Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification
Abstract
:1. Introduction
2. Some Types of Water Pollutants
2.1. Organic Pollutants
2.2. Inorganic Pollutants
2.3. Oil Pollution
3. Nanotechnology and Water Treatment
4. Applications of Electrospinning Nanofibers in Wastewater Treatment
5. Electrospun Nanofibers for Water Treatment
5.1. Removal of Dyes and Organic Pollutants
5.2. Removal of Metals
5.2.1. Removal of Some Lanthanide and Actinide
5.2.2. Removal of Heavy Metals
5.3. Oil/Water (O/W) Separation
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sanaeepur, H.; Amooghin, A.E.; Shirazib, M.M.A.; Pishnamazi, M.; Shirazian, S. Water desalination and ion removal using mixed matrix electrospun nanofibrous membranes: A critical review. Desalination 2022, 521, 115350. [Google Scholar] [CrossRef]
- Peydayesh, M.; Mezzenga, R. Protein nanofibrils for next generation sustainable water purification. Nat. Commun. 2021, 12, 3248. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.R.; Othman, M.H.D.; Kurniawan, T.A.; Puteh, M.H.; Ismail, A.F.; Khongnakorn, W.; Rahman, M.A.; Jaafar, J. Advances in adsorptive membrane technology for water treatment and resource recovery applications: A critical review. J. Environ. Chem. Eng. 2022, 10, 107633. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Nur Alam, S.M. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Patel, K.D.; Kim, H.-W.; Knowles, J.C.; Poma, A. Molecularly Imprinted Polymers and Electrospinning: Manufacturing Convergence for Next-Level Applications. Adv. Funct. Mater. 2020, 30, 2001955. [Google Scholar] [CrossRef]
- Nabeela Nasreen, S.A.A.; Sundarrajan, S.; Syed Nizar, S.A.; Ramakrishna, S. Nanomaterials: Solutions to Water-Concomitant Challenges. Membranes 2019, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanya, T.M.; Bin Arshad, A.; Lin, P.T.; Widakdo, J.; Makari, H.K.; Austria, H.F.M.; Hu, C.-C.; Lai, J.-Y.; Hung, W.S. A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv. 2021, 11, 9638–9663. [Google Scholar] [CrossRef]
- Zia, Q.; Tabassum, M.; Lu, Z.; Khawar, M.T.; Song, J.; Gong, H.; Meng, J.; Li, Z.; Li, J. Porous poly(L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydr. Polym. 2020, 227, 115343. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Deng, N.; Ju, J.; Li, Y.; Cheng, B.; Kang, W.; Yan, J. Tree-like cellulose nanofiber membranes modified by citric acid for heavy metal ion (Cu2+) removal. Cellulose 2019, 26, 945–958. [Google Scholar] [CrossRef]
- Pervez, M.N.; Balakrishnan, M.; Hasan, S.W.; Choo, K.-H.; Zhao, Y.; Cai, Y.; Zarra, T.; Belgiorno, V.; Naddeo, V. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. NPJ Clean Water 2020, 3, 43. [Google Scholar] [CrossRef]
- Fahimirad, S.; Fahimirad, Z.; Sillanpää, M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total Environ. 2021, 751, 141673. [Google Scholar] [CrossRef] [PubMed]
- Kugarajah, V.; Ojha, A.K.; Ranjan, S.; Dasgupta, N.; Ganesapillai, M.; Dharmalingam, S.; Elmoll, A.; Hosseini, S.A.; Muthulakshmi, L.; Vijayakumar, S.B.; et al. Future applications of electrospun nanofibers in pressure-driven water treatment: A brief review and research update. J. Environ. Chem. Eng. 2021, 9, 105107. [Google Scholar] [CrossRef]
- Uddin, Z.; Ahmad, F.; Ullan, T.; Nawab, Y.; Ahmad, S.; Azam, F.; Rasheed, A.; Zafar, M.S. Recent trends in water purification using electrospun nanofibrous membranes. Int. J. Environ. Sci. Technol. 2021, 9, 104613. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, C.; Yang, Z.; Wu, G.; Liu, G.; Kong, Z. Recent advances in lignin-based porous materials for pollutants removal from wastewater. Inter. J. Biolog. Macromol. 2021, 187, 880–891. [Google Scholar] [CrossRef]
- Marinho, B.A.; de Souza, S.M.A.G.U.; de Souza, A.A.U.; Hotza, D. Electrospun TiO2 nanofibers for water and wastewater treatment: A review. J. Mater. Sci. 2021, 56, 5428–5448. [Google Scholar] [CrossRef]
- Foong, C.Y.; Wirzal, M.D.H.; Bustam, M.A. A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. J. Mol. Liq. 2020, 297, 111793. [Google Scholar] [CrossRef]
- Arida, I.A.; Ali, I.H.; Nasr, M.; El-Sherbiny, I.M. Electrospun polymer-based nanofiber scaffolds for skin regeneration. J. Drug Deliv. Sci. Technol. 2021, 64, 102623. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Otoni, C.G.; Lopes, J.H.; de Souza, L.P.; Mei, L.H.I.; Lona, L.M.F.; Lozano, K.; Lobo, A.O.; Mattoso, L.H.C. Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. Mater. Sci. Eng. C 2021, 123, 111853. [Google Scholar] [CrossRef]
- Yadid, M.; Oved, H.; Silberman, E.; Dvir, T. Bioengineering approaches to treat the failing heart: From cell biology to 3D printing. Nat. Rev. Cardiol. 2022, 19, 83–99. [Google Scholar] [CrossRef]
- Shikhi-Abadi, P.G.; Irani, M. A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int. J. Biol. Macromol. 2021, 183, 790–810. [Google Scholar] [CrossRef]
- Rickel, A.P.; Deng, X.; Engebretson, D.; Hong, Z. Electrospun nanofiber scaffold for vascular tissue engineering. Mater. Sci. Eng. C 2021, 129, 112373. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.J.; Pillai, S.C.; Hehir, S.; McAfee, M.; Breen, A. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomater. Sci. Eng. 2021, 7, 1278–1301. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Sun, S.; Wu, S.; Chen, S.; Ma, J.; Zhou, F. Electrospun chitosan nanofibers for wound healing application. Eng. Regen. 2021, 2, 82–90. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Loutfy, S.A.; Hussein, Y.; Kenawy, E.S. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int. J. Biol. Macromol. 2021, 187, 755–768. [Google Scholar] [CrossRef]
- Mateti, T.; Aswath, S.; Vatti, A.K.; Kamath, A.; Laha, A. A review on allopathic and herbal nanofibrous drug delivery vehicles for cancer treatments. Biotechnol. Rep. 2021, 31, e00663. [Google Scholar] [CrossRef]
