave plasma-assisted chemical vapor deposition. Ceram. Int. 2016, 42, 1160–1168. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Attar, M.M.; Farzam, M. A study on the anticorrosion performance of the epoxy–polyamide nanocomposites containing ZnO nanoparticles. Prog. Org. Coat. 2011, 72, 410–422. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Attar, M.M.; Farzam, M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J. Therm. Anal. Calorim. 2011, 103, 731–739. [Google Scholar] [CrossRef]
- Gomes, V.; Souza, L.; Fernando, A.L. Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packag. Shelf Life 2016, 8, 63–70. [Google Scholar]
- Hofstetter, D.; Morkoc, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE 2010, 98, 1255–1268. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Q.; Huang, Y.; Yang, J. Nanoindentation and abrasion in Fe3O4/rGO reinforced epoxy electromagnetic protective coatings. J. Alloys Compd. 2021, 887, 161277. [Google Scholar] [CrossRef]
- Prabhu, S. Thermal, mechanical and γ -ray shielding properties of micro- and nano-Ta2O5 loaded DGEBA epoxy resin composites. J. Appl. Polym. Sci. 2021, 138, 51289. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Zhu, G.; Lu, Z.; Zhang, Y.; Zhao, X.; Hou, B. Developing multi-wall carbon nanotubes/Fusion-bonded epoxy powder nanocomposite coatings with superior anti-corrosion and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127309. [Google Scholar] [CrossRef]
- Thipperudrappa, S. Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber-reinforced epoxy nanocomposites. Polym. Compos. 2019, 41, 174–181. [Google Scholar] [CrossRef]
- Wang, T.; Liu, C.; Li, D.; Hou, Y.; Zhang, G. Nano ZnO/Epoxy Coating to Promote Surface Charge Dissipation on Insulators in DC Gas-Insulated Systems. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1322–1329. [Google Scholar] [CrossRef]
- Abdus Samad, U.; Alam, M.A.; Anis, A.; Sherif, E.-S.M.; Al-Mayman, S.I.; Al-Zahrani, S.M. Effect of Incorporated ZnO Nanoparticles on the Corrosion Performance of SiO2 Nanoparticle-Based Mechanically Robust Epoxy Coatings. Materials 2020, 13, 3767. [Google Scholar] [CrossRef] [PubMed]
- Yari, H.; Rostami, M. Enhanced weathering performance of epoxy/ZnO nanocomposite coatings via functionalization of ZnO UV blockers with amino and glycidoxy silane coupling agents. Prog. Org. Coat. 2020, 147, 105773. [Google Scholar] [CrossRef]
- Alam, M.A.; Samad, U.A.; Anis, A.; Alam, M.; Ubaidullah, M.; Al-Zahrani, S.M. Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique. Polymers 2021, 13, 1490. [Google Scholar] [CrossRef] [PubMed]
- Wy, S.; Johari, N.; Amri, S.; Azlina, N. Mechanochemical durability and self-cleaning performance of zinc oxide-epoxy superhydrophobic coating prepared via a facile one-step approach. Ceram. Int. 2021, 47, 15825–15833. [Google Scholar] [CrossRef]
- Jaramillo, A.F.; Baez-Cruz, R.; Montoya, L.F.; Medinam, C.; Pérez-Tijerina, E.; Salazar, F.; Rojas, D.; Melendrez, M.F. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceram. Int. 2017, 43, 11838–11847. [Google Scholar] [CrossRef]
- Medina, M.C.; Rojas, D.; Flores, P.; Peréz-Tijerina, E.; Meléndrez, M.F. Effect of ZnO nanoparticles obtained by arc discharge on thermo-mechanical properties of matrix thermoset nanocomposites. J. Appl. Polym. Sci. 2016, 133, 1–8. [Google Scholar] [CrossRef]
- Moussawi, R.N.; Patra, D. Modification of nanostructured ZnO surfaces with curcumin: Fluorescence-based sensing for arsenic and improving arsenic removal by ZnO. RSC Adv. 2016, 6, 17256–17268. [Google Scholar] [CrossRef] [Green Version]
