Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs
Abstract
:1. Introduction
2. Fabrication of Nanofibers via Electrospinning
3. Applications of Nanofibers
3.1. Biomedical Applications
3.1.1. Bone Cell Proliferation
3.1.2. Nerve Regeneration
3.1.3. Vascular Tissue
3.1.4. Skin Tissue Engineering
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
1D | one dimension |
2D | two dimensions |
3D | three dimensions |
ECM | extracellular matrix |
ENFSs | electrospun nanofiber scaffolds |
PmNFs | polymer nanofibers |
BEPCs | bone marrow endothelial progenitor cells |
PCL | polycaprolactone |
Gel | gelatin |
N6 | nylon 6 |
PU | polyurethane |
ALP | alkaline phosphatase |
La | lanthanum |
Ta | tantalum |
GAG | glycosaminoglycan’s |
Chi | chitosan |
CH3COOH | acetic acid |
PEO | polyethylene oxide |
CM | carboxymethyl |
hMSCs | human bone marrow-derived mesenchymal stem cells |
C | cellulose |
LA | lactic acid |
TPU | thermoplastic polyurethane |
CNF | cellulose nanofibrils |
PDA | polydopamine |
BC | Bacterial cellulose |
PLA | poly(lactic acid) |
RC | regenerated carbon |
PANI | polyaniline |
BSA | Bovine serum albumin |
PDGF-BB | platelet-derived growth factor |
ACL | anterior cruciate ligament |
PET | polyethylene terephthalate |
BMP-7 | bone morphogenetic protein 7 |
LbL | layer-by-layer |
PET | polyethylene terephthalate |
PGS | poly (glycerol sebacate) |
KGN | Kartogenin |
MSC | mesenchymal stem/stromal cells |
CNFs | carbon nanofibers |
PAN | polyacrylonitrile |
BMMSCs | bone marrow mesenchymal stem cells |
GAC | glacial acetic acid |
EC | ethylene carbonate |
PTFE | polytetrafluoroethylene |
(GO)NPs | graphene oxide nanoparticles |
PCS | poly (citrates-siloxane) |
PLGA | poly(lactic-co-glycolic acid) |
HA | hydroxyapatite |
Dex | examethasone |
PNI | Peripheral nerve injuries |
AFG/fSAP | aligned fibrin/functionalized self-assembling peptide |
AChiG | Aligned chitosan nanofiber hydrogel |
PLCL | poly(L-lactide-co-caprolactone) |
TSF | tussah silk fibroin |
ECs | endothelial cells |
SMCs | smooth muscle cells |
PLGATMC | poly(lactide–glycolide–trimethylene carbonate) |
SDF-1α | stromal cell–derived factor-1-alpha |
dPCU | degradable thermoplastic polycarbonate urethane |
PTFE | polytetrafluoroethylene |
GrGO | glucose (G)-reduced graphene oxide |
GA | glutaraldehyde |
AgNPs | silver nanoparticles |
TCH | tetracycline hydrochloride |
TC | tetracycline |
PVA | poly(vinyl alcohol) |
SS | silk sericin |
AO | althea Officinalis |
CA | calcium alginate |
PDLCs | periodontal ligament cells |
hPDLCs | human periodontal ligament cells |
GT | gum tragacanth |
SIS | small intestinal submucosa |
ES | elastin |
cin | cinnamon |
CNC | cellulose nanocrystals |
BCNC | bacterial cellulose nano-crystal |
SSS | siliceous sponge spicules |
PMS | poly (mannitol sebacate) |
PDMS | polydimethylsiloxane |
PVDFhfp | poly(vinylidene fluoride-co-hexafluoropropylene) |
NT | N-terminal module |
CT | C-terminal module |
HUVEC | human umbilical vein endothelial cells |
DOPA | dihydroxyphenylalanine |
ADA | alginate dialdehyde |
COL | collagen |
HFBSCs | hair follicle bulge stem cells |
PA | polyamide |
NAC | N-Acetylcysteine |
Eu | europium |
References
- Anstey, A.; Chang, E.; Kim, E.S.; Rizvi, A.; Kakroodi, A.C.; Park, B.; Lee, P.C. Nanofibrillated polymer systems: Design, application, and current state of the art. Prog. Polym. Sci. 2021, 113, 101346. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O. Research Progress on the Applications of Electrospun Nanofibers in Catalysis. Catalysts 2022, 12, 9. [Google Scholar] [CrossRef]
- Phan, D.-N.; Khan, M.Q.; Nguyen, N.-T.; Phan, T.-T.; Ullah, A.; Khatri, M.; Kien, N.N.; Kim, I.-S. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr. Polym. 2021, 252, 117175. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef]
- Goonoo, N.; Bhaw-Luximon, A.; Jhurry, D. In vitro and in vivo cytocompatibility of electrospun nanofiber scaffolds for tissue engineering applications. RSC Adv. 2014, 4, 31618–31642. [Google Scholar] [CrossRef]
- Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J.M.; Sharifi, S.; Ramakrishna, S. A review of key challenges of electrospun scaffolds for tissue engineering applications. J. Tissue Eng. Regen. Med. 2016, 10, 715–738. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, W.; Ma, D.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A. Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, 16, 122. [Google Scholar] [CrossRef] [Green Version]
- Rnjak-Kovacina, J.; Weiss, A.S. Increasing the pore size of electrospun scaffolds. Tissue Eng. Part B 2011, 17, 365–372. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, Y.; Lim, C.T. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: A review. Tissue Eng. Part B. 2012, 18, 77–87. [Google Scholar] [CrossRef]
- Wojasiński, M.; Pilarek, M.; Ciach, T. Comparative studies of electrospinning and solution blow spinning processes for the production of nanofibrous poly(L-lactic acid) materials for biomedical engineering. Polish J. Chem. Techno. 2014, 16, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Zhang, H.; Guo, B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. Nano-Micro Lett. 2022, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.S.; Ahn, C.B.; Son, K.H.; Lee, J.W. Motility Improvement of Biomimetic Trachea Scaffold via Hybrid 3D-Bioprinting Technology. Polymers 2021, 13, 971. [Google Scholar] [CrossRef] [PubMed]
