Polymeric Biomass Derived Adsorbents for Co(II) Remediation, Recycling and Analysis
Abstract
:1. Introduction
2. Biosorbents Are Recommended as Promising Candidates for Co(II) Separation from Synthetic Solutions
2.1. Biosorption Capabilities of Polymeric Biomass
2.2. Biosorbents for Batch and Fixed-Bed Column Removal of Co(II) from Mono-Element Synthetic Solutions
- -
- By applying the response surface methodology combined with the central composite design, the highest efficiency of Co(II) batch removal (~84.82%) from an aqueous solution of 10 mg Co/L was obtained with 15 g/L of Cocos nucifera leaf powder, in 70 min, at pH = 5 and 303 K [122];
- -
- Following the same optimization method, the use of Ficus benghalensis leaf powder ensured the achievement of 98.73% removal of Co(II), under the following optimized batch conditions: initial concentration of Co(II) solution: 20 mg/L; biomass dose: 25 g/L; pH = 5; temperature: 303 K [123];
- -
- Performing batch experiments based on the models of artificial neural networks and genetic programming, the biosorption of Co(II) on the Rafsanjan pistachio shell could be maximized up to 69.4%, at pH = 5, with an initial concentration of 10.2 mg/L of Co(II) solution, a biosorbent dose of 0.8 g/L and a temperature of 25° [124].
2.3. Biosorbents for Co(II) Uptake from Multi-Component Synthetic Solutions
2.4. Biological Sorbents for Analytical Preconcentration of Co(II) from Diluted Synthetic Solutions
3. Biosorbents Integrated into Practical Approaches for Removal/Recovery and Determination of Co(II) from Real Samples
3.1. Real Applications of Biosorbents to Co(II) Removal/Recovery
3.2. Analytical Procedures Based on Biosorbents for Trace Co(II) Determination from Real Samples
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.H.; Gibb, H.J.; Howe, P. Cobalt and Inorganic Cobalt Compounds; World Health Organization: Geneva, Switzerland, 2006; ISBN 978-924-153069-9. [Google Scholar]
- Blengini, G.A.; Mathieux, F.; Mancini, L.; Nyberg, M.; Viegas, H.M.; Salminen, J.; Garbarino, E.; Orveillon, G.; Saveyn, H.; Mateos Aquilino, V.; et al. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills: State of Play on Existing Practices; EUR 29744 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-03391-2. [Google Scholar] [CrossRef]
- Mahey, S.; Kumar, R.; Sharma, M.; Kumar, V.; Bhardwaj, R. A critical review on toxicity of cobalt and its bioremediation strategies. SN Appl. Sci. 2020, 2, 1279. [Google Scholar] [CrossRef]
- Yu, Z.; Han, H.; Feng, P.; Zhao, S.; Zhou, T.; Kakade, A.; Kulshrestha, S.; Majeed, S.; Li, X. Recent advances in the recovery of metals from waste through biological processes. Bioresour. Technol. 2020, 297, 122416. [Google Scholar] [CrossRef]
- Acosta-Rodríguez, I.; Rodríguez-Pérez, A.; Pacheco-Castillo, N.; Enríquez-Domínguez, E.; Cárdenas-González, J.; Martínez-Juárez, V.-M. Removal of Cobalt (II) from Waters Contaminated by the Biomass of Eichhornia crassipes. Water 2021, 13, 1725. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Hifney, A.F.; Adam, M.S.; Al-Badaani, A.A. Biosorption of cobalt and its effect on growth and metabolites of Synechocystis pevalekii and Scenedesmus bernardii: Isothermal analysis. Environ. Technol. Innov. 2020, 19, 100953. [Google Scholar] [CrossRef]
- Kaba, B.; Trak, D.; Kenduzler, E.; Tomul, F.; Arslan, Y. Separation and preconcentration of cobalt(II) from water samples with Amberlite CG-120 resin. Iran. J. Chem. Chem. Eng. 2020, 39, 181–189. [Google Scholar]
- Sheikh, I. Cobalt Poisoning: A Comprehensive Review of the Literature. J. Med. Toxicol. Clin. Forensic Med. 2016, 2, 100017. [Google Scholar] [CrossRef]
- Alves Dias, P.; Blagoeva, D.; Pavel, C.; Arvanitidis, N. Cobalt: Demand-Supply Balances in the Transition to Electric Mobility; EUR 29381 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-94311-9. [Google Scholar] [CrossRef]
- Dodson, J.R.; Hunt, A.J.; Parker, H.L.; Yang, Y.; Clark, J.H. Elemental sustainability: Towards the total recovery of scarce metals. Chem. Eng. Process. Process Intensif. 2012, 51, 69–78. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Yetilmezsoy, K.; Salari, M.; Heidarinejad, Z.; Yousefi, M.; Sillanpää, M. Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq. 2019, 299, 112154. [Google Scholar] [CrossRef]
- Joseph, I.V.; Tosheva, L.; Doyle, A.M. Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. J. Environ. Chem. Eng. 2020, 8, 103895. [Google Scholar] [CrossRef]
- Awual, R.; Hasan, M.; Islam, A.; Asiri, A.M.; Rahman, M.M. Optimization of an innovative composited material for effective monitoring and removal of cobalt(II) from wastewater. J. Mol. Liq. 2019, 298, 112035. [Google Scholar] [CrossRef]
- Al-Jubouri, S.M.; Holmes, S.M. Immobilization of cobalt ions using hierarchically porous 4A zeolite-based carbon composites: Ion-exchange and solidification. J. Water Process Eng. 2020, 33, 101059. [Google Scholar] [CrossRef]
- Alguacil, F.J. La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte XI: Cobalto(II)/H+/Lewatit TP260. Rev. Met. 2019, 55, 154. [Google Scholar] [CrossRef] [Green Version]
- Ilaiyaraja, P.; Deb, A.K.S.; Ponraju, D.; Venkatraman, B. Removal of cobalt from aqueous solution using xanthate functionalized dendrimer. Desalin. Water Treat. 2013, 52, 438–445. [Google Scholar] [CrossRef]
