Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthetic Procedures
2.2.1. Synthesis of PTB7-b-P4VP
2.2.2. Synthesis of PC71BM: PTB7-b-P4VP (1.1:1) Blend WPNPs
2.3. Sample Characterization
2.3.1. Nuclear Magnetic Resonance (NMR)
2.3.2. Size Exclusion Chromatography (SEC)
2.3.3. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)
2.3.4. Differential Scanning Calorimetry (DSC)
2.3.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.6. UV-Visible Spectroscopy
2.3.7. Contact Angle and Surface Energy Measurements
2.3.8. Dynamic Light Scattering (DLS)
2.3.9. Transmission Electron Microscopy (TEM)
2.3.10. Atomic Force Microscopy (AFM)
2.3.11. Grazing Incidence X-ray Diffraction (GIXRD)
2.4. OPV Device Fabrication and Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of the Macromer PTB7
3.2. Synthesis and Characterization of the Rod–Coil Block Copolymer PTB7-b-P4VP
3.3. Synthesis, Characterization, and Deposition of the Water-Processable Nanoparticles
3.4. Device Fabrication and Characterization
3.4.1. Device Architecture Optimization: Choosing the Electron Transporting Layer (ETL)
3.4.2. Comparison between Device from Aqueous Suspension and Conventional Bulk Heterojunction (BHJ) Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazzio, K.A.; Luscombe, C.K. The future of organic photovoltaics. Chem. Soc. Rev. 2015, 44, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, C.; Zhan, X. Morphology control in organic solar cells. Adv. Energy Mater. 2018, 8, 1703147. [Google Scholar] [CrossRef]
- Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013, 38, 1929–1940. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, H.; Wu, J.; Tang, H.; Wang, H.; Yang, Q.; Fu, Y.; Xie, Z. Additive and high-temperature processing boost the photovoltaic performance of nonfullerene organic solar cells fabricated with blade coating and nonhalogenated solvents. ACS Appl. Mater. Interfaces 2021, 13, 10239–10248. [Google Scholar] [CrossRef]
- Xu, X.; Yu, L.; Yan, H.; Li, R.; Peng, Q. Highly efficient non-fullerene organic solar cells enabled by a delayed processing method using a non-halogenated solvent. Energy Environ. Sci. 2020, 13, 4381–4388. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, S.; Zhang, Y.; Li, S.; Liu, X.; He, C.; Zheng, Z.; Hou, J. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 2018, 30, 1704837. [Google Scholar] [CrossRef]
- Holmes, A.; Deniau, E.; Lartigau-Dagron, C.; Bousquet, A.; Chambon, S.; Holmes, N.P. Review of waterborne organic semiconductor colloids for photovoltaics. ACS Nano 2021, 15, 3927–3959. [Google Scholar] [CrossRef]
- Subianto, S.; Dutta, N.; Andersson, M.; Choudhury, N.R. Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches. Adv. Colloid Interface Sci. 2016, 235, 56–69. [Google Scholar] [CrossRef]
- Nagai, M.; Huang, J.; Cui, D.; Wang, Z.; Huang, W. Two-step reprecipitation method with size and zeta potential controllability for synthesizing semiconducting polymer nanoparticles. Colloid Polym. Sci. 2017, 295, 1153–1164. [Google Scholar] [CrossRef]
- Yamamoto, N.A.D.; Payne, M.E.; Koehler, M.; Facchetti, A.; Roman, L.S.; Arias, A.C. Charge transport model for photovoltaic devices based on printed polymer: Fullerene nanoparticles. Sol. Energy Mater. Sol. Cells 2015, 141, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Couto, R.; Chambon, S.; Aymonier, C.; Mignard, E.; Pavageau, B.; Erriguible, A.; Marre, S. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly(3-hexylthiophene) nanoparticles for OFET devices. Chem. Commun. 2015, 51, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Chambon, S.; Schatz, C.; Sébire, V.; Pavageau, B.; Wantz, G.; Hirsch, L. Organic semiconductor core-shell nanoparticles designed through successive solvent displacements. Mater. Horiz. 2014, 1, 431–438. [Google Scholar] [CrossRef]