- Samadian, H.; Khastar, H.; Ehterami, A.; Salehi, M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: In vitro and in vivo study. Sci. Rep. 2021, 11, 13877. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, Y.; Ijima, H. Development of heparin-conjugated nanofibers and a novel biological signal by immobilized growth factors for peripheral nerve regeneration. J. Biosci. Bioeng. 2020, 129, 354–362. [Google Scholar] [CrossRef]
- Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721. [Google Scholar] [CrossRef]
- Lee, K.S.; Kayumov, M.; Emechebe, G.A.; Kim, D.-W.; Cho, H.-J.; Jeong, Y.-J.; Lee, D.-W.; Park, J.-K.; Park, C.-H.; Kim, C.-S.; et al. A Comparative Study of an Anti-Thrombotic Small-Diameter Vascular Graft with Commercially Available e-PTFE Graft in a Porcine Carotid Model. Tissue Eng. Regen. Med. 2022. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, S.; Wanga, H.; Carlson, M.A.; Gombart, A.F.; Xie, J. CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomater. 2018, 68, 237–248. [Google Scholar] [CrossRef]
- Cojocaru, E.; Ghitman, J.; Biru, E.I.; Pircalabioru, G.G.; Vasile, E.; Iovu, H. Synthesis and Characterization of Electrospun Composite Scaffolds Based on Chitosan-Carboxylated Graphene Oxide with Potential Biomedical Applications. Materials 2021, 14, 2535. [Google Scholar] [CrossRef]
- El-Ghazali, S.; Kobayashi, H.; Khatri, M.; Phan, D.-N.; Khatri, Z.; Mahar, S.K.; Kobayashi, S.; Kim, I.-S. Preparation of a Cage-Type Polyglycolic Acid/Collagen Nanofiber Blend with Improved Surface Wettability and Handling Properties for Potential Biomedical Applications. Polymers 2021, 13, 3458. [Google Scholar] [CrossRef]
- Mehrani, Z.; Ebrahimzadeh, H.; Moradi, E.; Yamini, Y. Using three-dimensional poly (vinyl alcohol)/sodium hexametaphosphate nanofiber as a non-toxic and efficient nanosorbent for extraction and recovery of Lanthanide ions from aqueous solutions. J. Mol. Liq. 2020, 307, 112925. [Google Scholar] [CrossRef]
- Kumar, P.S.; Venkatesh, K.; Gui, E.L.; Sundaramurthy, J.; Singh, G.; Arthanareeswaran, G. Electrospun carbon nanofibers/TiO2-PAN hybrid membranes for effective removal of metal ions and cationic dye, Environmental Nanotechnology. Monit. Manag. 2018, 10, 366–376. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, F.; Jiaoa, T.; Deng, H.; Zou, G.; Bai, Z.; Zhang, Q.; Peng, Q. Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chin. Chem. Lett. 2020, 31, 992–995. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Wang, Y.; Zhang, Q.; Ma, W.; Huang, C. Electrospun nanofiber membranes for wastewater treatment applications. Sep. Purif. Technol. 2020, 250, 117116. [Google Scholar] [CrossRef]
- Pervez, M.N.; Balakrishnan, M.; Hasan, S.W.; Choo, K.-H.; Zhao, Y.; Cai, Y.; Zarra, T.; Belgiorno, V.; Naddeo, V. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. Npj Clean Water 2020, 3, 43. [Google Scholar] [CrossRef]
- Fahimirad, S.; Fahimirad, Z.; Sillanpää, M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total Environ. 2021, 751, 141673. [Google Scholar] [CrossRef]
- Kugarajah, V.; Ojha, A.K.; Ranjan, S.; Dasgupta, N.; Ganesapillai, M.; Dharmalingam, S.; Elmoll, A.; Hosseini, S.A.; Muthulakshmi, L.; Vijayakumar, S.B.; et al. Future applications of electrospun nanofibers in pressure driven water treatment: A brief review and research update. J. Environ. Chem. Eng. 2021, 9, 105107. [Google Scholar] [CrossRef]
- Peydayesh, M.; Mezzenga, R. Protein nanofibrils for next generation sustainable water purification. Nat. Commun. 2021, 12, 3248. [Google Scholar] [CrossRef]
- Uddin, Z.; Ahmad, F.; Ullan, T.; Nawab, Y.; Ahmad, S.; Azam, F.; Rasheed, A.; Zafar, M.S. Recent trends in water purification using electrospun nanofibrous membranes. Int. J. Environ. Sci. Technol. 2021, 9, 104613. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, C.; Yang, Z.; Wu, G.; Liu, G.; Kong, Z. Recent advances in lignin-based porous materials for pollutants removal from wastewater. Int. J. Biol. Macromol. 2021, 187, 880–891. [Google Scholar] [CrossRef]
- Marinho, B.A.; de Souza, S.M.A.G.U.; de Souza, A.A.U.; Hotza, D. Electrospun TiO2 nanofibers for water and wastewater treatment: A review. J. Mater. Sci. 2021, 56, 5428–5448. [Google Scholar] [CrossRef]
- Foong, C.Y.; Wirzal, M.D.H.; Bustam, M.A. A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. J. Mol. Liq. 2020, 297, 111793. [Google Scholar] [CrossRef]
- Arida, I.A.; Ali, I.H.; Nasr, M.; El-Sherbiny, I.M. Electrospun polymer-based nanofiber scaffolds for skin regeneration. J. Drug Deliv. Sci. Technol. 2021, 64, 102623. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Otoni, C.G.; Lopes, J.H.; de Souza, L.P.; Mei, L.H.I.; Lona, L.M.F.; Lozano, K.; Lobo, A.O.; Mattoso, L.H.C. Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. Mater. Sci. Eng. C 2021, 123, 111853. [Google Scholar] [CrossRef] [PubMed]