- Biswal, B.K.; Jadhav, U.U.; Madhaiyan, M.; Ji, L.; Yang, E.-H.; Cao, B. Biological Leaching and Chemical Precipitation Methods for Recovery of Co and Li from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 12343–12352. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T.; Kassim, M.; Ismail, A. Radioactive decontamination of water by membrane processes—A review. Desalination 2013, 321, 77–92. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Barnard, K.R.; Zhang, W.; Robinson, D.J. Synergistic Solvent Extraction of Nickel and Cobalt: A Review of Recent Developments. Solvent Extr. Ion Exch. 2011, 29, 719–754. [Google Scholar] [CrossRef]
- Sunder, G.S.S.; Adhikari, S.; Rohanifar, A.; Poudel, A.; Kirchhoff, J.R. Evolution of Environmentally Friendly Strategies for Metal Extraction. Separations 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Türker, A.R. Separation, Preconcentration and Speciation of Metal Ions by Solid Phase Extraction. Sep. Purif. Rev. 2012, 41, 169–206. [Google Scholar] [CrossRef]
- Islam, A.; Morton, D.; Johnson, B.B.; Pramanik, B.; Mainali, B.; Angove, M.J. Opportunities and constraints of using the innovative adsorbents for the removal of cobalt(II) from wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2018, 10, 435–456. [Google Scholar] [CrossRef]
- Corda, N.; Srinivas, M. Recent studies on adsorption of Pb(II), Zn(II) and Co(II) using conventional and modified materials: A review. Sep. Sci. Technol. 2020, 55, 2679–2698. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and bioaccumulation—The prospects for practical applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Dusengemungu, L.; Kasali, G.; Gwanama, C.; Ouma, K.O. Recent Advances in Biosorption of Copper and Cobalt by Filamentous Fungi. Front. Microbiol. 2020, 11, 3285. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, N.E.-A.; Hamouda, R.A.; Abuelmagd, M.A.; Abdelgalil, S.A. Bioprocess development for biosorption of cobalt ions and Congo red from aquatic mixture using Enteromorpha intestinalis biomass as sustainable biosorbent. Sci. Rep. 2021, 11, 14953. [Google Scholar] [CrossRef] [PubMed]
- Dabbagh, R.; Moghaddam, Z.A.; Ghafourian, H. Removal of cobalt(II) ion from water by adsorption using intact and modifiedFicus caricaleaves as low-cost natural sorbent. Desalin. Water Treat. 2015, 57, 19890–19902. [Google Scholar] [CrossRef]
- Lucaci, A.R.; Bulgariu, D.; Ahmad, I.; Bulgariu, L. Equilibrium and Kinetics Studies of Metal Ions Biosorption on Alginate Extracted from Marine Red Algae Biomass (Callithamnion corymbosum sp.). Polymers 2020, 12, 1888. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.F.M.; Santana, S.A.A.; Bezerra, C.W.B.; Silva, H.A.S.; Melo, J.C.P.; Vieira, A.P.; Airoldi, C.; Filho, E.S. New Chemical Organic Anhydride Immobilization Process Used on Banana Pseudostems: A Biopolymer for Cation Removal. Ind. Eng. Chem. Res. 2013, 52, 11007–11015. [Google Scholar] [CrossRef]
- Khraisheh, M.; Al-Ghouti, M.A.; AlMomani, F. P. putida as biosorbent for the remediation of phenol and cobalt from waste wastewaters. Environ. Technol. Innov. 2020, 20, 101148. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.-S.; Park, J.M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. A State of the Art for the Biosorption Process—A Review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Balasubramanian, R. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J. Environ. Manag. 2015, 160, 283–296. [Google Scholar] [CrossRef]
- De Freitas, G.R.; Da Silva, M.G.C.; Vieira, M.G.A. Biosorption technology for removal of toxic metals: A review of commercial biosorbents and patents. Environ. Sci. Pollut. Res. 2019, 26, 19097–19118. [Google Scholar] [CrossRef] [PubMed]
- Escudero, L.B.; Quintas, P.Y.; Wuilloud, R.G.; Dotto, G.L. Recent advances on elemental biosorption. Environ. Chem. Lett. 2018, 17, 409–427. [Google Scholar] [CrossRef]
- Beni, A.A.; Esmaeili, A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environ. Technol. Innov. 2019, 17, 100503. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Datta, S.; Dhanjal, D.S.; Sharma, K.; Samuel, J.; Singh, J. Current advancement and future prospect of biosorbents for bioremediation. Sci. Total Environ. 2019, 709, 135895. [Google Scholar] [CrossRef] [PubMed]
- Blaga, A.C.; Zaharia, C.; Suteu, D. Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes. Polymers 2021, 13, 2893. [Google Scholar] [CrossRef]
- Qin, H.; Hu, T.; Zhai, Y.; Lu, N.; Aliyeva, J. The improved methods of heavy metals removal by biosorbents: A review. Environ. Pollut. 2019, 258, 113777. [Google Scholar] [CrossRef] [PubMed]
- Calderón, O.A.R.; Abdeldayem, O.M.; Pugazhendhi, A.; Rene, E.R. Current Updates and Perspectives of Biosorption Technology: An Alternative for the Removal of Heavy Metals from Wastewater. Curr. Pollut. Rep. 2020, 6, 8–27. [Google Scholar] [CrossRef]
- Godlewska-Żyłkiewicz, B. Microorganisms in inorganic chemical analysis. Anal. Bioanal. Chem. 2005, 384, 114–123. [Google Scholar] [CrossRef]
- Pacheco, P.H.; Gil, R.A.; Cerutti, S.E.; Smichowski, P.; Martinez, L.D. Biosorption: A new rise for elemental solid phase extraction methods. Talanta 2011, 85, 2290–2300. [Google Scholar] [CrossRef]
- Özdemir, S.; Okumuş, V.; Dündar, A.; Kılınç, E. Preconcentration of metal ions using microbacteria. Mikrochim. Acta 2013, 180, 719–739. [Google Scholar] [CrossRef]
- Teixeira, L.S.G.; Lemos, V.A.; Melo Coelho, L.; Rocha, F.R.P. Applications of biosorbents in atomic spectrometry. Appl. Spectrosc. Rev. 2016, 51, 36–72. [Google Scholar] [CrossRef]
- Escudero, L.B.; Maniero, M.Á.; Agostini, E.; Smichowski, P.N. Biological substrates: Green alternatives in trace elemental preconcentration and speciation analysis. TrAC Trends Anal. Chem. 2016, 80, 531–546. [Google Scholar] [CrossRef]