- Tenreiro, M.F.; Louro, A.F.; Alves, P.M.; Serra, M. Next generation of heart regenerative therapies: Progress and promise of cardiac tissue engineering. NPJ Regen. Med. 2021, 6, 30. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Fu, G.; Tang, Y. Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Mater. Today Energy 2021, 22, 100850. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Kou, Z.; Song, N.; Nie, G.; Wang, C.; Verpoort, F.; Mu, S. Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chem. Eng. J. 2022, 428, 131133. [Google Scholar] [CrossRef]
- Forghani, S.; Almasi, H.; Moradi, M. Electrospun nanofibers as food freshness and time-temperature indicators: A new approach in food intelligent packaging. Innov. Food Sci. Emerg. Technol. 2021, 73, 102804. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, F.; Houa, L.; Li, S.; Gaoa, Y.; Xin, Z.; Li, Q.; Xie, S.; Wang, N.; Zhao, Y. Synergistic engineering of 1D electrospun nanofibers and 2D nanosheets for sustainable applications. Sustain. Mater. Technol. 2020, 26, e00214. [Google Scholar] [CrossRef]
- Háková, M.; Havlíková, L.C.; Švec, F.; Solich, P.; Šatínský, D. Nanofibers as advanced sorbents for on-line solid phase extraction in liquid chromatography: A tutorial. Anal. Chim. Acta 2020, 1121, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yokota, T.; Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 2021, 13, 22. [Google Scholar] [CrossRef]
- Wen, D.L.; Sun, D.H.; Huang, P.; Huang, W.; Su, M.; Wang, Y.; Han, M.-D.; Kim, B.; Brugger, J.; Zhang, H.-X.; et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 2021, 7, 35. [Google Scholar] [CrossRef]
- Nie, G.; Zhao, X.; Luan, Y.; Jiang, J.; Kou, Z.; Wang, J. Key issues facing electrospun carbon nanofibers in energy applications: On-going approaches and challenges. Nanoscale 2020, 12, 13225–13248. [Google Scholar] [CrossRef] [PubMed]
- Heloísa Bremm Madalosso, H.B.; Machado, R.; Hotza, D.; Cintia MarangoniGoktas, R.K.; MacLeod, M. Remoteness from sources of persistent organic pollutants in the multi-media global environment. Environ. Pollut. 2016, 217, 33–41. [Google Scholar]
- Iwuozor, K.O.; Emenike, E.C.; Aniagor, C.O.; Iwuchukwu, F.U.; Ibitogbe, E.M.; Okikiola, T.B.; Omuku, P.E.; Adeniyi, A.G. Removal of pollutants from aqueous media using cow dung-based adsorbents. Curr. Res. Green Sustain. Chem. 2022, 5, 100300. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Vedenyapina, M.D.; Kurmysheva, A.Y.; Weichgrebe, D.; Nair, R.R.; Nguyen, N.P.T.; Kustov, L.M. Modern Carbon—Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021, 26, 6628. [Google Scholar] [CrossRef]
- Agasti, N. Decontamination of heavy metal ions from water by composites prepared from waste. Curr. Res. Green Sustain. Chem. 2021, 4, 100088. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Zhang, X.; Tang, Y.; Zhou, X.; Zhang, K.; Chen, Z.; Lai, Y. Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Horiz. 2018, 3, 235–260. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Wang, Y.; Zhang, Q.; Ma, W.; Huang, C. Electrospun nanofiber membranes for wastewater treatment applications. Sep. Purif. Technol. 2020, 250, 117116. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Cheng, H.; Li, G.; Cho, H.; Jiang, M.; Gao, Q.; Zhang, X. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021, 6, 2100410. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Zeng, L.; Qiao, Z.; Liu, X.; Liu, H.; Zhang, J.; Ding, J. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 2019, 24, 834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakib, M.N.; Mallik, A.K.; Rahman, M.M. Update on chitosan-based electrospun nanofibers for wastewater treatment: A review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100064. [Google Scholar] [CrossRef]
- El-Aswar, E.I.; Ramadan, H.; Elkik, H.; Taha, A.G. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. J. Environ. Manag. 2022, 301, 113908. [Google Scholar] [CrossRef]
- Zamel, D.; Khan, A.U. New trends in nanofibers functionalization and recent applications in wastewater treatment. Polym. Adv. Technol. 2021, 32, 4587–4597. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Si, Y.; Yu, J.; Ding, B. Electrospun Nanofibrous Membranes: An Effective Arsenal for the Purification of Emulsified Oily Wastewater. Adv. Funct. Mater. 2020, 30, 2002192. [Google Scholar] [CrossRef]
- Madalosso, H.B.; Machado, R.; Hotza, D.C. Marangoni, Membrane Surface Modification by Electrospinning, Coating, and Plasma for Membrane Distillation Applications: A State-of-the-Art Review. Adv. Eng. Mater. 2021, 23, 2001456. [Google Scholar] [CrossRef]
- Shoueir, K.R. Green microwave synthesis of functionalized chitosan with robust adsorption capacities for Cr (VI) and/or RHB in complex aqueous solutions. Environ. Sci. Pollut. Res. 2020, 27, 33020–33031. [Google Scholar] [CrossRef]
- Shoueir, K.; Wassel, A.R.; Ahmed, M.; El-Naggar, M.E. Encapsulation of extremely stable polyaniline onto Bio-MOF: Photo-activated antibacterial and depletion of ciprofloxacin from aqueous solutions. J. Photochem. Photobiol. A Chem. 2020, 400, 112703. [Google Scholar] [CrossRef]
- Shoueir, K.R.; El-Desouky, N.; Rashad, M.M.; Ahmed, M.K.; Janowska, I.; El-Kemary, M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int. J. Biol. Macromol. 2021, 167, 1176–1197. [Google Scholar] [CrossRef]
- Shoueir, K.R.; Akl, M.A.; Sarhan, A.A.; Atta, A.M. New core@ shell nanogel based 2- acrylamido-2-methyl-1-propane sulfonic acid for preconcentration of Pb (II) from various water samples. Appl. Water Sci. 2017, 7, 3729–3740. [Google Scholar] [CrossRef] [Green Version]
- Al-Ahmed, Z.A.; Al-Radadi, N.S.; Ahmed, M.; Shoueir, K.; Elkemary, M. Dye removal, antibacterial properties, and morphological behavior of hydroxyapatite doped with Pd ions. Arab. J. Chem. 2020, 13, 8626–8637. [Google Scholar] [CrossRef]
- Nalbandian, M.J.; Greenstein, K.E.; Shuai, D.; Zhang, M.; Choa, Y.-H.; Parkin, G.F.; Cwiertny, D.M. Tailored synthesis of photoactive TiO2 nanofibers and Au/TiO2 nanofiber composites: Structure and reactivity optimization for water treatment applications. Environ. Sci. Technol. 2015, 49, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hsiao, B.S. Electrospun nanofiber membranes. Curr. Opin. Chem. Eng. 2016, 12, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.-F.; Dong, Y.; Zheng, Y.-M.; Zhong, L.-B.; Yuan, Z.-H. Self-sustained hydrophilic nanofiber thin film composite forward osmosis membranes: Preparation, characterization and application for simulated antibiotic wastewater treatment. J. Membr. Sci. 2017, 523, 205–215. [Google Scholar] [CrossRef]