- Yadid, M.; Oved, H.; Silberman, E.; Dvir, T. Bioengineering approaches to treat the failing heart: From cell biology to 3D printing. Nat. Rev. Cardiol. 2022, 19, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Al-Enizi, A.M.; Moustafa, M.; Zagho, M.M.; Elzatahry, A.A. Polymer-Based Electrospun Nanofibers for Biomedical Applications. Nanomaterials 2018, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Rickel, A.P.; Deng, X.; Engebretson, D.; Hong, Z. Electrospun nanofiber scaffold for vascular tissue engineering. Mater. Sci. Eng. C 2021, 129, 112373. [Google Scholar] [CrossRef]
- Grant, J.J.; Pillai, S.C.; Hehir, S.; McAfee, M.; Breen, A. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomater. Sci. Eng. 2021, 7, 1278–1301. [Google Scholar] [CrossRef]
- Cui, C.; Sun, S.; Wu, S.; Chen, S.; Ma, J.; Zhou, F. Electrospun chitosan nanofibers for wound healing application. Eng. Regen. 2021, 2, 82–90. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Loutfy, S.A.; Hussein, Y.; Kenawy, E.S. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int. J. Biol. Macromol. 2021, 187, 755–768. [Google Scholar] [CrossRef]
- Mateti, T.; Aswath, S.; Vatti, A.K.; Kamath, A.; Laha, A. A review on allopathic and herbal nanofibrous drug delivery vehicles for cancer treatments. Biotechnol. Rep. 2021, 31, e00663. [Google Scholar] [CrossRef]
- Tenreiro, M.F.; Louro, A.F.; Alves, P.M.; Serra, M. Next generation of heart regenerative therapies: Progress and promise of cardiac tissue engineering. NPJ Regen. Med. 2021, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Fu, G.; Tang, Y. Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Mater. Today Energy 2021, 22, 100850. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Kou, Z.; Song, N.; Nie, G.; Wang, C.; Verpoort, F.; Mu, S. Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chem. Eng. J. 2022, 428, 131133. [Google Scholar] [CrossRef]
- Forghani, S.; Almasi, H.; Moradi, M. Electrospun nanofibers as food freshness and time-temperature indicators: A new approach in food intelligent packaging. Innov. Food Sci. Emerg. Technol. 2021, 73, 102804. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, F.; Houa, L.; Li, S.; Gaoa, Y.; Xin, Z.; Li, Q.; Xie, S.; Wang, N.; Zhao, Y. Synergistic engineering of 1D electrospun nanofibers and 2D nanosheets for sustainable applications. Sustain. Mater. Technol. 2020, 26, e00214. [Google Scholar] [CrossRef]
- Háková, M.; Havlíková, L.C.; Švec, F.; Solich, P.; Šatínský, D. Nanofibers as advanced sorbents for on-line solid phase extraction in liquid chromatography: A tutorial. Anal. Chim. Acta 2020, 1121, 83–96. [Google Scholar] [CrossRef]
- Wang, Y.; Yokota, T.; Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 2021, 13, 22. [Google Scholar] [CrossRef]
- Wen, D.L.; Sun, D.H.; Huang, P.; Huang, W.; Su, M.; Wang, Y.; Han, M.-D.; Kim, B.; Brugger, J.; Zhang, H.-X.; et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 2021, 7, 35. [Google Scholar] [CrossRef]
- Nie, G.; Zhao, X.; Luan, Y.; Jiang, J.; Kou, Z.; Wang, J. Key issues facing electrospun carbon nanofibers in energy applications: On-going approaches and challenges. Nanoscale 2020, 12, 13225–13248. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Gong, C.; Liu, B.; Weia, G. Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review. Chem. Eng. J. 2020, 402, 126189. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Favier, F.; Pinna, N. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance. Adv. Energy Mater. 2017, 7, 1601301. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Joshi, M.K.; Pant, H.R.; Tiwari, A.P.; Kim, H.J.; Park, C.H.; Kim, C.S. Multi-layered macroporous three-dimensional nanofibrous scaffold via a novel gas foaming technique. Chem. Eng. J. 2015, 275, 79–88. [Google Scholar] [CrossRef]
- Wang, X.-X.; Yu, G.-F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Shikhi-Abadi, P.G.; Irani, M. A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int. J. Biol. Macromol. 2021, 183, 790–810. [Google Scholar] [CrossRef]
- El-Aswar, E.I.; Ramadan, H.; Elkik, H.; Taha, A.G. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. J. Environ. Manag. 2022, 301, 113908. [Google Scholar] [CrossRef]
- Patil, N.A.; Kandasubramanian, B. Functionalized polylysine biomaterials for advanced medical applications: A review. Eur. Polym. J. 2021, 146, 110248. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, B.; Zhang, W.; Yan, C.; Yao, Q.; Shao, C.; Yu, F.; Li, F.; Fu, Y. Electrospun gelatin/PCL and collagen/PCL scaffolds for modulating responses of bone marrow endothelial progenitor cells. Exp. Ther. Med. 2019, 17, 3717–3726. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.G.; Mousa, H.M.; Blaudez, F.; Abd El-sadek, M.S.; Mohamed, M.A.; Abdel-Jaber, G.T.; Abdal-hay, A.; Ivanovski, S. Dual nanofiber scaffolds composed of polyurethane-gelatin/nylon 6-gelatin for bone tissue engineering. Colloids Surf. A 2020, 597, 124817. [Google Scholar] [CrossRef]