- Smichowski, P.; Londonio, A. A retrospective and prospective of the use of bio- and nanomaterials for preconcentration, speciation, and determination of trace elements: A review spanning 25 years of research. Anal. Bioanal. Chem. 2020, 412, 6023–6036. [Google Scholar] [CrossRef] [PubMed]
- Musapatika, E.T.; Onyango, M.S.; Aoyi, O. Cobalt(II) removal from synthetic wastewater by adsorption on South African coal fly ash. S. Afr. J. Sci. 2010, 106, 1–7. [Google Scholar] [CrossRef]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2020, 102, 342–379. [Google Scholar] [CrossRef]
- Tony, M.A. Low-cost adsorbents for environmental pollution control: A concise systematic review from the prospective of principles, mechanism and their applications. J. Dispers. Sci. Technol. 2021, 1–23. [Google Scholar] [CrossRef]
- Tofan, L.; Bojoaga, C.-N.; Paduraru, C. Biosorption for the recovery and analysis of rare earth elements and platinum group metals from real samples. A review. Environ. Chem. Lett. 2022, 20, 1225–1248. [Google Scholar] [CrossRef]
- He, J.; Chen, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef]
- Zeraatkar, A.K.; Ahmadzadeh, H.; Talebi, A.F.; Moheimani, N.; McHenry, M.P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 2016, 181, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Kyzas, G. Progress in batch biosorption of heavy metals onto algae. J. Mol. Liq. 2015, 209, 77–86. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Prasad, D.R.; Lakshmanarao, G.; Krishnan, S.; Prasad, B.N. Ocean-based sorbents for decontamination of metal-bearing wastewaters: A review. Environ. Technol. Rev. 2018, 7, 139–155. [Google Scholar] [CrossRef]
- Dhankhar, R.; Hooda, A. Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 2011, 32, 467–491. [Google Scholar] [CrossRef]
- Siddiquee, S.; Rovina, K.; Azad, S.A.; Naher, L.; Suryani, S.; Chaikaew, P. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. J. Microb. Biochem. Technol. 2015, 7, 384–393. [Google Scholar] [CrossRef]
- Ayele, A.; Haile, S.; Alemu, D.; Kamaraj, M. Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review. Sci. World J. 2021, 2021, 5588111. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.-S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef]
- Aryal, M.; Liakopoulou-Kyriakides, M. Bioremoval of heavy metals by bacterial biomass. Environ. Monit. Assess. 2014, 187, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Aryal, M. A comprehensive study on the bacterial biosorption of heavy metals: Materials, performances, mechanisms, and mathematical modellings. Rev. Chem. Eng. 2021, 37, 715–754. [Google Scholar] [CrossRef]
- Nguyen, T.; Ngo, H.; Guo, W.; Zhang, J.; Liang, S.; Yue, Q.; Li, Q. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour. Technol. 2013, 148, 574–585. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I.; Hosseini-Bandegharaei, A.; Giannakoudakis, D.A.; Robalds, A.; Usman, M.; Escudero, L.B.; Zhou, Y.; Colmenares, J.C.; Núñez-Delgado, A.; et al. Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J. Mol. Liq. 2019, 295, 111684. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H. Removal of heavy metals from wastewater using agricultural byproducts. J. Water Supply Res. Technol. 2020, 69, 99–112. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, H.E.M.; El-Sayed, M.M.H. Assessment of Food Processing and Pharmaceutical Industrial Wastes as Potential Biosorbents: A Review. BioMed Res. Int. 2014, 2014, 146769. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M.C. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. [Google Scholar] [CrossRef]
- Velkova, Z.; Kirova, G.; Stoytcheva, M.; Kostadinova, S.; Todorova, K.; Gochev, V. Immobilized microbial biosorbents for heavy metals removal. Eng. Life Sci. 2018, 18, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Ramrakhiani, L.; Ghosh, S.; Majumdar, S. Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Appl. Biochem. Biotechnol. 2016, 180, 41–78. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Younas, M.; Shah, M.U.H. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Sep. Purif. Technol. 2021, 278, 119510. [Google Scholar] [CrossRef]
- Massimi, L.; Giuliano, A.; Astolfi, M.L.; Congedo, R.; Masotti, A.; Canepari, S. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions. Materials 2018, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M. Biosorption of cobalt(II) and nickel(II) by seaweeds: Batch and column studies. Sep. Purif. Technol. 2005, 44, 53–59. [Google Scholar] [CrossRef]
- Forountan, R.; Esmaeili, H.; Abbasi, M.; Rezakazemi, M.; Mesbah, M. Adsorption behaviour of Cu(II) and Co(II) using chemically modified marine alga. Environ. Technol. 2017, 39, 2792–2800. [Google Scholar] [CrossRef] [PubMed]
- Vafajoo, L.; Cheraghi, R.; Dabbagh, R.; McKay, G. Removal of cobalt (II) ions from aqueous solutions utilizing the pre-treated 2-Hypnea Valentiae algae: Equilibrium, thermodynamic, and dynamic studies. Chem. Eng. J. 2018, 331, 39–47. [Google Scholar] [CrossRef]
- Mamba, B.; Dlamini, N.; Mulaba–Bafubiandi, A. Biosorptive removal of copper and cobalt from aqueous solutions: Shewanella spp. put to the test. Phys. Chem. Earth Parts A/B/C 2009, 34, 841–849. [Google Scholar] [CrossRef]
- Díaz, A.; Marrero, J.; Cabrera, G.; Coto, O.; Gómez, J.M. Biosorption of nickel, cobalt, zinc and copper ions by Serratia marcescens strain 16 in mono and multimetallic systems. Biogeochemistry 2021, 33, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Annadurai, G.; Juang, R.-S.; Lee, D. Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol. 2003, 47, 185–190. [Google Scholar] [CrossRef]