- Amaria, A.; Nuryono, N.; Suyanta, S. Preparation of L-arginine-modified silica-coated magnetite nanoparticles for Au(III) adsorption. Orient. J. Chem. 2017, 33, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Brassard, J.D.; Sarkar, D.K.; Perron, J. Surface Modification and Functionalization of Oxide Nanoparticles for Superhydrophobic Applications. Adv. Mater. Res. 2011, 409, 469–473. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Green, L.A.W. Functionalization of nanoparticles for biomedical applications. Nano Today 2010, 5, 213–230. [Google Scholar] [CrossRef]
- González, M.G.; Cabanelas, J.C.; Baselga, J. Applications of FTIR on Epoxy Resins-Identification, Monitoring the Curing Process, Phase Separation and Water Uptake. In Infrared Spectroscopy-Materials Science, Engineering and Technology; Theophanides, T., Ed.; InTech: Rijeka, Croatia, 2012; Volume 2, pp. 261–284. [Google Scholar]
- Suresh, S.; Nisha, P.; Saravanan, P.; Jayamoorthy, K.; Karthikeyan, S. Investigation of the Thermal and Dielectric Behavior of Epoxy Nano-Hybrids by using Silane Modified Nano-ZnO. Silicon 2018, 10, 1291–1303. [Google Scholar] [CrossRef]
- Bazrgari, D.; Moztarzadeh, F.; Sabbagh-Alvani, A.A.; Rasoulianboroujeni, M.; Tahriri, M.; Tayebi, L. Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceram. Int. 2018, 44, 1220–1224. [Google Scholar] [CrossRef]
- Afzal, A.; Siddiqi, H.M.; Saeed, S.; Ahmad, Z. The influence of epoxy functionalized silica nanoparticles on stress dispersion and crack resistance in epoxy-based hybrids. Mater. Express 2011, 1, 299–306. [Google Scholar] [CrossRef]
- Macan, J.; Paljar, K.; Burmas, B.; Špehar, G.; Leskovac, M.; Gajović, A. Epoxy-matrix composites filled with surface-modified SiO2 nanoparticles. J. Therm. Anal. Calorim. 2017, 127, 399–408. [Google Scholar] [CrossRef]
- Kausar, A.; Zulfiqar, S.; Shabbir, S.; Ishaq, M.; Sarwar, M.I. Mechanical properties of functionalized SEBS based inorganic hybrid materials. Polym. Bull. 2007, 59, 457–468. [Google Scholar] [CrossRef]
- Korayem, A.H.; Barati, M.R.; Simon, G.P.; Zhao, X.L.; Duan, W.H. Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch. Compos. Part A Appl. Sci. Manuf. 2014, 61, 126–133. [Google Scholar] [CrossRef]
- Ci, L.; Bai, J.B. The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness. Compos. Sci. Technol. 2006, 66, 599–603. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, H.; Zhao, J.; Li, T.; Bie, B.X.; Luo, S.N.; Zhang, Z. High strain rate compression of epoxy based nanocomposites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 62–70. [Google Scholar] [CrossRef]
- Gómez-Del Río, T.; Rodríguez, J.; Pearson, R.A. Compressive properties of nanoparticle modified epoxy resin at different strain rates. Compos. Part B Eng. 2014, 57, 173–179. [Google Scholar] [CrossRef]
- Hong, R.Y.; Li, J.H.; Chen, L.L.; Liu, D.Q.; Li, H.Z.; Zheng, Y.; Ding, J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 2009, 189, 426–432. [Google Scholar] [CrossRef]
- Yang, P.; Wang, G.; Xia, X.; Takezawa, Y.; Wang, H.; Yamada, S.; Du, Q.; Zhong, W. Preparation and thermo-mechanical properties of heat-resistant epoxy/silica hybrid materials. Polym. Eng. Sci. 2008, 48, 1214–1221. [Google Scholar] [CrossRef]
(R1) Resine (L20) (Chemical Composition) | (H1) Hardener (EPH 573) (Chemical Composition) |
---|---|