- Hu, Z.; Gesquiere, A.J. PCBM concentration dependent morphology of P3HT in composite P3HT/PCBM nanoparticles. Chem. Phys. Lett. 2009, 476, 51–55. [Google Scholar] [CrossRef]
- Landfester, K.; Montenegro, R.; Scherf, U.; Güntner, R.; Asawapirom, U.; Patil, S.; Neher, D.; Kietzke, T. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv. Mater. 2002, 14, 651–655. [Google Scholar] [CrossRef]
- Darwis, D.; Holmes, N.; Elkington, D.; Kilcoyne, A.L.D.; Bryant, G.; Zhou, X.J.; Dastoor, P.; Belcher, W. Surfactant-free nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 121, 99–107. [Google Scholar] [CrossRef]
- Richards, J.J.; Whittle, C.L.; Shao, G.Z.; Pozzo, L.D. Correlating structure and photocurrent for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy. ACS Nano 2014, 8, 4313–4324. [Google Scholar] [CrossRef]
- Burke, K.B.; Stapleton, A.J.; Vaughan, B.; Zhou, X.; Kilcoyne, A.L.D.; Belcher, W.J.; Dastoor, P.C. Scanning transmission X-ray microscopy of polymer nanoparticles: Probing morphology on sub-10 nm length scales. Nanotechnology 2011, 22, 265710. [Google Scholar] [CrossRef]
- Ghazy, O.; Freisinger, B.; Lieberwith, I.; Landfester, K. Tuning the size and morphology of P3HT/PCBM composite nanoparticles: Towards optimized water-processable organic solar cells. Nanoscale 2020, 12, 22798–22807. [Google Scholar] [CrossRef]
- Sun, Y.; Chien, S.-C.; Yip, H.-L.; Chen, K.-S.; Zhang, Y.; Davies, J.A.; Chen, F.-C.; Lin, B.; Jen, A.K.-Y. Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. J. Mater. Chem. 2012, 22, 5587–5595. [Google Scholar] [CrossRef]
- Gartner, S.; Clulow, A.J.; Howard, I.A.; Gilbert, E.P.; Burn, P.L.; Gentle, I.R.; Colsmann, A. Relating structure to efficiency in surfactant-free polymer/fullerene nanoparticle-based organic solar cells. ACS Appl. Mater. Interfaces 2017, 9, 42986–42995. [Google Scholar] [CrossRef] [PubMed]
- Gartner, S.; Christmann, M.; Sankaran, S.; Rohm, H.; Prinz, E.M.; Penth, F.; Putz, A.; Tureli, A.E.; Penth, B.; Baumstummler, B.; et al. Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions. Adv. Mater. 2014, 26, 6653–6657. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Heumüller, T.; Gruber, W.; Tang, X.; Classen, A.; Schuldes, I.; Bidwell, M.; Späth, A.; Fink, R.H.; Unruh, T.; et al. Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nat. Commun. 2018, 9, 5335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Qiu, F.; Lin, Z.Q. Conjugated rod–coil and rod-rod block copolymers for photovoltaic applications. J. Mater. Chem. 2011, 21, 17039–17048. [Google Scholar] [CrossRef]
- Peet, J.; Senatore, M.L.; Heeger, A.J.; Bazan, G.C. The role of processing in the fabrication and optimization of plastic solar cells. Adv. Mater. 2009, 21, 1521–1527. [Google Scholar] [CrossRef]
- Osaheni, J.A.; Jenekhe, S.A. Electroactive and photoactive rod–coil copolymers—Design, synthesis, and supramolecular regulation of photophysical properties. J. Am. Chem. Soc. 1995, 117, 7389–7398. [Google Scholar] [CrossRef]
- Olsen, B.D.; Segalman, R.A. Self-assembly of rod–coil block copolymers. Mater. Sci. Eng. R-Rep. 2008, 62, 37–66. [Google Scholar] [CrossRef]
- Ferretti, A.M.; Diterlizzi, M.; Porzio, W.; Giovanella, U.; Ganzer, L.; Virgili, T.; Vohra, V.; Arias, E.; Moggio, I.; Scavia, G.; et al. Rod–coil block copolymer: Fullerene blend water-processable nanoparticles: How molecular structure addresses morphology and efficiency in np-opvs. Nanomaterials 2022, 12, 84. [Google Scholar] [CrossRef]