- Güzel, F.; Yakut, H.; Topal, G. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. J. Hazard. Mater. 2008, 153, 1275–1287. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Tahmasbi, M.; Bastami, T.R.; Besharati, J.A. Rapid removal of cobalt ion from aqueous solutions by almond green hull. J. Hazard. Mater. 2009, 166, 925–930. [Google Scholar] [CrossRef]
- Yu, H.; Pang, J.; Ai, T.; Liu, L. Biosorption of Cu2+, Co2+ and Ni2+ from aqueous solution by modified corn silk: Equilibrium, kinetics, and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2016, 62, 21–30. [Google Scholar] [CrossRef]
- Eglia, J.N.; Dauda, B.E.N.; Jimoh, T. Biosorptive removal of cobalt (II) ions from aqueous solution by Amaranthus hydridus L. stalk wastes. Afr. J. Biotechnol. 2010, 9, 8192–8198. [Google Scholar] [CrossRef] [Green Version]
- Bouzidi, A.; Djedial, M.; Ad, C.; Benzalia, M.; Hafez, B.; Elmsellem, H. Biosorption of Co(II) from aqueous solutiuons using Luffa Cylindrica: Adsorption and characterization studies. Mor. J. Chem. 2021, 9, 156–167. [Google Scholar] [CrossRef]
- Pavan Kumar, G.V.S.R.; Srinivasa, R.K.; Imranb, S. Utilization of low cost bio adsorbents in their native as well as carbonized form for the removal of cobalt(II) from aqueous solutions. J. Indian Chem. Soc. 2019, 96, 399–405. [Google Scholar]
- Musapatika, E.T.; Singh, R.; Moodley, K.; Nzila, C.; Onyango, M.S.; Ochieng, A. Cobalt removal from wastewater using pine sawdust. Afr. J. Biotechnol. 2012, 11, 9407–9415. [Google Scholar] [CrossRef] [Green Version]
- Essaadaoui, Y.; Lebkiri, A.; Rifi, E.H.; Kadiri, L.; Ouass, A. Adsorption of cobalt from aqueous solutions from aqueous solu-tions onto Bark of Eucalyptus. Mediterr. J. Chem. 2018, 7, 145–155. [Google Scholar] [CrossRef]
- Dimović, S.; Smičiklas, I.; Plećaš, I.; Antonović, D.; Mitrić, M. Comparative study of differently treated animal bones for Co2+ removal. J. Hazard. Mater. 2009, 164, 279–287. [Google Scholar] [CrossRef]
- Sandesh, K.; Kumar, R.S.; JagadeeshBabu, P.E. Rapid removal of cobalt (II) from aqueous solution using cuttlefish bones; equilibrium, kinetics, and thermodynamic study. Asia-Pac. J. Chem. Eng. 2012, 8, 144–153. [Google Scholar] [CrossRef]
- Rezk, R.; Galmed, A.; Abdelkreem, M.; Ghany, N.A.; Harith, M. Detachment of Cu (II) and Co (II) ions from synthetic wastewater via adsorption on Lates niloticus fish bones using LIBS and XRF. J. Adv. Res. 2018, 14, 1–9. [Google Scholar] [CrossRef]
- Din, M.I.; Mirza, M.L.; Ata, S.; Athar, M.; Mohsin, I.U. Thermodynamics of Biosorption for Removal of Co(II) Ions by an Efficient and Ecofriendly Biosorbent (Saccharum bengalense): Kinetics and Isotherm Modeling. J. Chem. 2012, 2013, 528542. [Google Scholar] [CrossRef] [Green Version]
- Vilvanathan, S.; Shanthakumar, S. Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: Kinetics, equilibrium and thermodynamics. Process Saf. Environ. Prot. 2015, 96, 98–110. [Google Scholar] [CrossRef]
- Tsamo, C.; Paltahe, A.; Fotio, D.; Vincent, T.A.; Sales, W.F. One-, Two-, and Three-Parameter Isotherms, Kinetics, and Thermodynamic Evaluation of Co(II) Removal from Aqueous Solution Using Dead Neem Leaves. Int. J. Chem. Eng. 2019, 2019, 6452672. [Google Scholar] [CrossRef] [Green Version]
- Ranaweera, K.H.; Godakumbura, P.I.; Perera, B.A. Adsorptive removal of Co(II) in aqueous solutions using clearing nut seed powder. Heliyon 2020, 6, e03684. [Google Scholar] [CrossRef] [PubMed]
- Frišták, V.; Pipíška, M.; Horník, M.; Augustín, J.; Lesný, J. Sludge of wastewater treatment plants as Co2+ ions sorbent. Chem. Pap. 2013, 67, 265–273. [Google Scholar] [CrossRef]
- Frišták, V.; Valovčiaková, M.; Pipíška, M.; Lesný, J. The influence of chemical modification on the Co2+ ion sorption process by anaerobic sludge. Pol. J. Environ. Stud. 2014, 23, 705–712. [Google Scholar]
- Frišták, V.; Pipíška, M.; Valovčiaková, M.; Lesný, J.; Rozložník, M. Monitoring 60Co activity for the characterization of the sorption process of Co2+ ions in municipal activated sludge. J. Radioanal. Nucl. Chem. Artic. 2013, 299, 1607–1614. [Google Scholar] [CrossRef] [Green Version]
- Parab, H.; Joshi, S.; Shenoy, N.; Lali, A.; Sarma, U.; Sudersanan, M. Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem. 2006, 41, 609–615. [Google Scholar] [CrossRef]
- Parab, H.; Joshi, S.; Shenoy, N.; Lali, A.; Sarma, U.; Sudersanan, M. Esterified coir pith as an adsorbent for the removal of Co(II) from aqueous solution. Bioresour. Technol. 2008, 99, 2083–2086. [Google Scholar] [CrossRef]
- Karaoglu, M.H.; Ugurlu, M.; Kula, I. Adsorption characteristics of Co(II) ions onto chemically treated Quercus coccifera shell: Equilibrium, kinetic and thermodynamic studies. BioResources 2011, 6, 1954–1971. [Google Scholar]
- Koduru, J.R.; Chang, Y.-Y.; Yang, J.-K.; Kim, I.-S. Iron Oxide Impregnated Morus alba L. Fruit Peel for Biosorption of Co(II): Biosorption Properties and Mechanism. Sci. World J. 2013, 2013, 917146. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, R.; Zafar, M.N.; Afzal, A.; Hanif, M.A.; Saeed, R. Potential of NaOH pretreated Mangifera indica waste biomass for the mitigation of Ni(II) and Co(II) from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2014, 45, 967–972. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Jyothi, R.K.; Chang, Y.-Y.; Yang, J.-K. Factors affect on bioremediation of Co(II) and Pb(II) ontoLonicera japonicaflowers powder. Desalin. Water Treat. 2015, 57, 13066–13080. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Yang, J.-K.; Chang, Y.-Y.; Koduru, J.R. Low-cost magnetized Lonicera japonica flower biomass for the sorption removal of heavy metals. Hydrometallurgy 2016, 165, 81–89. [Google Scholar] [CrossRef]