- Celebioglu, A.; Yildiz, Z.I.; Uyar, T. Electrospun crosslinked polycyclodextrin nanofibers: Highly efficient molecular filtration thru host-guest inclusion complexation. Sci. Rep. 2017, 7, 7369. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhan, C.; Wu, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.-S. Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine. ACS Omega 2020, 5, 5389–5400. [Google Scholar] [CrossRef]
- Duhana, M.; Kaur, R. Phytic acid doped polyaniline nanofibers: An advanced adsorbent for methylene blue dye, Environmental Nanotechnology. Monit. Manag. 2019, 12, 100248. [Google Scholar] [CrossRef]
- Mercante, L.A.; Facure, M.H.M.; Locilento, D.A.; Sanfelice, R.C.; Migliorini, F.L.L.; Mattosoa Correa, H.C.D.S. Solution blow spun PMMA nanofibers wrapped with reduced graphene oxide as an efficient dye adsorbent. New J. Chem. 2017, 41, 9087. [Google Scholar] [CrossRef]
- da Costa Farias, R.M.; Mota, M.F.; Severo, L.L.; de Medeiros, E.S.; Klamczynski, A.P.; Avena-Bustillos, R.d.-J.; Santana, L.N.d.-L.; Neves, G.d.-A.; Glenn, G.M.; Menezes, R.R. Green synthesis of porous N-Carbon/Silica nanofibers by solution blow spinning and evaluation of their efficiency in dye adsorption. J. Mater. Res. Technol. 2020, 3, 3038–3046. [Google Scholar] [CrossRef]
- Moradi, E.; Ebrahimzadeh, H.; Mehrani, Z.; Asgharinezhad, A.A. The efficient removal of methylene blue from water samples using three-dimensional poly (vinyl alcohol)/starch nanofiber membrane as a green nanosorbent. Environ. Sci. Pollut. Res. 2019, 26, 35071–35081. [Google Scholar] [CrossRef] [PubMed]
- Zamel, D.; Hassanin, A.H.; Ellethy, R.; Singer, G.; Abdelmoneim, A. Novel Bacteria-Immobilized Cellulose Acetate/Poly(ethylene oxide) Nanofibrous Membrane for Wastewater Treatment. Sci. Rep. 2019, 9, 18994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoodi, N.M.; Oveisi, M.; Taghizadeh, A.; Taghizadeh, M. Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal. Carbohydr. Polym. 2020, 227, 115364. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Xing, Y.; Wang, Z.; Zhao, X.; Zhong, X.Q.; Pan, W. A novel efficient RhB absorbent of Mo2N/MoO2 composite nanofibers for wastewater treatment. J. Am. Ceram. Soc. 2020, 103, 2975–2978. [Google Scholar] [CrossRef]
- Mascarenhas, B.C.; Tavares, F.A.; Paris, E.C. Functionalized faujasite zeolite immobilized on poly(lactic acid) composite fibers to remove dyes from aqueous media. J. Appl. Polym. Sci. 2020, 137, 48561. [Google Scholar] [CrossRef]
- Sundaran, S.P.; Reshmi, C.R.; Sagitha, P.; Manaf, O.; Sujith, A. Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water. J. Environ. Manag. 2019, 240, 494–503. [Google Scholar] [CrossRef]
- Zhan, Y.; Guan, X.; Ren, E.; Lin, S.; Lan, J. Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofibrous mats for dye removal. J. Polym. Res. 2019, 26, 145. [Google Scholar] [CrossRef]
- Gorgieva, S.; Vogrinčič, R.; Kokol, V. The Effect of Membrane Structure Prepared from Carboxymethyl Cellulose and Cellulose Nanofibrils for Cationic Dye Removal. J. Polym. Environ. 2019, 27, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yin, J.; Wang, R.; Jiao, T.; Huang, H.; Zhou, J.; Zhang, L.; Peng, Q. Facile Preparation of Self-Assembled Polydopamine-Modified Electrospun Fibers for Highly Effective Removal of Organic Dyes. Nanomaterials 2019, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Aboamera, N.M.; Mohamed, A.; Salama, A.; Osman, T.A.; Khattab, A. An effective removal of organic dyes using surface functionalized cellulose acetate/graphene oxide composite nanofibers. Cellulose 2018, 25, 4155–4166. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Z.; Ma, H.; Venkateswaran, S.; Hsiao, B.S. Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and adsorption. Sep. Purif. Technol. 2020, 242, 116794. [Google Scholar] [CrossRef]
- Ávila-Martínez, A.K.; Roque-Ruiz, J.H.; Torres-Pérez, J.; Medellín-Castillo, N.A.; Reyes-López, S.Y. Allura Red dye sorption onto electrospun zirconia nanofibers. Environ. Technol. Innov. 2020, 18, 100760. [Google Scholar] [CrossRef]
- Yazdi, M.G.; Ivanic, M.; Mohamed, A.; Uheida, A. Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. RSC Adv. 2018, 8, 24588. [Google Scholar] [CrossRef] [Green Version]
- Al-Marjeh, R.A.-Q.B.; Atassi, Y.; Mohammad, N.; Badour, Y. Adsorption of methyl orange onto electrospun nanofiber membranes of PLLA coated with pTSA-PANI. Environ. Sci. Pollut. Res. 2019, 26, 37282–37295. [Google Scholar] [CrossRef]
- Lv, C.; Chen, S.; Xie, Y.; Wei, Z.; Chen, L.; Bao, J.; He, C.; Zhao, W.; Sun, S.; Zhao, C. Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal. J. Colloid Interface Sci. 2019, 556, 492–502. [Google Scholar] [CrossRef]
- Thamer, B.M.; Aldalbahi, A.; Meera, M.A.; El-Hamshary, H.; Al-Enizi, A.M.; El-Newehy, M.H. Effective adsorption of Coomassie brilliant blue dye using poly (phenylene diamine) grafted electrospun carbon nanofibers as a novel adsorbent. Mater. Chem. Phys. 2019, 234, 133–145. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Mokhtari-Shourijeh, Z.; Abdi, J. Preparation of Mesoporous Polyvinyl Alcohol/Chitosan/Silica Composite Nanofiber and Dye Removal from Wastewater. Am. Inst. Chem. Eng. Environ. Prog. 2019, 38, S100–S109. [Google Scholar] [CrossRef]
- Zhao, R.; Yong, X.; Pan, M.; Deng, J.; Pan, K. Aldehyde-containing nanofibers electrospun from biomass vanillin-derived polymer and their application as adsorbent. Sep. Purif. Technol. 2020, 246, 116916. [Google Scholar] [CrossRef]
- Phan, D.-N.; Rebia, R.A.; Saito, Y.; Kharaghani, D.; Khatri, M.; Tanaka, T.; Lee, H.; Kim, I.-S. Zinc oxide nanoparticles attached to polyacrylonitrile nanofibers with hinokitiol as gluing agent for synergistic antibacterial activities and effective dye removal. J. Ind. Eng. Chem. 2020, 85, 258–268. [Google Scholar] [CrossRef]