- Ganzer, L.; Zappia, S.; Russo, M.; Ferretti, A.M.; Vohra, V.; Diterlizzi, M.; Antognazza, M.R.; Destri, S.; Virgili, T. Ultrafast spectroscopy on water-processable PCBM: Rod–coil block copolymer nanoparticles. Phys. Chem. Chem. Phys. 2020, 22, 26583–26591. [Google Scholar] [CrossRef]
- Ferretti, A.M.; Zappia, S.; Scavia, G.; Giovanella, U.; Villafiorita-Monteleone, F.; Destri, S. Surfactant-free miniemulsion approach for low band gap rod–coil block copolymer water-processable nanoparticle fabrication: Film preparation and morphological characterization. Polymer 2019, 174, 61–69. [Google Scholar] [CrossRef]
- Zappia, S.; Scavia, G.; Ferretti, A.M.; Giovanella, U.; Vohra, V.; Destri, S. Water-processable amphiphilic low band gap block copolymer: Fullerene blend nanoparticles as alternative sustainable approach for organic solar cells. Adv. Sustain. Syst. 2018, 2, 10. [Google Scholar] [CrossRef]
- Zappia, S.; Di Mauro, A.E.; Mastria, R.; Rizzo, A.; Curri, M.L.; Striccoli, M.; Destri, S. Rod–coil block copolymer as nanostructuring compatibilizer for efficient CdSe NCs/PCPDTBT hybrid solar cells. Eur. Polym. J. 2016, 78, 352–363. [Google Scholar] [CrossRef]
- Zappia, S.; Mendichi, R.; Battiato, S.; Scavia, G.; Mastria, R.; Samperi, F.; Destri, S. Characterization of amphiphilic block-copolymers constituted of a low band gap rigid segment (PCPDTBT) and P4VP based coil block synthesized by two different strategies. Polymer 2015, 80, 245–258. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Percebom, A.M.; Costa, L.H.M. Formation and assembly of amphiphilic Janus nanoparticles promoted by polymer interactions. Adv. Colloid Interface Sci. 2019, 269, 256–269. [Google Scholar] [CrossRef]
- Deng, R.; Liu, S.; Liang, F.; Wang, K.; Zhu, J.; Yang, Z. Polymeric janus particles with hierarchical structures. Macromolecules 2014, 47, 3701–3707. [Google Scholar] [CrossRef]
- Kietzke, T.; Neher, D.; Kumke, M.; Ghazy, O.; Ziener, U.; Landfester, K. Phase separation of binary blends in polymer nanoparticles. Small 2007, 3, 1041–1048. [Google Scholar] [CrossRef]
- Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C.J. Development of a universal alkoxyamine for "living" free radical polymerizations. J. Am. Chem. Soc. 1999, 121, 3904–3920. [Google Scholar] [CrossRef]
- Fernandes, L.; Gaspar, H.; Tomé, J.P.C.; Figueira, F.; Bernardo, G. Thermal stability of low-bandgap copolymers PTB7 and PTB7-Th and their bulk heterojunction composites. Polym. Bull. 2018, 75, 515–532. [Google Scholar] [CrossRef]
- Son, H.J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L. Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc. 2011, 133, 1885–1894. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 2009, 131, 7792–7799. [Google Scholar] [CrossRef] [PubMed]
- Montaudo, M.S.; Puglisi, C.; Battiato, S.; Zappia, S.; Destri, S.; Samperi, F. An innovative approach for the chemical structural characterization of poly(styrene 4-vinylpyridine) copolymers by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J. Appl. Polym. Sci. 2019, 136, 46976. [Google Scholar] [CrossRef]
- Zu Putlitz, B.; Landfester, K.; Fischer, H.; Antonietti, M. The generation of "armored latexes" and hollow inorganic shells made of clay sheets by templating cationic miniemulsions and latexes. Adv. Mater. 2001, 13, 500–503. [Google Scholar] [CrossRef]
- Erbil, H.Y. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surf. Sci. Rep. 2014, 69, 325–365. [Google Scholar] [CrossRef]
- Borodziński, A.; Bonarowska, M. Relation between crystallite size and dispersion on supported metal catalysts. Langmuir 1997, 13, 5613–5620. [Google Scholar] [CrossRef]