- Franco, D.S.; Cunha, J.M.; Dortzbacher, G.F.; Dotto, G.L. Adsorption of Co(II) from aqueous solutions onto rice husk modified by ultrasound assisted and supercritical technologies. Process Saf. Environ. Prot. 2017, 109, 55–62. [Google Scholar] [CrossRef]
- Reyes-Ledezma, J.; Nacional, I.P.; Ramírez-Rodríguez, A.; Ballinas-Cesatti, C.; Cristiani-Urbina, E.; Morales-Barrera, L. K2HPO4-pretreatment significantly enhances the biosorption capacity of Co2+ by Lemna gibba. Rev. Mex. Ing. Quím. 2021, 20, 581–605. [Google Scholar] [CrossRef]
- Pipíška, M.; Zarodňanská, S.; Horník, M.; Ďuriška, L.; Holub, M.; Šafařík, I. Magnetically Functionalized Moss Biomass as Biosorbent for Efficient Co2+ Ions and Thioflavin T Removal. Materials 2020, 13, 3619. [Google Scholar] [CrossRef]
- Farnane, M.; Tounsadi, H.; Elmoubarki, R.; Mahjoubi, F.; Elhalil, A.; Saqrane, S.; Abdennouri, M.; Qourzal, S.; Barka, N. Alkaline treated carob shells as sustainable biosorbent for clean recovery of heavy metals: Kinetics, equilibrium, ions interference and process optimisation. Ecol. Eng. 2017, 101, 9–20. [Google Scholar] [CrossRef]
- Swelam, A.; Awad, M.; Salem, A.; El-Feky, A. An economically viable method for the removal of cobalt ions from aqueous solution using raw and modified rice straw. HBRC J. 2018, 14, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, F.; Khani, M.H.; Pahlavanzadeh, H.; Manteghian, M. Study of cobalt (II) biosorption on Sargassum sp. by experimental design methodology. Int. J. Environ. Sci. Technol. 2015, 12, 1907–1922. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Panahi, R.; Dabbagh, R. Evaluation of Native and Chemically Modified Sargassum glaucescens for Continuous Biosorption of Co(II). Appl. Biochem. Biotechnol. 2008, 158, 736–746. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 2005, 60, 419–426. [Google Scholar] [CrossRef]
- Oguz, E.; Ersoy, M. Biosorption of cobalt(II) with sunflower biomass from aqueous solutions in a fixed bed column and neural networks modelling. Ecotoxicol. Environ. Saf. 2014, 99, 54–60. [Google Scholar] [CrossRef]
- Vilvanathan, S.; Shanthakumar, S. Modeling of fixed-bed column studies for removal of cobalt ions from aqueous solution using Chrysanthemum indicum. Res. Chem. Intermed. 2016, 43, 229–243. [Google Scholar] [CrossRef]
- Vilvanathan, S.; Shanthakumar, S. Column adsorption studies on nickel and cobalt removal from aqueous solution using native and biochar form of Tectona grandis. Environ. Prog. Sustain. Energy 2017, 36, 1030–1038. [Google Scholar] [CrossRef]
- Tesfagiorgis, K.; Navarro, A.E.; Chen, B.M.; Herrera, N.; Hernandez, J.; González-Álvarez, Á.; Savane, O.S. Simulations of breakthrough curves for fixed-bed column adsorption of Cobalt (II) ions on spent tea leaves. Water Sci. Technol. 2020, 81, 2410–2421. [Google Scholar] [CrossRef] [PubMed]
- Hymavathi, D.; Prabhakar, G. Modeling of cobalt and lead adsorption by Ficus benghalenesis L. in a fixed bed column. Chem. Eng. Commun. 2019, 206, 1264–1272. [Google Scholar] [CrossRef]
- Rodrigues, J.A.V.; Martins, L.R.; Furtado, L.M.; Xavier, A.L.P.; De Almeida, F.T.R.; Moreira, A.L.D.S.L.; Melo, T.M.S.; Gil, L.F.; Gurgel, L.V.A. Oxidized Renewable Materials for the Removal of Cobalt(II) and Copper(II) from Aqueous Solution Using in Batch and Fixed-Bed Column Adsorption. Adv. Polym. Technol. 2020, 2020, 8620431. [Google Scholar] [CrossRef]
- Xavier, A.L.P.; Adarme, O.F.H.; Furtado, L.M.; Ferreira, G.M.D.; Da Silva, L.H.M.; Gil, L.F.; Gurgel, L.V.A. Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. J. Colloid Interface Sci. 2018, 516, 431–445. [Google Scholar] [CrossRef]
- Reyes-Ledezma, J.L.; Cristiani-Urbina, E.; Morales-Barrera, L. Biosorption of Co2+ Ions from Aqueous Solution by K2HPO4-Pretreated Duckweed Lemna gibba. Processes 2020, 8, 1532. [Google Scholar] [CrossRef]
- Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 2014, 160, 150–160. [Google Scholar] [CrossRef]
- Hymavathi, D.; Prabhakar, G. Optimization, equilibrium, and kinetic studies of adsorptive removal of cobalt(II) from aqueous solutions using Cocos nucifera L. Chem. Eng. Commun. 2017, 204, 1094–1104. [Google Scholar] [CrossRef]
- Hymavathi, D.; Prabhakar, G. Studies on the removal of Cobalt(II) from aqueous solutions by adsorption with Ficus benghalensis leaf powder through response surface methodology. Chem. Eng. Commun. 2017, 204, 1401–1411. [Google Scholar] [CrossRef]
- Moradi, P.; Hayati, S.; Ghahrizadeh, T. Modeling and optimization of lead and cobalt biosorption from water with Rafsanjan pistachio shell, using experiment based models of ANN and GP, and the grey wolf optimizer. Chemom. Intell. Lab. Syst. 2020, 202, 104041. [Google Scholar] [CrossRef]
- Hajahmadi, Z.; Younesi, H.; Bahramifar, N.; Khakpour, H.; Pirzadeh, K. Multicomponent isotherm for biosorption of Zn(II), CO(II) and Cd(II) from ternary mixture onto pretreated dried Aspergillus niger biomass. Water Resour. Ind. 2015, 11, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Simate, G.S.; Ndlovu, S. The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. J. Ind. Eng. Chem. 2015, 21, 635–643. [Google Scholar] [CrossRef]
- Mohapatra, H.; Gupta, R. Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresour. Technol. 2005, 96, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-F.; Wang, S.-G.; Liu, X.-W.; Gong, W.-X.; Bao, N.; Gao, B.-Y. Competitive biosorption of zinc(II) and cobalt(II) in single- and binary-metal systems by aerobic granules. J. Colloid Interface Sci. 2008, 324, 1–8. [Google Scholar] [CrossRef]
- Lakshmipathy, R.; Sarada, N. Application of watermelon rind as sorbent for removal of nickel and cobalt from aqueous solution. Int. J. Miner. Process. 2013, 122, 63–65. [Google Scholar] [CrossRef]