- Yu, X.; Lu, X.; Qin, G.; Li, H.; Li, Y.; Yang, L.; Song, Z.; An, Y.; Yan, Y. Large-scale synthesis of flexible TiO2/N-doped carbon nanofibres: A highly efficient all-day-active photocatalyst with electron storage capacity. Ceram. Int. 2020, 46, 12538–12547. [Google Scholar] [CrossRef]
- Dai, Z.; Ren, P.; Cao, Q.; Gao, X.; He, W.; Xiao, Y.; Jin, Y.; Ren, F. Synthesis of TiO2@lignin based carbon nanofibers composite materials with highly efficient photocatalytic to methylene blue dye. J. Polym. Res. 2020, 27, 108. [Google Scholar] [CrossRef]
- Elhousseini, M.H.; Isık, T.; Kap, Ö.; Verpoort, F.; Horzum, N. Dual remediation of waste waters from methylene blue and chromium (VI) using thermally induced ZnO nanofibers. Appl. Surf. Sci. 2020, 514, 145939. [Google Scholar] [CrossRef]
- Al-Ghafri, B.; Lau, W.-J.; Al-Abri, M.; Goh, P.-S.; Ismail, A.F. Titanium dioxide-modified polyetherimide nanofiber membrane for water treatment. J. Water Proc. Eng. 2019, 32, 100970. [Google Scholar] [CrossRef]
- Ehsani, M.; Aroujalian, A. Fabrication of electrospun polyethersulfone/titanium dioxide (PES/TiO2) composite nanofibers membrane and its application for photocatalytic degradation of phenol in aqueous solution. Polym. Adv. Technol. 2020, 31, 772–785. [Google Scholar] [CrossRef]
- Song, J.; Sun, G.; Yu, J.; Si, Y.; Ding, B. Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification. Ceram. Int. 2020, 46, 468–475. [Google Scholar] [CrossRef]
- Du, F.; Sun, L.; Huang, Z.; Chen, Z.; Xu, Z.; Ruan, G.; Zhao, C. Electrospun reduced graphene oxide/TiO2/poly(acrylonitrile-comaleic acid) composite nanofibers for efficient adsorption and photocatalytic removal of malachite green and leucomalachite green. Chemosphere 2020, 239, 124764. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Z.; Ji, S.; Zhou, J.; Shi, R.; Shi, W. Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: Bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. J. Radioanal. Nucl. Chem. 2020, 323, 253–261. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, F.; Jiaoa, T.; Deng, H.; Zou, G.; Bai, Z.; Zhang, Q.; Peng, Q. Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chin. Chem. Lett. 2020, 31, 992–995. [Google Scholar] [CrossRef]
- Kumar, L.; Singh, S.; Horechyy, A.; Formanek, P.; Hübner, R.; Albrecht, V.; Weißpflog, J.; Schwarz, S.; Puneet, P.; Nandan, B. Hollow Au@TiO2 porous electrospun nanofibers for catalytic applications. RSC Adv. 2020, 10, 6592. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Tian, M.; Lua, S.K.; Lim, T.-T.; Wang, R.; Hu, X. Spatial confinement of cobalt crystals in carbon nanofibers with oxygen vacancies as a high-efficiency catalyst for organics degradation. Chemosphere 2020, 245, 125407. [Google Scholar] [CrossRef]
- Chaúque, E.F.C.; Ngila, J.C.; Ray, S.C.; Ndlwan, L. Degradation of methyl orange on Fe/Ag nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelating agents. J. Environ. Manag. 2019, 236, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Maryšková, M.; Schaabová, M.; Tománková, H.; Novotný, V.; Rysová, M. Wastewater Treatment by Novel Polyamide/Polyethylenimine Nanofibers with Immobilized Laccase. Water 2020, 12, 588. [Google Scholar] [CrossRef] [Green Version]
- Mehrani, Z.; Ebrahimzadeh, H.; Moradi, E.; Yamini, Y. Using three-dimensional poly (vinyl alcohol)/sodium hexametaphosphate nanofiber as a non-toxic and efficient nanosorbent for extraction and recovery of Lanthanide ions from aqueous solutions. J. Mol. Liq. 2020, 307, 112925. [Google Scholar] [CrossRef]
- Johns, A.; Qian, J.; Carolan, M.E.; Shaikh, N.; Peroutka, A.; Seeger, A.; Cerrato, J.M.; Forbes, T.Z.; Cwiertny, D.M. Functionalized electrospun polymer nanofibers for treatment of water contaminated with uranium. Environ. Sci. Water Res. Technol. 2020, 6, 622. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Wang, J.; Qu, J.; Li, Y.V.; Ma, L.; Wang, L.; Wang, X.; Pan, K. Preparation of α-Fe2O3/polyacrylonitrile nanofiber mat as an effective lead adsorbent. Environ. Sci. Nano 2016, 3, 894. [Google Scholar] [CrossRef]
- Yua, H.; Hong, H.-J.; Kim, S.M.; Ko, H.C.; Jeong, H.S. Mechanically enhanced graphene oxide/carboxymethyl cellulose nanofibril composite fiber as a scalable adsorbent for heavy metal removal. Carbohydr. Polym. 2020, 240, 116348. [Google Scholar] [CrossRef]
- Irandoost, M.; Pezeshki-Modaress, M.; Javanbakht, V. Removal of lead from aqueous solution with nanofibrous nanocomposite of polycaprolactone adsorbent modified by nanoclay and nanozeolite. J. Water Process. Eng. 2019, 32, 100981. [Google Scholar] [CrossRef]
- Ni, J.; Sun, C.; Zhang, D.; Xu, C. Macrocyclic pyridone pentamer-modified polystyrene nanofiber for selective metal ion removal from aqueous solution. J. Chin. Chem. Soc. 2019, 66, 1462–1468. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Z.; Zhao, X.; He, H. Efficient removal of lead and copper ions from water by enhanced strength-toughness alginate composite fibers. Int. J. Biol. Macromol. 2019, 134, 223–229. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, X.; Wu, X.; Tao, X.; Fei, W. Electrospun polyurethane/phytic acid nanofibrous membrane for high efficient removal of heavy metal ions. Environ. Technol. 2021, 42, 1053–1060. [Google Scholar] [CrossRef]
- Zang, L.; Lin, R.; Dou, T.; Wang, L.; Ma, J.; Sun, L. Electrospun superhydrophilic membranes for effective removal of Pb (II) from water. Nanoscale Adv. 2019, 1, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, B.; Wang, Q.; Di, J.; Miao, S.; Yu, J. Amino-Functionalized Porous Nanofibrous Membranes for Simultaneous Removal of Oil and Heavy Metal Ions from Wastewater. ACS Appl. Mater. Interfaces 2019, 11, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Bornillo, K.A.S.; Kim, S.; Choi, H. Cu (II) removal using electrospun dual-responsive polyethersulfonepoly (dimethyl amino) ethyl methacrylate (PES-PDMAEMA) blend nanofibers. Chemosphere 2020, 242, 125287. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Lv, X.; Huang, K.; Li, S.; Liu, J.; Yan, Y.; Duan, R. Adsorption of Cu(II) ion by a novel hordein electrospun nanofiber modified by β-cyclodextrin. Int. J. Biol. Macromol. 2019, 135, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, X.; Zhang, T.; Deng, L.; Li, P.; Wang, X.; Hsiao, B.S. Eco-friendly poly(acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for superior removal of Cu(II) and sustainable catalytic applications. Colloids Surf. A 2018, 558, 228–241. [Google Scholar] [CrossRef]