- Bencheikh, F.; Duché, D.; Ruiz, C.M.; Simon, J.-J.; Escoubas, L. Study of optical properties and molecular aggregation of conjugated low band gap copolymers: PTB7 and PTB7-Th. J. Phys. Chem. C 2015, 119, 24643–24648. [Google Scholar] [CrossRef]
- Holmes, N.P.; Ulum, S.; Sista, P.; Burke, K.B.; Wilson, M.G.; Stefan, M.C.; Zhou, X.; Dastoor, P.C.; Belcher, W.J. The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance. Sol. Energy Mater. Sol. Cells 2014, 128, 369–377. [Google Scholar] [CrossRef]
- Topham, P.D.; Parnell, A.J.; Hiorns, R.C. Block copolymer strategies for solar cell technology. J. Polym. Sci. Part B-Polym. Phys. 2011, 49, 1131–1156. [Google Scholar] [CrossRef]
- Tan, B.; Li, Y.C.; Palacios, M.F.; Therrien, J.; Sobkowicz, M.J. Effect of surfactant conjugation on structure and properties of poly(3-hexylthiophene) colloids and field effect transistors. Colloids Surf. A-Physicochem. Eng. Asp. 2016, 488, 7–14. [Google Scholar] [CrossRef]
- Di Mauro, A.E.; Toscanini, M.; Piovani, D.; Samperi, F.; Curri, M.L.; Corricelli, M.; De Caro, L.; Siliqi, D.; Comparelli, R.; Agostiano, A.; et al. Segmented poly(styrene-co-vinylpyridine) as multivalent host for CdSe nanocrystal based nanocomposites. Eur. Polym. J. 2014, 60, 222–234. [Google Scholar] [CrossRef]
- Seo, D.; Park, J.; Shin, T.J.; Yoo, P.J.; Park, J.; Kwak, K. Bathochromic shift in absorption spectra of conjugated polymer nanoparticles with displacement along backbones. Macromol. Res. 2015, 23, 574–577. [Google Scholar] [CrossRef]
- Raj, M.R.; Kim, M.; Kim, H.I.; Lee, G.-Y.; Park, C.W.; Park, T. A comparative study on the thermal- and microwave-assisted Stille coupling polymerization of a benzodithiophene-based donor–acceptor polymer (PTB7). J. Mater. Chem. A 2017, 5, 3330–3335. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Wu, T.; Li, M.; Qin, W.; Yu, L.; Hu, B. Revealing optically induced dipole-dipole interaction effects on charge dissociation at donor:acceptor interfaces in organic solar cells under device-operating condition. Nano Energy 2016, 26, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Hedley, G.J.; Ward, A.J.; Alekseev, A.; Howells, C.T.; Martins, E.R.; Serrano, L.A.; Cooke, G.; Ruseckas, A.; Samuel, I.D.W. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nat. Commun. 2013, 4, 2867. [Google Scholar] [CrossRef] [Green Version]
- Jańczuk, B.; Białlopiotrowicz, T. Surface free-energy components of liquids and low energy solids and contact angles. J. Colloid Interface Sci. 1989, 127, 189–204. [Google Scholar] [CrossRef]
- Graupe, M.; Takenaga, M.; Koini, T.; Colorado, R.; Lee, T.R. Oriented surface dipoles strongly influence interfacial wettabilities. J. Am. Chem. Soc. 1999, 121, 3222–3223. [Google Scholar] [CrossRef]
- Fowkes, F.M. Attractive forces at interfaces. Ind. Eng. Chem. 1964, 56, 40–52. [Google Scholar] [CrossRef]
- Krishnan Jagadamma, L.; Taylor, R.G.D.; Kanibolotsky, A.L.; Sajjad, M.T.; Wright, I.A.; Horton, P.N.; Coles, S.J.; Samuel, I.D.W.; Skabara, P.J. Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductor. Sustain. Energy Fuels 2019, 3, 2087–2099. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, D.; Zhang, K.; Huang, P.; Wang, Z.; Zhu, K.; Li, Z.; Yuan, L.; Fan, J.; Zhou, Y.; et al. Tuning surface energy of conjugated polymers via fluorine substitution of side alkyl chains: Influence on phase separation of thin films and performance of polymer solar cells. ACS Omega 2017, 2, 2489–2498. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Liu, J.; Cao, X.; Zhao, Q.; Yu, X.; Zheng, S.; Han, Y. Restricting the liquid–liquid phase separation of PTB7-Th:PF12TBT:PC71BM by enhanced PTB7-Th solution aggregation to optimize the interpenetrating network. RSC Adv. 2017, 7, 17913–17922. [Google Scholar] [CrossRef] [Green Version]