- Galedar, M. Biosorption of ternary cadmium, nickel and cobalt ions from aqueous solutions onto Saccharomyces cerevisiae cells: Batch and column studies. Am. J. Biochem. Biotechnol. 2013, 9, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Ramos, S.N.D.C.; Xavier, A.L.P.; Teodoro, F.S.; Elias, M.M.C.; Gonçalves, F.J.; Gil, L.F.; Freitas, R.; Gurgel, L. Modeling mono- and multi-component adsorption of cobalt(II), copper(II), and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: Batch adsorption study. Ind. Crop. Prod. 2015, 74, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Ramos, S.N.D.C.; Xavier, A.L.P.; Teodoro, F.S.; Gil, L.F.; Gurgel, L.V.A. Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: Mono- and multicomponent adsorption in batch mode. Ind. Crop. Prod. 2016, 79, 116–130. [Google Scholar] [CrossRef]
- Shi, J.; Fang, Z.; Zhao, Z.; Sun, T.; Liang, Z. Comparative study on Pb(II), Cu(II), and Co(II) ions adsorption from aqueous solutions by arborvitae leaves. Desalin. Water Treat. 2016, 57, 4732–4739. [Google Scholar] [CrossRef]
- Akbari, M.; Hallajisani, A.; Keshtkar, A.R.; Shahbeig, H.; Ghorbanian, S.A. Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. J. Environ. Chem. Eng. 2015, 3, 140–149. [Google Scholar] [CrossRef]
- Ngwenya, N.; Chirwa, E. Single and binary component sorption of the fission products Sr2+, Cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria. Miner. Eng. 2010, 23, 463–470. [Google Scholar] [CrossRef]
- Marešová, J.; Pipíška, M.; Rozložník, M.; Horník, M.; Remenárová, L.; Augustín, J. Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination 2011, 266, 134–141. [Google Scholar] [CrossRef]
- Singh, S.; Shukla, S.R. Adsorptive removal of cobalt ions on raw and alkali-treated lemon peels. Int. J. Environ. Sci. Technol. 2015, 13, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Salem, D.M.; Moawad, M.N.; El-Sayed, A.A. Comparative study for bioremediation of cobalt contaminated aqueous solutions by two types of marine macroalgae. Egypt. J. Aquat. Res. 2021, 47, 13–19. [Google Scholar] [CrossRef]
- Tounsadi, H.; Khalidi, A.; Abdennouri, M.; Barka, N. Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions. J. Environ. Chem. Eng. 2015, 3, 822–830. [Google Scholar] [CrossRef]
- Dahiya, S.; Tripathi, R.; Hegde, A. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. J. Hazard. Mater. 2008, 150, 376–386. [Google Scholar] [CrossRef]
- Kuyucak, N.; Volesky, B. Accumulation of cobalt by marine alga. Biotechnol. Bioeng. 1989, 33, 809–814. [Google Scholar] [CrossRef]
- Saeid, A.; Chojnacka, K. Multi-cation biosorption by Chlorella kessleri. Open Chem. 2015, 13, 959–966. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Balasubramanian, R. A comparative evaluation of sorbents for the treatment of complex metal-bearing laboratory wastewaters. J. Environ. Chem. Eng. 2013, 1, 473–479. [Google Scholar] [CrossRef]
- LoIacono, S.; Crini, G.; Martel, B.; Chanet, G.; Cosentino, C.; Raschetti, M.; Placet, V.; Torri, G.; Morin-Crini, N. Simultaneous removal of Cd, Co, Cu, Mn, Ni, and Zn from synthetic solutions on a hemp-based felt. II. Chemical modification. J. Appl. Polym. Sci. 2017, 134, 45138. [Google Scholar] [CrossRef]
- Šabanović, E.; Memić, M.; Sulejmanović, J.; Selović, A. Simultaneous adsorption of heavy metals from water by novel lemon-peel based biomaterial. Pol. J. Chem. Technol. 2020, 22, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Abdić, Š.; Memić, M.; Šabanović, E.; Sulejmanović, J.; Begić, S. Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: Tangerine peel. Int. J. Environ. Sci. Technol. 2018, 15, 2511–2518. [Google Scholar] [CrossRef]
- Mongioví, C.; Morin-Crini, N.; Lacalamita, D.; Bradu, C.; Raschetti, M.; Placet, V.; Ribeiro, A.; Ivanovska, A.; Kostić, M.; Crini, G. Biosorbents from Plant Fibers of Hemp and Flax for Metal Removal: Comparison of Their Biosorption Properties. Molecules 2021, 26, 4199. [Google Scholar] [CrossRef] [PubMed]
- Abdulaziz, M.; Musayev, S. Multicomponent Biosorption of Heavy Metals from Aqueous Solutions: A Review. Pol. J. Environ. Stud. 2017, 26, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.; Tavares, T. Biosorption of Multicomponent Solutions: A State of the Art of the Understudy Case. Biosorption IntechOpen 2018. [Google Scholar] [CrossRef] [Green Version]
- Mahamadi, C. On the dominance of Pb during competitive biosorption from multi-metal systems: A review. Cogent Environ. Sci. 2019, 5, 1635335. [Google Scholar] [CrossRef]
- Sibal, L.N.; Espino, M.P.B. Heavy metals in lake water: A review on occurrence and analytical determination. Int. J. Environ. Anal. Chem. 2018, 98, 536–554. [Google Scholar] [CrossRef]
- Godage, N.H.; Gionfriddo, E. Use of natural sorbents as alternative and green extractive materials: A critical review. Anal. Chim. Acta 2020, 1125, 187–200. [Google Scholar] [CrossRef]
- Baki, M.H.; Shemirani, F.; Khani, R. Potential of Sawdust as a Green and Economical Sorbent for Simultaneous Preconcentration of Trace Amounts of Cadmium, Cobalt, and Lead from Water, Biological, Food, and Herbal Samples. J. Food Sci. 2013, 78, T797–T804. [Google Scholar] [CrossRef]
- Šabanović, E.; Memić, M.; Sulejmanović, J.; Huremović, J. Pulverized Banana Peel as an Economical Sorbent for the Preconcentration of Metals. Anal. Lett. 2014, 48, 442–452. [Google Scholar] [CrossRef]
- Šabanović, E.; Memić, M.; Sulejmanović, J.; Huremović, J. Sorption of Metals on Pulverized Pumpkin (Cucurbita pepo L.) Peels. Anal. Lett. 2016, 49, 2446–2460. [Google Scholar] [CrossRef]