- Borhani, S.; Asadi, A.; Dabbagh, H.A. Preparation and characterization of PAN nanofibers containing boehmite nanoparticles for the removal of microbial contaminants and cadmium ions from water. J. Water Health 2020, 18, 106–117. [Google Scholar] [CrossRef]
- Brandes, R.; Belosinschi, D.; Brouillette, F.; Chabot, B. A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. J. Environ. Chem. Eng. 2019, 7, 103477. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Sadeghizadeh, A.; Neysan, F.; Heydari, M. Fabrication of nanofibers using sodium alginate and Poly(Vinyl alcohol) for the removal of Cd2+ ions from aqueous solutions: Adsorption mechanism, kinetics and thermodynamics. Heliyon 2019, 5, e02941. [Google Scholar] [CrossRef] [Green Version]
- Tolentino, M.S.; Aquino, R.R.; Tuazon, M.R.C.; Basilia, B.A.; Llana, M.J.; Cosico, J.A.M.C. Adsorptive removal of Ni2+ ions in wastewater using electrospun cellulose acetate/iron-modified nanozeolite nanostructured membrane. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 5th International Conference on Water Resource and Environment (WRE 2019), Macao, China, 16–19 July 2019; IOP Publishing: Bristol, UK, 2019; Volume 344, p. 12044. [Google Scholar] [CrossRef]
- Ullah, S.; Hashmi, M.; Hussain, N.; Ullah, A.; Sarwar, M.N.; Saito, Y.; Kim, S.H.; Kim, I.S. Stabilized nanofibers of polyvinyl alcohol (PVA) crosslinked by unique method for efficient removal of heavy metal ions. J. Water Process. Eng. 2020, 33, 101111. [Google Scholar] [CrossRef]
- Yarandpour, M.R.; Rashidi, A.; Khajavi, R.; Eslahi, N.; Yazdanshenas, M.E. Mesoporous PAA/dextran-polyaniline core-shell nanofibers: Optimization of producing conditions, characterization and heavy metal adsorptions. J. Taiwan Inst. Chem. Eng. 2018, 93, 566–581. [Google Scholar] [CrossRef]
- Deng, S.; Liua, X.; Liao, J.; Lin, H.; Liu, F. PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions. Chem. Eng. J. 2019, 375, 122086. [Google Scholar] [CrossRef]
- Karim, M.R.; Aijaz, M.O.; Alharth, N.H.; Alharbi, H.F.; Al-Mubaddel, F.S.; Awual, M.R. Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicol. Environ. Saf. 2019, 169, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Almasian, A.; Giahia, M.; Fard, G.C.; Dehdast, S.A.; Maleknia, L. Removal of heavy metal ions by modified PAN/PANI-nylon core-shell nanofibers membrane: Filtration performance, antifouling and regeneration behavior. Chem. Eng. J. 2018, 351, 1166–1178. [Google Scholar] [CrossRef]
- Jamshidifard, S.; Koushkbaghi, S.; Hosseini, S.; Rezaei, S.; Karamipour, A.; Jrad, A.; Irani, M. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J. Hazard. Mater. 2019, 368, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Qiu, X.; Cao, S.; Chen, J.; Shi, X.; Du, Y.; Deng, H. Adsorption of natural composite sandwich-like nanofibrous mats for heavy metals in aquatic environment. J. Colloid Interface Sci. 2019, 539, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Maddah, A.S.; Mehrdadi, N.; Bidhendi, G.N.; Baghdadi, M. Synthesis of TiO2/ZnO electrospun nanofibers coated-sewage sludge carbon for adsorption of Ni(II), Cu(II), and COD from aqueous solutions and industrial wastewaters. J. Dispers. Sci. Technol. 2021, 42, 802–812. [Google Scholar] [CrossRef]
- Kumar, P.S.; Venkatesh, K.; Gui, E.L.; Sundaramurthy, J.; Singh, G.; Arthanareeswaran, G. Electrospun carbon nanofibers/TiO2-PAN hybrid membranes for effective removal of metal ions and cationic dye. Environ. Nanotechnol. Monit. Manag. 2018, 10, 366–376. [Google Scholar] [CrossRef]
- Abou-Zeid, R.E.; Dacrory, S.; Ali, K.A.; Kamel, S. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int. J. Biol. Macromol. 2018, 119, 207–214. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, X.Y.; He, X.; Xing, D. Phosphorylated polyacrylonitrile-based electrospun nanofibers for removal of heavy metal ions from aqueous solution. Polym. Adv. Technol. 2019, 30, 545–551. [Google Scholar] [CrossRef]
- Celebioglu, A.; Topuz, F.; Yildiz, Z.I.; Uyar, T. Efficient Removal of Polycyclic Aromatic Hydrocarbons and Heavy Metals from Water by Electrospun Nanofibrous Polycyclodextrin Membranes. ACS Omega 2019, 4, 7850–7860. [Google Scholar] [CrossRef] [Green Version]
- Muqeet, M.; Khalique, A.; Qureshi, U.A.; Mahar, R.B.; Ahmed, F.; Khatri, Z.; Kim, I.S.; Brohi, K.M. Aqueous hardness removal by anionic functionalized electrospun cellulose nanofibers. Cellulose 2018, 25, 5985–5997. [Google Scholar] [CrossRef]
- Park, Y.; Liu, S.; Gardner, T.; Johnson, D.; Keeler, A.; Ortiz, N.; Rabah, G.; Ford, E. Biohybrid nanofibers containing manganese oxide–forming fungi for heavy metal removal from water. J. Eng. Fibers Fabr. 2020, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.-P.; Luo, J.-J.; Zhang, X.-H.; Zhen, B.; Dong, C.-Y.; Li, Y.-C.; Shen, J.; Cheng, Y.-T.; Chen, H.-P. A novel electrospun β-CD/CS/PVA nanofiber membrane for simultaneous and rapid removal of organic micropollutants and heavy metal ions from water. Chem. Eng. J. 2019, 378, 122232. [Google Scholar] [CrossRef]
- Castro-Ruíz, A.; Rodríguez-Tobías, H.; Abraham, G.A.; Rivero, G.; Morales, G. Core–sheath nanofibrous membranes based on poly(acrylonitrilebutadiene-styrene), polyacrylonitrile, and zinc oxide nanoparticles for photoreduction of Cr(VI) ions in aqueous solutions. Inc. J. Appl. Polym. Sci. 2020, 137, 48429. [Google Scholar] [CrossRef]
- Vazquez-Velez, E.; Lopez-Zarate, L.; Martinez-Valencia, H. Electrospinning of polyacrylonitrile nanofibers embedded with zerovalent iron and cerium oxide nanoparticles, as Cr(VI) adsorbents for water treatment. Inc. J. Appl. Polym. Sci. 2020, 137, 48663. [Google Scholar] [CrossRef]