- Deng, L.; Li, Y.; Zhang, H. In vitro and in vivo assessment of glucose cross-linked gelatin/zein nanofibrous scaffolds for cranial bone defects regeneration. J. Biomed. Mater. Res. 2020, 108B, 1505–1517. [Google Scholar] [CrossRef]
- Bochicchio, B.; Barbaro, K.; De Bonis, A.; Rau, J.V.; Pepe, A. Electrospun poly(D,L-lactide)/gelatin/glass-ceramics tricomponent nanofibrous scaffold for bone tissue engineering. J. Biomed. Mater. Res. 2020, 108A, 1064–1076. [Google Scholar] [CrossRef]
- Singh, Y.P.; Dasgupta, S.; Nayar, S.; Bhaskar, R. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 2020, 31, 781–803. [Google Scholar] [CrossRef]
- Zhu, J.; Ye, H.; Deng, D.; Li, J.; Wu, Y. Electrospun metformin-loaded polycaprolactone/chitosan nanofibrous membranes as promoting guided bone regeneration membranes: Preparation and characterization of fibers, drug release, and osteogenic activity in vitro. J. Biomater. Appl. 2020, 34, 1282–1293. [Google Scholar] [CrossRef]
- Sharifi, F.; Atyabi, S.M.; Irani, S.; Bakhshi, H. Bone morphogenic protein-2 immobilization by cold atmospheric plasma to enhance the osteoinductivity of carboxymethyl chitosan-based nanofibers. Carbohydr. Polym. 2020, 231, 115681. [Google Scholar] [CrossRef]
- Guo, S.; He, L.; Yang, R.; Chen, B.; Xie, X.; Jiang, B.; Weidong, T.; Ding, Y. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. J. Biomater. Sci. Polym. Ed. 2020, 31, 155–168. [Google Scholar] [CrossRef]
- Cui, Z.; Lin, J.; Zhan, C.; Wu, J.; Shen, S.; Si, J.; Wang, Q. Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers. J. Biomater. Sci. Polym. Ed. 2020, 31, 561–577. [Google Scholar] [CrossRef]
- Luo, H.; Gan, D.; Gama, M.; Tu, J.; Yao, F.; Zhang, Q.; Ao, H.; Yang, Z.; Li, J.; Wan, Y. Interpenetrated nano- and submicro-fibrous biomimetic scaffolds towards enhanced mechanical and biological performances. Mater. Sci. Eng. C 2020, 108, 110416. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, T.; Hua, W.; Li, P.; Wang, X. 3D Porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization. Colloids Surf. A 2020, 585, 124048. [Google Scholar] [CrossRef]
- Massoumi, B.; Abbasian, M.; Jahanban-Esfahlan, R.; Mohammad-Rezaei, R.; Khalilzadeh, B.; Samadian, H.; Rezaei, A.; Derakhshankhah, H.; Jaymand, M. A novel bio-inspired conductive, biocompatible, and adhesive terpolymer based on polyaniline, polydopamine, and polylactide as scaffolding biomaterial for tissue engineering application. Int. J. Biol. Macromol. 2020, 147, 1174–1184. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Huang, Y.; Xin, B.; Liu, S. BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering. J. Biomater. Sci. Polym. Ed. 2020, 39, 1223–1236. [Google Scholar] [CrossRef]
- Baek, J.; Lee, E.; Lotz, M.K.; D’Lim, D.D. Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration, Nanomedicine: Nanotechnology. Biol. Med. 2020, 23, 102090. [Google Scholar] [CrossRef]
- Kołbuk, D.; Heljak, M.; Choinska, E.; Urbanek, O. Novel 3D Hybrid Nanofiber Scaffolds for Bone Regeneration. Polymers 2020, 12, 544. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Wakuda, Y.; Matsumura, M.; Suyea, S.-I. Geometrically customizable alginate hydrogel nanofibers for cell culture platforms. J. Mater. Chem. B 2019, 7, 6556. [Google Scholar] [CrossRef]
- Zhang, P.; Han, F.; Chen, T.; Wu, Z.; Chen, S. “Swiss roll”-like bioactive hybrid scaffolds for promoting bone tissue ingrowth and tendon-bone healing after anterior cruciate ligament reconstruction. Biomater. Sci. 2020, 8, 871. [Google Scholar] [CrossRef]
- Silva, J.C.; Udangawa, R.N.; Chen, J.; Mancinelli, C.D.; Garrudo, F.F.F.; Mikael, P.E.; Cabral, J.M.S.; Ferreira, F.C.; Linhardt, R.J. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater. Sci. Eng. C 2020, 107, 110291. [Google Scholar] [CrossRef]
- Samadian, H.; Mobasheri, H.; Hasanpour, S.; Ai, J.; Azamie, M.; Faridi-Majidi, R. Electro-conductive carbon nanofibers as the promising interfacial biomaterials for bone tissue engineering. J. Mol. Liq. 2020, 298, 112021. [Google Scholar] [CrossRef]
- Yin, L.; Zhu, Y.; He, M.; Chang, Y.; Xu, F.; Lai, H.-C. Preparation and characteristics of electrospinning PTH-Fc/PLCL/SF membranes for bioengineering applications. J. Biomed. Mater. Res. 2020, 108A, 157–165. [Google Scholar] [CrossRef]
- Sun, H.; Hu, C.; Zhou, C.; Wu, L.; Sun, J.; Zhou, X.; Xing, F.; Long, C.; Kong, Q.; Liang, J.; et al. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair. Mater. Des. 2020, 189, 108540. [Google Scholar] [CrossRef]
- Zhang, Y.; Ullah, I.; Zhang, W.; Ou, H.; Domingos, M.; Gloria, A.; Zhou, J.; Li, W.; Zhang, X. Preparation of electrospun nanofibrous polycaprolactone scaffolds using nontoxic ethylene carbonate and glacial acetic acid solvent system. Inc. J. Appl. Polym. Sci. 2020, 137, 48387. [Google Scholar] [CrossRef]
- Khoramgah, M.S.; Ranjbari, J.; Abbaszadeh, H.-A.; Mirakabad, F.S.T.; Hatami, S.; Hosseinzadeh, S.; Ghanbarian, H. Freeze-dried multiscale porous nanofibrous three dimensional scaffolds for bone regenerations. BioImpacts 2020, 10, 73–85. [Google Scholar] [CrossRef]