- Supasai, T.; Amornkitbamrung, V.; Thanachayanont, C.; Tang, I.M.; Sutthibutpong, T.; Rujisamphan, N. Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell. Appl. Surf. Sci. 2017, 422, 509–517. [Google Scholar] [CrossRef]
- Dudnik, A.S.; Aldrich, T.J.; Eastham, N.D.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Tin-free direct C–H arylation polymerization for high photovoltaic efficiency conjugated copolymers. J. Am. Chem. Soc. 2016, 138, 15699–15709. [Google Scholar] [CrossRef] [PubMed]
- Lattuada, M.; Hatton, T.A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6, 286–308. [Google Scholar] [CrossRef]
- Petrosino, M.; Rubino, A. The effect of the PEDOT:PSS surface energy on the interface potential barrier. Synth. Met. 2012, 161, 2714–2717. [Google Scholar] [CrossRef]
- Benor, A.; Takizawa, S.Y.; Perez-Bolivar, C.; Anzenbacher, P. Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT:PSS using UV-ozone exposure. Org. Electron. 2010, 11, 938–945. [Google Scholar] [CrossRef]
- Hoefler, S.F.; Rath, T.; Pastukhova, N.; Pavlica, E.; Scheunemann, D.; Wilken, S.; Kunert, B.; Resel, R.; Hobisch, M.; Xiao, S.; et al. The effect of polymer molecular weight on the performance of PTB7-Th:O-IDTBR non-fullerene organic solar cells. J. Mater. Chem. A 2018, 6, 9506–9516. [Google Scholar] [CrossRef] [Green Version]
- Porzio, W.; Scavia, G.; Barba, L.; Arrighetti, G.; Milita, S. Depth-resolved molecular structure and orientation of polymer thin films by synchrotron X-ray diffraction. Eur. Polym. J. 2011, 47, 273–283. [Google Scholar] [CrossRef]
- Ayzner, A.L.; Tassone, C.J.; Tolbert, S.H.; Schwartz, B.J. Reappraising the need for bulk heterojunctions in polymer−fullerene photovoltaics: The role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. C 2009, 113, 20050–20060. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-G.; Li, H.; Qi, Z.; Jin, Z.; Liu, G.; Hou, J.; Li, Y.; Wang, J. Poly(ethylene glycol) modified [60]fullerene as electron buffer layer for high-performance polymer solar cells. Appl. Phys. Lett. 2013, 102, 143902. [Google Scholar] [CrossRef]
- Sperlich, A.; Auth, M.; Dyakonov, V. Charge transfer in ternary solar cells employing two fullerene derivatives: Where do electrons go? Isr. J. Chem. 2021, 61, 1. [Google Scholar] [CrossRef]
- Xu, W.; Ma, X.; Son, J.H.; Jeong, S.Y.; Niu, L.; Xu, C.; Zhang, S.; Zhou, Z.; Gao, J.; Woo, H.Y.; et al. Smart ternary strategy in promoting the performance of polymer solar cells based on bulk-heterojunction or layer-by-layer structure. Small 2022, 18, 2104215. [Google Scholar] [CrossRef] [PubMed]
- Penconi, M.; Bianchi, G.; Nitti, A.; Savoini, A.; Carbonera, C.; Pasini, D.; Po, R.; Luzzati, S. A Donor polymer with a good compromise between efficiency and sustainability for organic solar cells. Adv. Energy Sustain. Res. 2021, 2, 2100069. [Google Scholar] [CrossRef]
- Xu, C.; Ma, X.; Zhao, Z.; Jiang, M.; Hu, Z.; Gao, J.; Deng, Z.; Zhou, Z.; An, Q.; Zhang, J.; et al. Over 17.6% efficiency organic photovoltaic devices with two compatible polymer donors. Sol. RRL 2021, 5, 2100175. [Google Scholar] [CrossRef]
- Mihailetchi, V.D.; Koster, L.J.A.; Hummelen, J.C.; Blom, P.W.M. Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 2004, 93, 216601. [Google Scholar] [CrossRef] [Green Version]
- Carulli, F.; Scavia, G.; Lassi, E.; Pasini, M.; Galeotti, F.; Brovelli, S.; Giovanella, U.; Luzzati, S. A bifunctional conjugated polyelectrolyte for the interfacial engineering of polymer solar cells. J. Colloid Interface Sci. 2019, 538, 611–619. [Google Scholar] [CrossRef]