- Liu, X.; Ma, H.; Hsiao, B.S. Interpenetrating Nanofibrous Composite Membranes for Water Purification. ACS Appl. Nano Mater. 2019, 2, 3606–3614. [Google Scholar] [CrossRef]
- Parlayıc, Ş.; Yar, A.; Pehlivan, E.; Avc, A. ZnO-TiO2 doped polyacrylonitrile nanofiber-Mat for elimination of Cr(VI) from polluted water. J. Anal. Sci. Technol. 2019, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xu, W.; Cai, J.; Cheng, S.-Y.; Ding, W.-P. Citric acid-incorporated cellulose nanofibrous mats as food materials based biosorbent for removal of hexavalent chromium from aqueous solutions. Int. J. Biol. Macromol. 2020, 149, 459–466. [Google Scholar] [CrossRef]
- Abdel-Mottaleb, M.M.; Khalil, A.; Osmand, T.A.; Khattab, A. Removal of hexavalent chromium by electrospun PAN/GO decorated ZnO. J. Mech. Behav. Biomed. Mater. 2019, 98, 205–212. [Google Scholar] [CrossRef]
- Jiang, M.; Han, T.; Wang, J.; Shao, L.; Qi, C.; Zhang, X.M.; Liu, C.; Liu, X. Removal of heavy metal chromium using cross-linked chitosan composite nanofiber mats. Int. J. Biol. Macromol. 2018, 120, 213–221. [Google Scholar] [CrossRef]
- Tana, P.; Zheng, Y.; Hu, Y. Efficient removal of arsenate from water by lanthanum immobilized electrospun chitosan nanofiber. Colloids Surf. A 2020, 589, 124417. [Google Scholar] [CrossRef]
- Bahmani, P.; Maleki, A.; Daraei, H.; Rezaee, R.; Khamforoush, M.; Athar, S.D.; Gharibi, F.; Ziaee, A.H.; McKay, G. Application of modified electrospun nanofiber membranes with α-Fe2O3 nanoparticles in arsenate removal from aqueous media. Environ. Sci. Pollut. Res. 2019, 26, 21993–22009. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.F.; Al-Wafi, R.; Ahmed, M.K.; Wageh, S. Microstructural, morphological behavior and removal of Cr(VI) and Se(IV) from aqueous solutions by magnetite nanoparticles/PVA and cellulose acetate nanofibers. Appl. Phys. A 2020, 126, 204. [Google Scholar] [CrossRef]
- Sahebi, A.Z.; Koushkbaghi, S.; Pishnamazi, M.; Askari, A.; Khosravi, R.; Irani, M. Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions. Int. J. Biol. Macromol. 2019, 140, 1296–1304. [Google Scholar] [CrossRef]
- Bahmani, E.; Koushkbaghi, S.; Darabi, M.; Sahebi, A.Z.; Askari, A.; Irani, M. Fabrication of novel chitosan-g-PNVCL/ZIF-8 composite nanofibers for adsorption of Cr(VI), As(V) and phenol in a single and ternary systems. Carbohydr. Polym. 2019, 224, 115148. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, B.; Yin, X.; Ma, H.; Hsiao, B.S. Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Sep. Purif. Technol. 2020, 233, 115976. [Google Scholar] [CrossRef]
- Hinestroza, H.P.; Urena-Saborio, H.; Zurita, F.; de León, A.A.G.; Sundaram, G.; Sulbarán-Range, B. Nanocellulose and Polycaprolactone Nanospun Composite Membranes and Their Potential for the Removal of Pollutants from Water. Molecules 2020, 25, 683. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Li, L.; Chen, B.; Shi, S.; Nie, J.; Ma, G. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer 2019, 163, 74–85. [Google Scholar] [CrossRef]
- Ye, B.; Jia, C.; Li, Z.; Li, L.; Zhao, Q.; Wang, J.; Wu, H. Solution-blow spun PLA/SiO2 nanofiber membranes toward high efficiency oil/water separation. J. Appl. Polym. Sci. 2020, 137, 49103. [Google Scholar] [CrossRef]
- Eang, C.; Opaprakasit, P. Electrospun Nanofibers with Superhydrophobicity Derived from Degradable Polylactide for Oil/Water Separation Applications. J. Polym. Environ. 2020, 28, 1484–1491. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Dai, X.; Zhan, Y.; Ding, X.; Wang, M.; Wang, X. Hybrid electrospun porous fibers of poly (lactic acid) and nano ZIF-8@C600 as effective degradable oil sorbents. J. Chem. Technol. Biotechnol. 2020, 95, 730–738. [Google Scholar] [CrossRef]
- Ma, W.; Ding, Y.; Zhang, M.; Gao, S.; Li, Y.; Huang, C.; Fu, G. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation. J. Hazard. Mater. 2020, 384, 121476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, W.; Cui, J.; Wu, S.; Han, J.; Zou, Y.; Huang, C. Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment. J. Hazard. Mater. 2020, 383, 121152. [Google Scholar] [CrossRef]
- Lou, L.; Kendall, R.J.; Smith, E.; Ramkumar, S.S. Functional PVDF/rGO/TiO2 nanofiber webs for the removal of oil from water. Polymer 2020, 186, 122028. [Google Scholar] [CrossRef]
- Manaf, O.; Anjana, K.; Prasanth, R.; Reshmi, C.R.; Juraij, K.; Rajesh, P.; Chingakham, C.; Sajith, V.; Sujith, A. ZnO decorated anti-bacterial electrospun ABS nanocomposite membrane for oil-water separation. Mater. Lett. 2019, 256, 126626. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Li, C.; Liu, R. Porous nanofibrous superhydrophobic membrane with embedded Au nanoparticles for the integration of oil/water separation and catalytic degradation. J. Membr. Sci. 2019, 582, 350–357. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Y.; Chinnappan, A.; Wei, Z.; Guc, Q.; He, H.; Fang, Y.; Zhang, X.; Lakshminarayanan, R.; Zhao, W.; et al. A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. Sci. Total Environ. 2020, 729, 138876. [Google Scholar] [CrossRef]
- Tian, M.; Liao, Y.; Wang, R. Engineering a superwetting thin film nanofibrous composite membrane with excellent antifouling and self-cleaning properties to separate surfactant-stabilized oil-in-water emulsions. J. Membr. Sci. 2020, 596, 117721. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, C.; Liu, H.; Chen, M.; Xu, H.; Luo, W.; Zhang, F. Robust functionalization of underwater superoleophobic PVDF-HFP tubular nanofiber membranes and applications for continuous dye degradation and oil/water separation. J. Membr. Sci. 2020, 596, 117583. [Google Scholar] [CrossRef]
- Zhang, L.; He, Y.; Luo, P.; Ma, L.; Fan, Y.; Zhang, S.; Shi, H.; Li, S.; Nie, Y. A heterostructured PPy/ZnO layer assembled on a PAN nanofibrous membrane with robust visiblelight-induced self-cleaning properties for highly efficient water purification with fast separation flux. J. Mater. Chem. A 2020, 8, 4483. [Google Scholar] [CrossRef]