- Wu, L.; Gu, Y.; Liu, L.; Tang, J.; Mao, J.; Xi, K.; Jiang, Z.; Zhou, Y.; Xu, Y.; Deng, L.; et al. Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials 2020, 227, 119555. [Google Scholar] [CrossRef]
- Yu, M.; Du, Y.; Han, Y.; Lei, B. Biomimetic Elastomeric Bioactive Siloxane-Based Hybrid Nanofibrous Scaffolds with miRNA Activation: A Joint Physico-Chemical-Biological Strategy for Promoting Bone Regeneration. Adv. Funct. Mater. 2020, 30, 1906013. [Google Scholar] [CrossRef]
- Mani, M.P.; Jaganathan, S.K. Engineered multicomponent electrospun nanocomposite scaffolds comprising polyurethane loaded with ghee and propolis for bone tissue repair. J. Ind. Text. 2020, 0, 1–18. [Google Scholar] [CrossRef]
- Li, C.; Wang, B.; Liu, X.; Pan, Z.; Liu, C.; Ma, H.; Liu, X.; Liu, L.; Jiang, C. The dosage effects of dexamethasone on osteogenic activity and biocompatibility of poly(lactic-co-glycolic acid)/hydroxyapatite nanofibers. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1823–1832. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Zhu, J.; Lu, C.; Chai, Y.; Cao, Z.; Lu, J.; Zhang, Z.; Zhao, H.; Huang, Y.; Yao, S.; et al. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioact. Mater. 2022, 8, 529–544. [Google Scholar] [CrossRef]
- Pillai, M.M.; Kumar, G.S.; Houshyar, S.; Padhye, R.; Bhattacharyya, A. Effect of nanocomposite coating and biomolecule functionalization on silk fibroin based conducting 3D braided scaffolds for peripheral nerve tissue engineering. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102131. [Google Scholar] [CrossRef]
- Rao, F.; Wang, Y.; Zhang, D.; Lu, C.; Cao, Z.; Sui, J.; Wu, M.; Zhang, Y.; Pi, W.; Wang, B.; et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics 2020, 10, 1590–1603. [Google Scholar] [CrossRef]
- Liu, F.; Liao, X.; Liu, C.; Li, M.; Chen, Y.; Shao, W.; Weng, K.; Li, F.; Ou, K.; He, J. Poly(L-lactide-co-caprolactone)/tussah silk fibroin nanofiber vascular scaffolds with small diameter fabricated by core-spun electrospinning technology. J. Mater. Sci. 2020, 55, 7106–7119. [Google Scholar] [CrossRef]
- Li, X.; Huang, L.; Li, L.; Tang, Y.; Liu, Q.; Xie, H.; Tian, J.; Zhou, S.; Tang, G. Biomimetic dual-oriented/bilayered electrospun scaffold for vascular tissue engineering. J. Biomater. Sci. Polym. Ed. 2020, 31, 439–455. [Google Scholar] [CrossRef]
- Chen, M.; Li, L.; Xia, L.; Zhang, F.; Jiang, S.; Hu, H.; Li, X.; Wang, H. Temperature Responsive Shape-Memory Scaffolds with Circumferentially Aligned Nanofibers for Guiding Smooth Muscle Cell Behavior. Masthead Macromol. Biosci. 2020, 20, 1900312. [Google Scholar] [CrossRef]
- Liua, G.; Fu, M.; Li, F.; Fu, W.; Zhao, Z.; Xia, H.; Niu, Y. Tissue-engineered PLLA/gelatine nanofibrous scaffold promoting the phenotypic expression of epithelial and smooth muscle cells for urethral reconstruction. Mater. Sci. Eng. C 2020, 111, 110810. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, L.; Yuan, W.; Zhang, D.; Gu, Y.; Huang, J.; Murphy, S.; Ali, M.; Zhang, Y.; Song, L. Sustained release of stromal cell–derived factor-1 alpha from silk fibroin microfiber promotes urethral reconstruction in rabbits. J. Biomed. Mater. Res. 2020, 108, 1591–1786. [Google Scholar] [CrossRef]
- Jia, W.; Li, M.; Weng, H.; Gu, G.; Chen, Z. Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications. Mater. Sci. Eng. C 2020, 110, 110717. [Google Scholar] [CrossRef]
- Eilenberg, M.; Enayati, M.; Ehebruster, D.; Grasl, C.; Walter, I.; Messner, B.; Baudis, S.; Potzmann, P.; Kaun, C.; Podesser, B.K.; et al. Long Term Evaluation of Nanofibrous, Bioabsorbable Polycarbonate Urethane Grafts for Small Diameter Vessel Replacement in Rodents. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 643–652. [Google Scholar] [CrossRef]
- Asadpour, S.; Yeganeh, H.; Khademi, F.; Ai, H.G.J. Resveratrol-loaded polyurethane nanofibrous scaffold: Viability of endothelial and smooth muscle cells. Biomed. Mater. 2020, 15, 015001. [Google Scholar] [CrossRef]
- Narayanana, K.B.; Park, G.T.; Han, S.S. Electrospun poly(vinyl alcohol)/reduced graphene oxide nanofibrous scaffolds for skin tissue engineering. Colloids Surf. B Biointerfaces 2020, 191, 110994. [Google Scholar] [CrossRef]
- Esmaeili, E.; Eslami-Arshaghi, T.; Hosseinzadeh, S.; Elahirad, E.; Jamalpoor, Z.; Hatamie, S.; Soleimani, M. The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: Antimicrobial performance and cutaneous wound healing. Int. J. Biol. Macromol. 2020, 152, 418–427. [Google Scholar] [CrossRef]
- Asadi, H.; Ghaee, A.; Nourmohammadi, J.; Mashak, A. Electrospun zein/graphene oxide nanosheet composite nanofibers with controlled drug release as antibacterial wound dressing. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 173–185. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M.; Akbari, M.; Hadisi, Z.; Omidi, M.; Chen, X. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Int. J. Biol. Macromol. 2020, 149, 513–521. [Google Scholar] [CrossRef]
- Ghaseminezhad, K.; Zare, M.; Lashkarara, S.; Yousefzadeh, M.; Mohandesi, J.A. Fabrication of althea officinalis loaded electrospun nanofibrous scaffold for potential application of skin tissue engineering. J. Appl. Polym. Sci. 2020, 137, 48587. [Google Scholar] [CrossRef]