- To, C.H.; Ng, A.; Dong, Q.; Djurišić, A.B.; Zapien, J.A.; Chan, W.K.; Surya, C. Effect of PTB7 properties on the performance of PTB7:PC71BM solar cells. ACS Appl. Mater. Interfaces 2015, 7, 13198–13207. [Google Scholar] [CrossRef]
- Vangerven, T.; Verstappen, P.; Drijkoningen, J.; Dierckx, W.; Himmelberger, S.; Salleo, A.; Vanderzande, D.; Maes, W.; Manca, J.V. Molar mass versus polymer solar cell performance: Highlighting the role of homocouplings. Chem. Mater. 2015, 27, 3726–3732. [Google Scholar] [CrossRef]
- Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Lévêque, P.; Audinot, J.N.; Berson, S.; Heiser, T.; Hadziioannou, G.; Mezzenga, R. A new supramolecular route for using rod–coil block copolymers in photovoltaic applications. Adv. Mater. 2010, 22, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.-C.; Lin, Y.-C.; Inagaki, S.; Shimizu, H.; Ercan, E.; Hsu, L.-C.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C. Low-energy-consumption and electret-free photosynaptic transistor utilizing poly(3-hexylthiophene)-based conjugated block copolymers. Adv. Sci. 2022, 9, 2105190. [Google Scholar] [CrossRef]
- Du, Y.; Li, Y.; Aftenieva, O.; Tsuda, T.; Formanek, P.; König, T.A.F.; Synytska, A. High yield synthesis of water-processable donor: Acceptor janus nanoparticles with tuned internal morphology and highly efficient charge separation/transfer. Available online: https://doi.org/10.1002/adom.202101922 (accessed on 27 February 2022).
Sample | Mn [Kg∙mol−1] | Mw [Kg∙mol−1] | Mw/Mn |
---|---|---|---|
PTB7 macromer | 14.4 | 56.4 | 3.9 |
PTB7-b-P4VP | 15.1 | 62.3 | 4.1 |
Sample | θDIM [°] | θACN [°] | γD [mN m−1] | γP [mN m−1] | γ [mN m−1] |
---|---|---|---|---|---|
PTB7 | 52.2 | 33.0 | 33.0 | 0.06 | 33.1 |
PTBT-b-P4VP | 45.4 | 41.5 | 36.8 | 0.5 | 37.3 |
Device | Voc (V) | FF | Jsc (mA cm−2) | PCE (%) |
---|---|---|---|---|
PC71BM:PTB7-b-P4VP (1.1:1) blend WPNPs (device 1) | 0.67 (0.60 ± 0.07) | 0.52 (0.54 ± 0.02) | 2.46 (2.30 ± 0.10) | 0.85 (0.81 ± 0.05) |
PC71BM:PTB7-b-P4VP (1.5:1) blend in chlorobenzene (device 2) | 0.73 (0.70 ± 0.10) | 0.47 (0.44 ± 0.04) | 1.83 (1.60 ± 0.10) | 0.63 (0.50 ± 0.10) |
PC71BM:PTB7 (1.5:1) blend in chlorobenzene [67] (reference) | 0.72 (0.70 ± 0.01) | 0.67 (0.70 ± 0.01) | 12.25 (12.30 ± 0.10) | 5.90 (6.0 ± 0.30) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diterlizzi, M.; Ferretti, A.M.; Scavia, G.; Sorrentino, R.; Luzzati, S.; Boccia, A.C.; Scamporrino, A.A.; Po’, R.; Quadrivi, E.; Zappia, S.; et al. Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study. Polymers 2022, 14, 1588. https://doi.org/10.3390/polym14081588
Diterlizzi M, Ferretti AM, Scavia G, Sorrentino R, Luzzati S, Boccia AC, Scamporrino AA, Po’ R, Quadrivi E, Zappia S, et al. Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study. Polymers. 2022; 14(8):1588. https://doi.org/10.3390/polym14081588
Chicago/Turabian StyleDiterlizzi, Marianna, Anna Maria Ferretti, Guido Scavia, Roberto Sorrentino, Silvia Luzzati, Antonella Caterina Boccia, Andrea A. Scamporrino, Riccardo Po’, Eleonora Quadrivi, Stefania Zappia, and et al. 2022. "Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study" Polymers 14, no. 8: 1588. https://doi.org/10.3390/polym14081588
APA StyleDiterlizzi, M., Ferretti, A. M., Scavia, G., Sorrentino, R., Luzzati, S., Boccia, A. C., Scamporrino, A. A., Po’, R., Quadrivi, E., Zappia, S., & Destri, S. (2022). Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study. Polymers, 14(8), 1588. https://doi.org/10.3390/polym14081588