- Wang, W.; Lin, J.; Cheng, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.-S. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J. Hazard. Mater. 2020, 385, 121582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, W.; Zhang, F.; Gao, S.; Guo, Y.; Li, J.; Zhu, Y.; Zhang, Y.; Jin, J. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation. J. Membr. Sci. 2020, 608, 118201. [Google Scholar] [CrossRef]
- Chen, S.; Lv, C.; Hao, K.; Jin, L.; Xie, Y.; Zhao, W.; Sun, S.; Zhang, X.; Zhao, C. Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation. J. Colloid Interface Sci. 2019, 538, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Fiol, N.; Tarres, Q.; Vasquez, M.G.; Pereira, M.A.; Mendonca, R.T.; Mutje, P.; Delgado-Aguilar, M. Comparative assessment of cellulose nanofibers and calcium alginate beads for continuous Cu(II) adsorption in packed columns: The influence of water and surface hydrophobicity. Cellulose 2021, 28, 4327–4344. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Dong, S.; Zhang, G.; Shi, X.; Xiang, C.; Li, L. Adsorption of hexavalent chromium by novel chitosan/poly(ethylene oxide)/permutit electro- spun nanofibers. New J. Chem. 2018, 42, 17740–17749. [Google Scholar] [CrossRef]
- Juntadech, T.; Nantasenamat, C.; Chitpong, N. Oxidized regenerated cellulose nanofiber membranes for capturing heavy metals in aqueous solutions. Cellulose 2021, 28, 11465–11482. [Google Scholar] [CrossRef]
- Li, Q.H.; Dong, M.; Li, R.; Cui, Y.Q.; Xie, G.X.; Wang, X.X. Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohydr. Polym. 2021, 253, 117200. [Google Scholar] [CrossRef]
- Bates, C.I.I.; Loranger, É.; Mathew, A.P.; Chabot, B. Cellulose reinforced electrospun chitosan nanofibers bio-based composite sorbent for water treatment applications. Cellulose 2021, 28, 4865–4885. [Google Scholar] [CrossRef]
- Chen, H.; Sharma, S.K.; Sharma, P.R.; Chi, K.; Fung, E.; Aubrecht, K.; Keroletswe, N.; Chigome, S.; Hsiao, B.S. Nitro-oxidized carboxycellulose nanofibers from moringa plant: Effective bioadsorbent for mercury removal. Cellulose 2021, 28, 8611–8628. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Lou, T. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. J. Hazard. Mater. 2021, 403, 124054. [Google Scholar] [CrossRef]
- Chang, H.N.; Hou, S.X.; Hao, Z.C.; Cui, G.H. Ultrasonic green synthesis of an Ag/CP nanocomposite for enhanced photodegradation effectiveness. Ultrason. Sonochem. 2018, 40, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Abou-Zeid, R.E.; Salama, A.; Al-Ahmed, Z.A.; Awwad, N.S.; Youssef, M.A. Carboxylated cellulose nanofibers as a novel efficient adsorbent for water purification. Cellul. Chem. Technol. 2020, 54, 237–245. [Google Scholar] [CrossRef]
- Ahn, J.; Pak, S.; Kim, H. Synergetic effect of carbon dot at cellulose nanofiber for sustainable metal-free photocatalyst. Cellulose 2021, 28, 11261–11274. [Google Scholar] [CrossRef]
- Fan, M.; Ren, Z.; Zhang, Z.; Yang, Y.; Guo, Z. Simple preparation of a durable and low-cost load-bearing three-dimensional porous material for emulsion separation. New J. Chem. 2021, 45, 17893. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, X.; Chen, B.; Wang, N.; Chen, G. Electrospinning superhydrophobic–superoleophilic PVDF-SiO2 nanofibers membrane for oil–water separation. J. Appl. Polym. Sci. 2020, 137, e49546. [Google Scholar] [CrossRef]
- Shah, A.A.; Yoo, Y.; Park, A.; Cho, Y.H.; Park, Y.-I.; Park, H. Poly(ethylene-co-vinyl alcohol) Electrospun Nanofiber Membranes for Gravity-Driven Oil/Water Separation. Membranes 2022, 12, 382. [Google Scholar] [CrossRef]
- Li, T.; Chen, C.; Brozena, A.H.; Zhu, J.Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O.J.; Isogai, A.; Wågberg, L.; et al. Developing fibrillated cellulose as a sustainable technological material. Nature 2021, 590, 47–56. [Google Scholar] [CrossRef]
NF and NFC | Contact Angle | Stress (MPa) | Elongation at Break (%) | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Diameter (nm) | Pollutant | Qe (mg g−1) | %R | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PA/PAN-eTFC | 32.3 ± 1.3° | 13 ± 0.77 | 68 ± 0.28 | TC | 99.99 | [55] | ||||
poly-CD | 0 | 0.67 ± 0.06 | 2.50 ± 0.50 | 6.45 | 0.16 | 85.60 | MB | 124.102 | [56] | |
DA@PDA | 0 | 15.66 | MB | 88.2 | [57] | |||||
Phytic acid doped polyaniline | 33 | 9.6154 × 10−2 | 11.7 | MB | 43.4 | [58] | ||||
PMMA-rGO | 41 | 16 | MB | 698.51 | [59] | |||||
PN-CSN | 364 | 0.18 | MB | 400 | [60] | |||||
PVA/S | 3.47 ± 0.10 | 19.44 ± 0.28 | 24.72 | 0.0421 | 17.36 | MB | 400 | [61] | ||
CA/PEO/B | MB | 93 | [62] | |||||||
ZIF-8@CS/PVA-ENF | MG | 1000 | [63] | |||||||
Mo2N/MoO2 | RhB | [64] | ||||||||
FAU/PLA | RhB MB | 90 | [65] | |||||||
PU/10GO | 0 | 11.94 ± 1.52 N/mm2 | 109.48 ± 3.66 | RhB MB | 77.15 109.88 | [66] | ||||
ZIF-8/PAN | MB MG | 120.84 1531.94 | [67] | |||||||
PCL/PEO@PDA | 9.0741 | 0.008920 | 27.1665 | MB MO | 14.8 60.0 | [69] | ||||
CA–GO/TiO2–NH2 | IC MB | 99.8 98.3 | [70] | |||||||
SPES | 105 | 2.05 ± 0.18 | 13.14 | MB Pb (II) | 6.6 6.4 | [71] | ||||
zirconia fibers | Allura Red dye | 0.895 | [72] | |||||||
APAN/mMnp | IC | 154.5 | [73] | |||||||
pTSA-PANI/PLLA | 18 | 8.3 ± 0.4 | MO | 333 | [74] | |||||
PMETAC/PES | 0 | 20.51 | 0.1347 | 26.28 | CR | 208 | [75] | |||
p-ECNFs | 144.70 | 15.7 | CBB | 141 | [76] | |||||
PCSCN | DR80 | 322 | [77] | |||||||
NFMs-NH3+ | 0 | MO SDS | 406.6 636 | [78] | ||||||
ZnO-HT-PAN_H | 95 | 7.86 + 3.21 | 19.89 + 2.25 | RB19 RR195 | 276.36 245.76 | [79] | ||||
TiO2/NCNF | 56.7 | MB | 90.64 | [80] | ||||||
TiO2@CFs | 130 | MB | 87.28 | [81] | ||||||
RC-NF@500 FC-NF@500 | 41 24 | MB | 97 79 | [82] | ||||||
TiO2-coated PEI | humic acid MB | ~80 85 | [83] | |||||||
PES/TiO2 | 117 | 18.4 ± 0.2 | 199 | Phenol | 43 | [84] | ||||
Ag@ZnO/TiO2 | 534 kPa | 32.33 | 0.065 | TC | 91.6% | [85] | ||||
RGO/TiO2/PANCMA | 28.4044 | 0.062028 | 11.7095 | MG LMG | 93.1 97.2 | [86] | ||||
Cu2O/PLA | MO | 92.9 | [87] | |||||||
PVA/PAA/MXene@PdNPs | 13.48 | 27.35 | 4-NP 2-NA | 94 90 | [88] | |||||
Au@TiO2/NF | 14 | 10–50 | 4-NP CR | [89] | ||||||