- Wijedasa, N.P.; Broas, S.M.; Daso, R.E.; Banerjee, I.A. Varying fish scale derived hydroxyapatite bound hybrid peptide nanofiber scaffolds for potential applications in periodontal tissue regeneration. Mater. Sci. Eng. C 2020, 109, 110540. [Google Scholar] [CrossRef]
- Ye, Z.; Xu, W.; Shen, R.; Yan, Y. Emulsion electrospun PLA/calcium alginate nanofibers for periodontal tissue engineering. J. Biomater. Appl. 2020, 34, 763–777. [Google Scholar] [CrossRef]
- Valadez-González, A.; Rosales-Ibáñez, R.; Rodríguez-Navarrete, A.; Villamar-Duque, T.E.; Cano-Brown, J.; Carrillo-Escalante, H.J.; Ortiz-Fernández, A.; Hernández-Sánchez, F. Tailoring surface properties of carbon nanofibers via oxidation and its influence on dental pulp stem cell viability of PCL/CNF composites. Polym. Bull. 2021, 78, 695–711. [Google Scholar] [CrossRef]
- Saha, S.; Bhattacharjee, A.; Rahaman, S.H.; Ray, S.; Marei, M.K.; Jain, H.; Chakraborty, J. Prospects of antibacterial bioactive glass nanofibers for wound healing: An in vitro study. Int. J. Appl. Glass Sci. 2020, 11, 320–328. [Google Scholar] [CrossRef]
- Menazeaa, A.A.; Abdelbadie, S.A.; Ahmed, M.K. Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε- polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Appl. Surf. Sci. 2020, 508, 145299. [Google Scholar] [CrossRef]
- He, J.; Liang, Y.; Shi, M.; Guo, B. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 2020, 385, 123464. [Google Scholar] [CrossRef]
- Yang, C.; Yan, Z.; Lian, Y.; Wang, J.; Zhang, K. Graphene oxide coated shell-core structured chitosan/PLLA nanofibrous scaffolds for wound dressing. J. Biomater. Sci. Polym. Ed. 2020, 31, 622–641. [Google Scholar] [CrossRef]
- Shokrollahi, M.; Bahrami, S.H.; Nazarpak, M.H.; Solouk, A. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing. Int. J. Biol. Macromol. 2020, 147, 547–559. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Kargozar, S.; Bahrami, S.H.; Rabbani, S. An excellent nanofibrous matrix based on gum tragacanth-poly (εcaprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym. Degrad. Stab. 2020, 174, 109105. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hadisi, Z.; Ismail, A.F.; Aziz, M.; Akbari, M.; Berto, F.; Chen, X.B. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym. Test. 2020, 82, 106298. [Google Scholar] [CrossRef]
- Golchin, A.; Hosseinzadeh, S.; Jouybar, A.; Staji, M.; Soleimani, M.; Ardeshirylajimi, A.; Khojasteh, A. Wound healing improvement by curcumin-loaded electrospun nanofibers and BFP-MSCs as a bioactive dressing. Polym. Adv. Technol. 2020, 31, 1519–1531. [Google Scholar] [CrossRef]
- Cao, G.; Wang, C.; Fana, Y.; Li, X. Biomimetic SIS-based biocomposites with improved biodegradability, antibacterial activity and angiogenesis for abdominal wall repair. Mater. Sci. Eng. C 2020, 109, 110538. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.V.; Sobhana, S.S.L.; Shiny, P.J.; Ramanathan, G.; Felciya, S.J.G.; Poornima, V.; Thennarasu, S.; Fardim, P.; Sivagnanam, U.T. Durable nanofibrous matrices augmented with hydrotalcite-like compounds for cutaneous regeneration of burn wounds. Appl. Clay Sci. 2020, 187, 105476. [Google Scholar] [CrossRef]
- Salehi, M.; Niyakan, M.; Ehterami, A.; Haghi-Daredeh, S.; Nazarnezhad, S.; Abbaszadeh-Goudarzi, G.; Vaez, A.; Hashemi, S.F.; Rezaei, N.; Mousavi, S.R. Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: In vitro and in vivo study. Biomed. Eng. Lett. 2020, 10, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari-Bohlouli, P.; Hamidzadeh, F.; Zahedi, P.; Shahrousv, M.; Fallah-Darrehchi, M. Antibacterial nanofibers based on poly(llactide-co-d, l-lactide) and poly(vinyl alcohol) used in wound dressings potentially: A comparison between hybrid and blend properties. J. Biomater. Sci. Polym. Ed. 2020, 31, 219–243. [Google Scholar] [CrossRef]
- Hivechi, A.; Bahrami, S.H.; Siegel, R.A.; Milan, P.B.; Amoupour, M. In vitro and in vivo studies of biaxially electrospun poly(caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals, for wound healing applications. Cellulose 2020, 27, 5179–5196. [Google Scholar] [CrossRef]
- He, R.; Wang, K.; Ren, J.; Zhang, W.; Wang, Z.; Deng, K.; Shi, Y.; Luo, Y.; Yuan, Y.; Xu, T.; et al. Efficacy of a synthetic biomimetic skin substitute of PLLA/gelatin nanofiber membrane in facilitating chronic cutaneous wound healing. Mater. Technol. 2020, 35, 872–880. [Google Scholar] [CrossRef]
- Unal, S.; Arslan, S.; Yilmaz, B.K.; Kazan, D.; Oktar, F.N.; Gunduz, O. Glioblastoma cell adhesion properties through bacterial cellulose nanocrystals in polycaprolactone/gelatin electrospun nanofibers. Carbohydr. Polym. 2020, 233, 115820. [Google Scholar] [CrossRef]
- Wu, C.-S.; Wu, D.-Y.; Wang, S.-S. Bio-based polymer nanofiber with siliceous sponge spicules prepared by electrospinning: Preparation, characterisation, and functionalization. Mater. Sci. Eng. C 2020, 108, 110506. [Google Scholar] [CrossRef]
- Rahmani, M.; Khani, M.-M.; Rabbani, S.; Mashaghi, A.; Noorizadeh, F.; Faridi-Majidi, R.; Ghanbari, H. Development of poly (mannitol sebacate)/poly (lactic acid) nanofibrous scaffolds with potential applications in tissue engineering. Mater. Sci. Eng. C 2020, 110, 110626. [Google Scholar] [CrossRef]