BisPhenol-A-Epichlorhydrin (70%) Bisphenol-F-Epichlorhydrin (20%) Epoxidized molecule that gives flexibility to the thermoset polymer as: 1,6-Bis(2,3-Epoxy-propoxy)hexane (10%) | Diethylenetriamine m-phenylene-bis(methylamine) (1%) |
(R2) Resine Bifenol F (Chemical Composition) | (H2) Hardener (HT2) (Chemical Composition) |
Bisphenol-F-(epichlorhydrin) (70%) Bisphenol-A-(epichlorhydrin) (20%) 1,6-Bis(2,3-Epoxy-propoxy)hexane (10%) | 3 aminomethyl-3,5,5-trimethylcyclohexylamine |
Chemical Structures | |
BisPhenol-A-Epichlorhydrin | |
Bisphenol-F-Epichlorhydrin | |
1,6-Bis(2,3-Epoxy-propoxy)hexane | |
3 aminomethyl-3,5,5-trimethylcyclohexylamine | |
Diethylenetriamine | |
m-phenylene-bis(methylamine) |
Samples | Mixtures | Relation | Resin (g) | Hardener (g) | ZnO-NPs (g) | ZnO-NPs-GPTMS (g) |
---|---|---|---|---|---|---|
P1 | R1 + E1 | 4:1 | 8 | 2 | ||
HM1-G | (ZnO-NPs-GPTMS) + E1 | 4:1 | 1 | 4 | ||
NCM1 | R1 + E1 + (ZnO-NPs) | (4:1) + (5% p/p) | 16 | 4 | 1.05 | |
HMF1 | R1 + E1 + (ZnO-NPs-GPTMS) | (4:1) + (5% p/p) | 16 | 4 | 1.05 | |
P2 | R2 + E2 | 2:1 | 13.3 | 6.6 | ||
HM2-G | (ZnO-NPs-GPTMS) + E2 | 2:1 | 2 | 4 | ||
NCM2 | R2 + E2 + (ZnO-NPs) | (2:1) + (5% p/p) | 13.3 | 6.6 | 1.05 | |
HMF2 | R2 + E2 + (ZnO-NPs-GPTMS) | (2:1) + (5% p/p) | 13.3 | 6.6 | 1.05 |
Sample | Ef | Improvement | εfm | Improvement | σfm | Improvement |
---|---|---|---|---|---|---|
(GPa) | (%) | (%) | (%) | (MPa) | (%) | |
P1 | 2.89 ± 0.17 | - | 3.71 ± 0.21 | - | 101.56 ± 5.2 | - |
NCM1 | 6.35 ± 0.36 | +119% | 2.24 ± 0.78 | −40% | 132.75 ± 37.88 | +31% |
HMF1 | 8.22 ± 0.25 | +184% | 3.25 ± 0.19 | −13% | 209.36 ± 4.96 | +106% |
P2 | 3.59 ± 0.89 | - | 3.73 ± 0.39 | - | 108.68 ± 19.72 | - |
NCM2 | 3.38 ± 0.22 | −6% | 4.09 ± 0.57 | +9% | 103.61 ± 7.11 | −5% |
HMF2 | 5.81 ± 1.99 | +61% | 3.41 ± 0.58 | −9% | 164.61 ± 41.75 | +51% |
Sample | Ec | Improvement | εcm | Improvement | σcm | Improvement |
---|---|---|---|---|---|---|
(GPa) | (%) | (%) | (%) | (MPa) | (%) | |
P1 | 1.69 ± 0.017 | - | 9.25 ± 0.35 | - | 119.88 ± 4.035 | - |
NCM1 | 1.69 ± 0.15 | - | 8.83 ± 0.21 | −5% | 112.83 ± 2.36 | −6% |
HMF1 | 1.68 ± 0.015 | −0.6% | 8.87 ± 0.19 | −4% | 115.23 ± 0.91 | −4% |
P2 | 1.61 ± 0.098 | - | 8.52 ± 1.078 | - | 91.72 ± 2.71 | - |
NCM2 | 1.56 ± 0.011 | −3% | 8.28 ± 0.16 | −3% | 94.11 ± 1.374 | +3% |
HMF2 | 1.55 ± 0.015 | −4% | 8.67 ± 0.19 | +2% | 95.04 ± 3.14 | +4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas, A.; Jaramillo, A.F.; Palacio, D.A.; Díaz-Gómez, A.; Rojas, D.; Medina, C.; Pérez-Tijerina, E.; Solís-Pomar, F.; Meléndrez, M.F. Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices. Polymers 2022, 14, 1579. https://doi.org/10.3390/polym14081579
Salas A, Jaramillo AF, Palacio DA, Díaz-Gómez A, Rojas D, Medina C, Pérez-Tijerina E, Solís-Pomar F, Meléndrez MF. Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices. Polymers. 2022; 14(8):1579. https://doi.org/10.3390/polym14081579
Chicago/Turabian StyleSalas, Alexis, Andrés Felipe Jaramillo, Daniel Andrés Palacio, Andrés Díaz-Gómez, David Rojas, Carlos Medina, Eduardo Pérez-Tijerina, Francisco Solís-Pomar, and Manuel Francisco Meléndrez. 2022. "Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices" Polymers 14, no. 8: 1579. https://doi.org/10.3390/polym14081579
APA StyleSalas, A., Jaramillo, A. F., Palacio, D. A., Díaz-Gómez, A., Rojas, D., Medina, C., Pérez-Tijerina, E., Solís-Pomar, F., & Meléndrez, M. F. (2022). Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices. Polymers, 14(8), 1579. https://doi.org/10.3390/polym14081579