- Losev, V.N.; Buyko, O.V.; Borodina, E.V.; Samoilo, A.S.; Zhyzhaev, A.; Velichko, B.A. Biosorbents based on pine sawdust and malt sprouts for preconcentration and ICP-OES determination of nonferrous, heavy, and precious metals in the environmental samples. Sep. Sci. Technol. 2018, 53, 1654–1665. [Google Scholar] [CrossRef]
- Carrilho, E. The use of silica-immobilized brown alga (Pilayella littoralis) for metal preconcentration and determination by inductively coupled plasma optical emission spectrometry. Talanta 2003, 60, 1131–1140. [Google Scholar] [CrossRef]
- Baytak, S.; Rehber Turker, A. Penicillium digitatum loaded on pumice stone as a solid phase extractor for preconcentration of Co (II), Fe (III) and Ni (II). Curr. Anal. Chem. 2011, 7, 146–156. [Google Scholar] [CrossRef]
- Tuzen, M.; Uluozlu, O.D.; Usta, C.; Soylak, M. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus loaded Diaion SP-850 resin. Anal. Chim. Acta 2007, 581, 241–246. [Google Scholar] [CrossRef]
- Soylak, M.; Tuzen, M.; Mendil, D.; Turkekul, I. Biosorption of heavy metals on Aspergillus fumigatus immobilized Diaion HP-2MG resin for their atomic absorption spectrometric determinations. Talanta 2006, 70, 1129–1135. [Google Scholar] [CrossRef]
- Mendil, D.; Tuzen, M.; Soylak, M. A biosorption system for metal ions on Penicillium italicum—Loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations. J. Hazard. Mater. 2008, 152, 1171–1178. [Google Scholar] [CrossRef]
- Mendil, D.; Tuzen, M.; Usta, C.; Soylak, M. Bacillus thuringiensis var. israelensis immobilized on Chromosorb 101: A new solid phase extractant for preconcentration of heavy metal ions in environmental samples. J. Hazard. Mater. 2008, 150, 357–363. [Google Scholar] [CrossRef]
- Özdemir, S.; Okumuş, V.; Kılınç, E.; Bilgetekin, H.; Dündar, A.; Ziyadanogullan, B. Pleurotus eryngii immobilized Amberlite XAD-16 as a solid-phase biosorbent for preconcentrations of Cd2+ and Co2+ and their determination by ICP-OES. Talanta 2012, 99, 502–506. [Google Scholar] [CrossRef]
- Duran, C.; Bulut, V.N.; Gundogdu, A.; Soylak, M.; Belduz, A.O.; Beris, F.S. Biosorption of Heavy Metals by Anoxybacillus gonensisImmobilized on Diaion HP-2MG. Sep. Sci. Technol. 2009, 44, 335–358. [Google Scholar] [CrossRef]
- Türker, A.R.; Baytak, S. Use of Escherichia coli Immobilized on Amberlite XAD-4 as a Solid-Phase Extractor for Metal Preconcentration and Determination by Atomic Absorption Spectrometry. Anal. Sci. 2004, 20, 329–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baytak, S.; Türker, A.R. Determination of Iron(III), Cobalt(II) and Chromium(III) in Various Water Samples by Flame Atomic Absorption Spectrometry After Preconcentration by Means of Saccharomyces carlsbergensis Immobilized on Amberlite XAD-Mikrochim. Acta 2005, 149, 109–116. [Google Scholar] [CrossRef]
- Baytak, S.; Türker, A.R. The use of Agrobacterium tumefacients immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron(III), cobalt(II), manganese(II) and chromium(III). Talanta 2005, 65, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, N.; Tokman, N.; Akarsubasi, A.T.; Baysal, A.; Akman, S. Determination of some trace elements by flame atomic absorption spectrometry after preconcentration and separation by Escherichia coli immobilized on multiwalled carbon nanotubes. Mikrochim. Acta 2011, 175, 185–191. [Google Scholar] [CrossRef]
- Ozdemir, S.; Yalcin, M.S.; Kilinc, E.; Soylak, M. Boletus edulis loaded with γ-Fe2O3 nanoparticles as a magnetic sorbent for preconcentration of Co(II) and Sn(II) prior to their determination by ICP-OES. Mikrochim. Acta 2017, 185, 73. [Google Scholar] [CrossRef]
- Özdemir, S.; Mohamedsaid, S.A.; Kılınç, E.; Soylak, M. Magnetic solid phase extractions of Co(II) and Hg(II) by using magnetized C. micaceus from water and food samples. Food Chem. 2018, 271, 232–238. [Google Scholar] [CrossRef]
- Atkinson, B.W.; Bux, F.; Kasan, H.C. Considerations for application of biosorption technology to remediate metal–contaminated industrial effluents. Water SA 1998, 24, 129–135. [Google Scholar]
- Volesky, B. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy 2001, 59, 203–216. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharjee, I.; Chandra, G. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. J. Hazard. Mater. 2010, 175, 117–125. [Google Scholar] [CrossRef]
- Ibrahim, W.M. Biosorption of heavy metal ions from aqueous solution by red macroalgae. J. Hazard. Mater. 2011, 192, 1827–1835. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, I.; Ismail, A.A.; Al Sayed, F.; Almedolab, A.; Aboelghait, K. Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Environ. Nanotechnol. Monit. Manag. 2016, 6, 176–183. [Google Scholar] [CrossRef]
- Stevens, M.; Batlokwa, B. Removal of Nickel (II) and Cobalt (II) from Wastewater Using Vinegar-Treated Eggshell Waste Biomass. J. Water Resour. Prot. 2017, 09, 931–944. [Google Scholar] [CrossRef] [Green Version]
- Ramrakhiani, L.; Halder, A.; Majumder, A.; Mandal, A.K.; Majumdar, S.; Ghosh, S. Industrial waste derived biosorbent for toxic metal remediation: Mechanism studies and spent biosorbent management. Chem. Eng. J. 2017, 308, 1048–1064. [Google Scholar] [CrossRef]
- Foroutan, R.; Esmaeili, H.; Rishehri, S.D.; Sadeghzadeh, F.; Mirahmadi, S.; Kosarifard, M.; Ramavandi, B. Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomass: A dataset. Data Brief 2017, 12, 485–492. [Google Scholar] [CrossRef]
- Esmaeili, H.; Tamjidi, S.; Abed, M. Removal of Cu(II), Co(II) and Pb(II) from synthetic and real wastewater using calcified Solamen Vaillanti snail shell. Desalin. Water Treat. 2020, 174, 324–335. [Google Scholar] [CrossRef]