- Fan, J.; Lei, T.; Yu, M.; Wang, Y.; Cao, F.; Yang, Q.; Tian, F.; Liu, Y. Keratin/PEO/hydroxyapatite Nanofiber Membrane with Improved Mechanical Property for Potential Burn Dressing Application. Fibers Polym. 2020, 21, 366–375. [Google Scholar] [CrossRef]
- Brunelli, M.; Alther, S.; Rossi, R.M.; Ferguson, S.J.; Rottmar, M.; Fortunato, G. Nanofiber membranes as biomimetic and mechanically stable surface coatings. Mater. Sci. Eng. C 2020, 108, 110417. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Ma, X.; Fan, L.; Gao, Y.; Deng, H.; Wang, Y. Accelerating dermal wound healing and mitigating excessive scar formation using LBL modified nanofibrous mats. Mater. Des. 2020, 185, 108265. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Q.; Lin, Y.; Xu, S.; Meng, Q. Evaluation of the potential of chimeric spidroins/poly(L-lactic-co-ε-caprolactone) (PLCL) nanofibrous scaffolds for tissue engineering. Mater. Sci. Eng. C 2020, 111, 110752. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Xu, H.; Zhong, Y.; Wu, Q.; Liu, Z. Surface modification of patterned electrospun nanofibrous films via the adhesion of DOPA-bFGF and DOPA-ponericin G1 for skin wound healing. Mater. Des. 2020, 188, 108432. [Google Scholar] [CrossRef]
- Wang, S.; Ju, J.; Wu, S.; Lin, M.; Sui, K.; Xia, Y.; Tan, Y. Electrospinning of biocompatible alginate-based nanofiber membranes via tailoring chain flexibility. Carbohydr. Polym. 2020, 230, 115665. [Google Scholar] [CrossRef]
- Hu, J.; Song, Y.; Zhang, C.; Huang, W.; Chen, A.; He, H.; Zhang, S.; Chen, Y.; Tu, C.; Liu, J.; et al. Highly Aligned Electrospun Collagen/PCL Surgical Sutures with Sustained Release of Growth Factors for Wound Regeneration. ACS Appl. Bio Mater. 2020, 3, 965–976. [Google Scholar] [CrossRef]
- Sumathy, B.; Nair, P.D. Keratinocytes-hair follicle bulge stem cells-fibroblasts co-cultures on a tri-layer skin equivalent derived from gelatin/PEG methacrylate nanofibers. J. Biomater. Sci. Polym. Ed. 2020, 31, 869–894. [Google Scholar] [CrossRef]
- Jo, S.B.; Erdenebileg, U.; Dashnyam, K.; Jin, G.-Z.; Cha, J.-R.; El-Fiqi, A.; Knowles, J.C.; Patel, K.D.; Lee, H.-H.; Lee, J.-H.; et al. Nano-graphene oxide/polyurethane nanofibers: Mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. J. Tissue Eng. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nataraj, D.; Reddy, R.; Reddy, N. Crosslinking electrospun poly (vinyl) alcohol fibers with citric acid to impart aqueous stability for medical applications. Eur. Polym. J. 2020, 124, 109484. [Google Scholar] [CrossRef]
- Rashtchian, M.; Hivechi, A.; Bahrami, S.H.; Milan, P.B.; Simorgh, S. Fabricating alginate/poly(caprolactone) nanofibers with enhanced biomechanical properties via cellulose nanocrystal incorporation. Carbohydr. Polym. 2020, 233, 115873. [Google Scholar] [CrossRef] [PubMed]
- Rathinavel, S.; Ekambaram, S.; Korrapati, P.S.; Sangeetha, D. Design and fabrication of electrospun SBA-15-incorporated PVA with curcumin: A biomimetic nanoscaffold for skin tissue engineering. Biomed. Mater. 2020, 15, 035009. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.J.; Kim, H.S.; Mao, W.; Park, J.B.; Lee, D.; Lee, H.; Yoo, H.S. Hydro-nanofibrous mesh deep cell penetration: A strategy based on peeling of electrospun coaxial nanofibers. Nanoscale 2018, 10, 6051–6059. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Chen, L.; Zhou, M.; Li, J.; Liu, J.; Fang, H.; Zeng, Y.; Sun, J.; Wang, Z. Multi-Layered Polyamide/Collagen Scaffolds with Topical Sustained Release of N-Acetylcysteine for Promoting Wound Healing. Inter. J. Nanomed. 2020, 15, 1349–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunes, S.; Tamburaci, S.; Tihminlioglu, F. A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing. J. Mater. Sci. Mater. Med. 2020, 31, 7. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Ahi, Z.B.; Ergene, E.; Huri, P.Y.; Tuzlakoglu, K. Design of a new dual mesh with an absorbable nanofiber layer as a potential implant for abdominal hernia treatment. J. Tissue Eng. Regen. Med. 2020, 14, 347–354. [Google Scholar] [CrossRef]
- Wu, K.; Wu, X.; Chen, M.; Wu, H.; Jiao, Y.; Zhou, C. H2O2-responsive smart dressing for visible H2O2 monitoring and accelerating wound healing. Chem. Eng. J. 2020, 387, 124127. [Google Scholar] [CrossRef]
- Dong, B.; Guo, B. Smart wound dressings for wound healing. Nano Today 2021, 41, 101290. [Google Scholar] [CrossRef]
Application | Nanofiber | NF Diameter (nm) | Contact Angle | Tensile Strength (MPa) | Break Strain (%) | Ref |
---|---|---|---|---|---|---|
Bone | collagen/polycaprolactone (PCL) (70:30%) | 305.5 ± 85.8 | 59.9 ± 2.5° | [58] | ||
Gel/PCL (70:30%) | 473.9 ± 136.8 | 61.7 ± 2.6° | [58] | |||
(PU-Gel)/(N6-Gel) | 161 ± 79 | 40 ± 2° | 1.96 ± 0.09 | 76 ± 4 | [59] | |
GEL/PDLLA/RKKP (18:54:29, %wt) | 1330 ± 490 | [60] | ||||
CS/PEO (50/50, 1% GA) | 114 ± 18 | 9.47 | [62] | |||
crosslinked-PCL/CS/metformin | 462 ± 98.75 | 44.25 ± 1.37 | 4.3 ± 0.9 | 4.2 ± 0.8 | [63] | |