Ag/Fe-EDTA-EDA-PAN NFs | MO | >96 | [91] | |||||||
PA/PEI-laccase | bisphenol A | 90% | [92] |
NF and NFC | Contact Angle | Stress (MPa) | Elongation at Break | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Diameter (nm) | Pollutant | Qe (mg g−1) | %R | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PVA/SHMP HENF | 7.569 | 0.010632 | 12.15 | La3+ Tb3+ Nd3+ | 181.82 243.90 217.39 | [93] | ||||
PAN/Cyanex 272 | Y(III) Eu(III) | 200 400 | [7] | |||||||
PU/phytic acid | 79.23 | 73.2 | Pb2+ | 136.52 | [100] | |||||
HG@NF | Pb2+ | 146.21 | [101] | |||||||
ASTPNM-15 | 149.0 ± 1.6 | 376 | 0.19 | Pb2+ | 142.86 | [102] | ||||
CS@PLLA | Cu2+ | 111.66 | [8] | |||||||
Polyethersulfone-poly (dimethyl amino) ethyl methacrylate nanofibrous | Cu2+ | 161.30 | [103] | |||||||
hordein/MBA/β-CD | Cu2+ | 88.50 | [104] | |||||||
T-Cg | 0 | Cu2+ | 399.14 | [9] | ||||||
PAA-SA NFHs | Cu2+ | 591.70 | [105] | |||||||
PAN/boehmite | Cd2+ | 74% | [106] | |||||||
CS/PNC | Cd2+ | 232.55 | [107] | |||||||
PVA/SA | Cd2+ | 93.163 | [108] | |||||||
CA/Fe-MNZ | Ni2+ | 7.46 | [109] | |||||||
PVA (GA vapors) PVA (solution method) | 69 39 | 11.57 17.61 | Pb2+ Cu2+ | 161.7 58.3 | [110] | |||||
PAA/dextran-polyaniline | 168 | 19.210 | Pb2+ Cu2+ | 1111.11 833.33 | [111] | |||||
MWCNT-PEI/PAN | 40.2° | 11.05 | 3.59 ± 0.3 | Pb2+ Cu2+ | 232.7 112.5 | [112] | ||||
PVA/Chi | Pb2+ Cd2+ | 266.12 148.79 | [113] | |||||||
Modified PAN/PANI-nylon | 4.5 | 37.4 | 17.2 | 57.77 | 6.607 | Pb2+ Cd2+ | 960 911.72 | [114] | ||
PAN/CS/UiO-66-NH2 | Pb2+ Cd2+ Cr6+ | 441.2 415.6 372.6 | [115] | |||||||
(CA/REC-SCV)3.5 | 0 | 1.12 | 2.5 | Zn2+ Cd2+ | 104.31 99.33 | [116] | ||||
SSC/TiO2/ZnO | Ni2+ Cu2+ | 282.3 298.1 | [117] | |||||||
CNFs/TiO2-PAN | 20 | 3.93 | 0.23 | Pb2+ Cu2+ Cd2+ | 87% 73% 66% | [118] | ||||
TPC-CNF | 12.43 | Cu2+ Ca2+ Pb2+ | 92.23, 97.34 82.19 | [119] | ||||||
P-PAN | Cu2+ Ni2+ Cd2+ Ag+ | 92.1 68.3 14.8 51.7 | [120] | |||||||
a-CNFs | Ca2+ Mg2+ | 57.66 65.55 | [122] | |||||||
ABS/PAN–ZnO | 55 | Cr6+ | 80% | [125] | ||||||
(ZVI and CeO2) NF | Cr6+ | ≥96 | [126] | |||||||
PVAm-g-PVA/PAN membrane | 838 ± 141/190 ± 33 | Cr6+ | 133 | [127] | ||||||
PAN n-fib@Mat, PAN-ZnOn-fib@Mat, PAN/ZnO-TiO2 n-fib@Mat | Cr6+ | 153.85 234.52 333.43 | [128] | |||||||
PAN/GO/ZnO | 6.84 + 0.91 | Cr6+ | 690 | [130] | ||||||
CS/PAAS | Cr6+ | 78.92 | [131] | |||||||
CSN-La | As5+ | 83.6 | [132] | |||||||
PAN/α-Fe2O3 | 30 | 10.37 | 0.034 | 11.56 | As5+ | [133] | ||||
0.05MNPs-G@PVA | 7.20 ± 0.29 | 60.92 ± 10.53 | Se(IV) Cr(VI) | [134] | ||||||
CA/chitosan/SWCNT/Fe3O4/TiO2 | Cr(VI), As(V) | 345.2 285.6 | [135] | |||||||
chitosan-g-PNVCL/ZIF-8 | Cr(VI) As(V) | 495.6 439.5 | [136] | |||||||
PCL/CNF | 2.4 | Iron chromium | 75% 99% | [138] | ||||||
CS-PGMA-PEI | Cr (VI), Cu(II) Co(II) | 138.96, 69.27 68.31 | [139] |
NF | Water Contact Angle | Oil Contact Angle | Permeation Flux (m−2 h−1) | Intrusion Pressure (Pa) | Separation Performance (%) | Ref. |
---|---|---|---|---|---|---|
PLA/SiO2 | 17,800 L | 100 | [141] | |||
PLA/ZIF-8@C600 | 72.59 | [142] | ||||
PDMS/TA-Al3+/PI | 153.64 ± 1.6° | 0 | 6935 | gravity-driven | 99 | [143] |
ZnO/PDMS-PI | 120 | 0 | 3706 ± 161 | gravity-driven | 99 | [144] |
PVDF/rGO/TiO2 | 100 | 98.46 | [145] | |||
[ABS]/ZnO | 138 | 0 | gravity-driven | [146] | ||
Au@ZIF-8@PAN-TD | 155.5 | 0 | <200 | gravity-driven | 97.8% | [147] |
PSBMA/PES | 0 | 150 (UWOCAs) | 3723 | gravity-driven | 99% | [148] |
CNTs-PVA | 32 ± 6° | 60 | 20 k | 100 | [149] | |
SPAN-PPy/ZnO | 0 | >150 | >120 k | 96 | [151] | |
d-CA | 0 | 0 | 38,000 | gravity-driven | 99.97 | [152] |
SSA-PAAS-g-PVDF | 0 | 53,574 | >6000 | [153] | ||
PAA/NFM | 27 | >128 | 5142 | gravity-driven | >97.2 | [154] |
Nanofiber | Pollutant | Adsorption Capacity (mg/g) | Oil/Water Separation Efficiency | Photocatalytic Degradation Efficiency | Ref. |
---|---|---|---|---|---|
Cellulose nanofibers and calcium alginate beads | Cu (II) | 56.50 | [155] | ||
Chi/PEO permutit electrospun nanofibers | Cr(VI) | 208 | [156] | ||
Oxidized regenerated cellulose nanofiber membrane | Cu (II), Pb (II) | 20.78 and 206.1 | [157] | ||
Chi/g-C3 N4/TiO2 | Cr(VI) | 165.3 | [158] | ||
Electrospun chitosan–polyethylene oxide-oxidized cellulose biobased composite | Cu | 15.72 | [159] | ||
Nitro-oxidized carboxy-cellulose nanofibers obtained from plants | Hg | 257.07 | [160] | ||
PVA/Chi | Pb (II) | 266.12 | [113] | ||
Chi-PGMA-PEI | Cr (VI) Cu (II) Co (II) | 138.96 69.27 68.31 | [139] | ||
Cellulose acetate/Chi/SWCNT/Fe3 O4/TiO2 | Cr (VI) As (V) | 345.2 285.6 | [135] | ||
ZIF-8@Chi/PVA | Malachite green (MG) | 1000 | [63] | ||
Chi/sodium alginate | Acid Black-172 Methylene blue | 817.0 1488.1 | [161] | ||
Cellulose nanofibers | Acid green 25 | 683 | [162] | ||
Cellulose nanofibers | MB | 502 | [163] | ||
Carbon dots/cellulose nanofibers | MB | 99.9 | [164] | ||
Cellulose nanofibers | Oil phase | 99.97 | [152] | ||
Cellulose acetate/cellulose fiber paper composite membrane | Oil phase | 84 | [165] | ||
PVDF-SiO2 nanofibers membrane | Oil phase | 99 | [166] | ||
poly(ethylene-co-polyvinyl alcohol) (EVOH) nanofiber membranes | Oil phase | 99.9 | [167] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayl, A.A.; Abd-Elhamid, A.I.; Awwad, N.S.; Abdelgawad, M.A.; Wu, J.; Mo, X.; Gomha, S.M.; Aly, A.A.; Bräse, S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers 2022, 14, 1594. https://doi.org/10.3390/polym14081594
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers. 2022; 14(8):1594. https://doi.org/10.3390/polym14081594
Chicago/Turabian StyleNayl, AbdElAziz A., Ahmed I. Abd-Elhamid, Nasser S. Awwad, Mohamed A. Abdelgawad, Jinglei Wu, Xiumei Mo, Sobhi M. Gomha, Ashraf A. Aly, and Stefan Bräse. 2022. "Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification" Polymers 14, no. 8: 1594. https://doi.org/10.3390/polym14081594
APA StyleNayl, A. A., Abd-Elhamid, A. I., Awwad, N. S., Abdelgawad, M. A., Wu, J., Mo, X., Gomha, S. M., Aly, A. A., & Bräse, S. (2022). Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers, 14(8), 1594. https://doi.org/10.3390/polym14081594