TPU/CNF-PDA | 576 | 35.8 ± 4.1 | 14.9 ± 2.2 | 205.7 ± 8.3 | [66] | |
BC/CA | 820 ± 10 | 43.4 ± 6.0° | 0.81 ± 0.02 | [67] | ||
PLCL/BSA | 130 ± 30 | 141.7° | [70] | |||
PCL non-aligned | 505–738 | 4.02 ± 0.88 | [75] | |||
PCL aligned | 9.90 ± 0.87 | |||||
coaxial PGS/PCL non-aligned | 5.06 ± 1.51 | |||||
coaxial PGS/PCL aligned | 11.78 ± 0.73 | |||||
CNFs | 96 ± 14.8 | [76] | ||||
PTH-Fc/PLCL/SF | 671.62 ± 109.01 | 125.77 ± 3.00° | 12.28 ± 2.13 | [77] | ||
PLLA-COL | 86.94 ± 35.72 | 78.97 ± 4.04° | 5.13 ± 0.28 | [81] | ||
MS-COL | 81.87 ± 3.48° | 4.74 ± 0.12 | ||||
PPM | 500 | 30–60° | 15 | [82] | ||
PU/ghee/propolis | 576 ± 144.96 | 55 ± 1° | 22.02 | 194.06 | [83] | |
Vascular | PLCL/TSF | 408 ± 101 | 56 ± 8° | 7.383 ± 0.3 | 147.75 ± 22.6 | [89] |
PLLA/gelatin (50:50) | 361.0 ± 114.6 | <50° | 18.7 | [91] | ||
aligned SF/3D-BAMG composite | 2.7 ± 0.2 | 108.1 ± 5.7 | [92] | |||
nonaligned SF/3D-BAMG composite | 2.4 ± 0.1 | 111.2 ± 3.7 | ||||
PCL fibers | 368.25 ± 200.79 | 4.68 ± 1.64 | 166.50 ± 23.45 | [93] | ||
PLGA scaffold | -- | 1.04 ± 0.46 | 71.99 ± 32.12 | |||
PU fibers | 732.90 ± 219.70 | 10.08 ± 4.20 | 187.20 ± 46.24 | |||
Skin tissue engineering | PG-0 | 92 ± 24 | 5.96 ± 0.966 | 78.3 ± 3.9 34.5 ± 4.2 18.5 ± 5.7 9.0 ± 2.5 8.1 ± 3.4 11.5 | [96] | |
PG-0.05 | 100 ± 27 | 5.53 ± 1.3 | ||||
PG-0.1 | 108 ± 25 | 5.13 ± 1.5 | ||||
PG-0.3 | 173 ± 66 | 4.3 ± 1.2 | ||||
PG-0.5 | 388 ± 67 | 2.6 ± 0.8 | ||||
PG-1.0 | 316 ± 219 | 2.58 ± 0.43 | ||||
UC | 678 ± 235 | 115.38° | 1.6 | 169 | [97] | |
UC-GS | 254 ± 79 | 64.95° | 3.75 | 92 | ||
UC-C | 327 ± 136 | 116.50° | 1.13 | 45 | ||
UC-GSC | 222 ± 44 | 61.38° | 3.4 | 54 | ||
Z45 | 230 | 84.76 ± 1.58° 76.26 ± 2.02° 68.39 ± 1.30° 64.26 ± 1.27° | 4.83 ± 0.38 7.47 ± 0.82 10.32 ± 1.07 6.34 ± 0.43 | 3.85 ± 0.24 3.10 ± 0.41 2.96 ± 0.28 1.41 ± 0.23 | [98] | |
Z45GO0.5% | 191 | |||||
Z45GO1.0% | 162 | |||||
Z45GO1.5% | 137 | |||||
Z45GO1.0%-TCH | 159 | |||||
PVA/CS/0 SS | 425 ± 34 | 42 ± 3.1° | [99] | |||
PVA/CS/1 SS | 397 ± 29 | -- | ||||
PVA/CS/2 SS | 371 ± 27 | -- | ||||
PVA/CS/3 SS | 328 ± 27 | 24 ± 2.0 | ||||
PVA/CS/5 SS | 305 ± 26 | -- | ||||
PGA0 | 175 ± 27 | 6.7 ± 0.8 | 37.4 ± 2.8 | [100] | ||
PGA5 | 183 ± 28 | 7.8 ± 1.3 | 34.7 ± 2 | |||
PGA10 | 191 ± 31 | 8.9 ± 1.3 | 33.8 ± 1.5 | |||
PGA15 | 235 ± 38 | 12.6 ± 0.3 | 32.5 ± 3.1 | |||
PGA20 | 189 ± 65 | 5.8 ± 1.5 | 36 ± 10.5 | |||
PLA | 780 ± 200 | >150° <30° | 0.25 ± 0.03 | 31.2 ± 4.7 | [101] | |
PLA/CA1 | 250 ± 90 | 1.36 ± 0.10 | 79.3 ± 7.6 | |||
PLA/CA2 | 250 ± 90 | 1.41 ± 0.34 | 85 ± 0.53 | |||
PLA/CA3 | 250 ± 90 | 3.13 ± 0.24 | 110.8 ± 10.9 | |||
PCL | 91 ± 24 135 ± 33 169 ± 38 174 ± 38 175 ± 35 | -- 81.7%:48.1 (for Fiber contain QChiP) | [106] | |||
PCL/QChiP0 | ||||||
PCL/QChiP5 | ||||||
PCL/QCSP10 | ||||||
PCL/QChiP15 | ||||||
PCL/QCSP20 | ||||||
CECS/PVA | 93 ± 19 | 42 ± 2.1° | 16 ± 2.0 | 38.0 ± 9.0 | [108] | |
CECS/PVA/5 wt% chamomile | 115 ± 24 | 45.1 ± 2.4° | 13.1 ± 3.0 | 64.2 ± 12.1 | ||
CECS/PVA/10 wt% chamomile | 137 ± 26 | 45.2 ± 2.8° | 12.1 ± 3.1 | 54.3 ± 17.0 | ||
CECS/PVA/15 wt% chamomile | 149 ± 33 | 41.8 ± 1.0° | 9.1 ± 1.01 | 48.5 ± 11.0 | ||
CECS/PVA/20 wt% chamomile | 153 ± 34 | 44.7 ± 3.2° | 8.9 ± 2.8 | 48.2 ± 6.01 | ||
CECS/PVA/30 wt% chamomile | 183 ± 63 | 42.8 ± 2.6° | 8.2 ± 1.0 | 49.1 ± 12.10 | ||
PCL/Gel | 891 ± 64:984 ± 97 | 53.19 ± 4.06°:58.73 ± 1.16° | 2.83 ± 0.8:2.23 ± 0.6 | [114] | ||
PCL/Gel/1%cin | ||||||
PCL/Gel/5%cin | ||||||
PCL/Gel/25%cin | ||||||
PLDLLA | 300–450 | 129 | 20 ± 0.8 | 28 ± 1 | [115] | |
PLDLLA/PVA hybrid | 275–425 | 53 | 19 ± 0.9 | 32 ± 1.5 | ||
PLDLLA/PVA blend | 275–300 | 73 | 13 ± 0.5 | 48 ± 2.1 | ||
PLLA/Gel | 4.42 ± 0.43 | 80.39° | [117] | |||
CL-PVA/NaAlg | 170.1 ± 44 | 91 48° | 10.0 ± 1.9 | 53 ± 8 | [131] | |
PCL-PVA/NaAlg+CNC | 172.1 ± 90 | 7.4 ± 2.2 | 65 ± 9 | |||
PCL-CaAlg | 171.0 ± 60 | 9.5 ± 2.5 | 67 ± 9 | |||
PCL-CaAlg+CNC | 216.4 ± 89 | 10.1 ± 0.6 | 81 ± 1 | |||
PVA 8% | 194 ± 76 | 52.4° ± 1.3 | [132] | |||
PVA 10% | 352 ± 118 | 52.4° ± 1.3 | ||||
PVA+SBA-15 (1%) | 175 ± 57 | -- | ||||
PVA+SBA-15 (3%) | 325 ± 61 | -- | ||||
PVA+SBA-15 (5%) | 216 ± 39 | -- | ||||
PVA+curcumin | 181 ± 77 | 56.5° ± 0.7 | ||||
PVA+SBA-15 (5%) + curcumin | 234 ± 77 | 48.2° ± 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayl, A.A.; Abd-Elhamid, A.I.; Awwad, N.S.; Abdelgawad, M.A.; Wu, J.; Mo, X.; Gomha, S.M.; Aly, A.A.; Bräse, S. Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers 2022, 14, 1508. https://doi.org/10.3390/polym14081508
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers. 2022; 14(8):1508. https://doi.org/10.3390/polym14081508
Chicago/Turabian StyleNayl, AbdElAziz A., Ahmed I. Abd-Elhamid, Nasser S. Awwad, Mohamed A. Abdelgawad, Jinglei Wu, Xiumei Mo, Sobhi M. Gomha, Ashraf A. Aly, and Stefan Bräse. 2022. "Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs" Polymers 14, no. 8: 1508. https://doi.org/10.3390/polym14081508
APA StyleNayl, A. A., Abd-Elhamid, A. I., Awwad, N. S., Abdelgawad, M. A., Wu, J., Mo, X., Gomha, S. M., Aly, A. A., & Bräse, S. (2022). Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers, 14(8), 1508. https://doi.org/10.3390/polym14081508