- Morini-Crini, N.; Staelens, J.-N.; Loiacono, S.; Martel, B.; Chanet, G.; Crini, G. Simultaneous removal of Cd, Co, Mn, Ni, and Zn from synthetic solutions on hemp-based felt. III. Real discharge water. J. Appl. Polym. Sci. 2020, 137, 48823. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Minocha, A.; Sillanpää, M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem. Eng. J. 2010, 48, 181–186. [Google Scholar] [CrossRef]
- Da Cunha, J.M.; Klein, L.; Bassaco, M.M.; Tanabe, E.H.; Bertuol, D.; Dotto, G.L. Cobalt recovery from leached solutions of lithium-ion batteries using waste materials as adsorbents. Can. J. Chem. Eng. 2015, 93, 2198–2204. [Google Scholar] [CrossRef]
- Peres, E.C.; Cunha, J.M.; Dortzbacher, G.F.; Pavan, F.A.; Lima, E.C.; Foletto, E.L.; Dotto, G.L. Treatment of leachates containing cobalt by adsorption on Spirulina sp. and activated charcoal. J. Environ. Chem. Eng. 2018, 6, 677–685. [Google Scholar] [CrossRef]
- Topuz, B.; Batmaz, F.; Külköylüoğlu, O.; Çapraz, Ç. First usage of ostracod species (Herpetocypris brevicaudata) carapace as a biosorbent with XAD-4 resin to determine Co(II), Cu(II) and Mn(II) trace metal ions. Microchem. J. 2021, 167, 106335. [Google Scholar] [CrossRef]
- Fisher, A.; Kara, D. Determination of rare earth elements in natural water samples—A review of sample separation, preconcentration and direct methodologies. Anal. Chim. Acta 2016, 935, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuzen, M.; Saygi, K.O.; Usta, C.; Soylak, M. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour. Technol. 2008, 99, 1563–1570. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, S.; Mohamedsaid, S.A.; Kilinc, E.; Yıldırım, A.; Soylak, M. Application of magnetized fungal solid phase extractor with Fe2O3 nanoparticle for determination and preconcentration of Co(II) and Hg(II) from natural water samples. Microchem. J. 2018, 143, 198–204. [Google Scholar] [CrossRef]
- Saçmacı, Ş.; Yılmaz, Y.; Kartal, Ş.; Kaya, M.; Duman, F. Resting Eggs as New Biosorbent for Preconcentration of Trace Elements in Various Samples Prior to Their Determination by FAAS. Biol. Trace Element Res. 2014, 159, 254–262. [Google Scholar] [CrossRef]
- Ozdemir, S.; Kilinc, E.; Celik, K.S.; Okumus, V.; Soylak, M. Simultaneous preconcentrations of Co2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES. Food Chem. 2017, 215, 447–453. [Google Scholar] [CrossRef]
- Yalçın, M.S.; Özdemir, S.; Kılınç, E. Preconcentrations of Ni(II) and Co(II) by using immobilized thermophilic Geobacillus stearothermophilus SO-20 before ICP-OES determinations. Food Chem. 2018, 266, 126–132. [Google Scholar] [CrossRef]
- Ozdemir, S.; Kılınç, E.; Fatih, S. A Novel Biosorbent for Preconcentrations of Co(II) and Hg(II) in Real Samples. Sci. Rep. 2020, 10, 455. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, S.; Kılınç, E.; Poli, A.; Romano, I.; Nicolaus, B.; Mustafov, S.D.; Şen, F. Extraction of Cu2+ and Co2+ by using Tricholoma populinum loaded onto Amberlite XAD-4. Int. J. Environ. Sci. Technol. 2020, 18, 185–194. [Google Scholar] [CrossRef]
Class of Biosorbents | Main Members | General Characteristics | Reference |
---|---|---|---|
Microorganisms
| Marine macroalgae (seaweeds)
| Cell walls are composed of chitin, polysaccharides, lipids, and proteins, in proportions dependent on the algae type; Excellent biosorption abilities for brown seaweeds, due to their alginate content in gel form; High surface to volume ratio; Large variety in shape and size; Capability of rapid biosorption. | [53,54,55,56] |
Molds Yeasts Mushrooms | Chemical composition of cell walls: polysaccharides (80–90%), heavily glycosylated proteins, lipids; Large proportion of material of cell wall over other biosorbents; Considerable resistance against low pH. | [57,58,59] | |
Gram-positive Gram-negative | Functional groups involved in metal uptake: peptidoglycan, teichoic and teichuronic acids, phospholipids, lipopolysaccharides, proteins; Shape diversity and small size; Tolerance towards a wide range of environmental conditions. | [60,61,62] | |
Agro-industrial wastes
|
| Lignocellulosic materials consist of three main structural components: lignin, cellulose, and hemicelluloses; High surface area; Good porosity; Reasonable hardness; Low content of ash. | [63,64,65] |
| Specific physical features (surface area, porosity, stability) and chemical composition for each waste biomass; Minor processing before use as biosorbent; Potential leaching of some components. | [66,67,68] |
Targeted Issue | Summary of Common Findings | |
---|---|---|
Batch studies (mixing of a small amount of biomass with a certain volume of Co(II) solution→ biosorption→ separation of used biomass) | Assessment of the biosorbent affinity for Co as a function of the most feasible parameters of the process:
| Initial pH of solution plays the protagonist role in Co(II) uptake on the reviewed biosorbents. In most cases, Co(II) biosorption:
|
Biosorption interactions quantification and prediction of biosorption capacity by equilibrium modeling (models of Langmuir, Freundlich, Redlich–Peterson, Dubinin–Radushkevich, Temkin isotherms) | The reported processes of Co (II) biosorption followed Langmuir isotherm model, highlighting their monolayer character. Maximum capacity of biosorption provided by means of Langmuir isotherm is the basis of biosorbent performances appraisal. | |
Uptake rate determination and biosorption mechanism understanding by kinetic modeling (pseudo-first-order model, pseudo-second-order, diffusion models) | The pseudo-second-order model has been the best-fit kinetic model, meaning that chemisorption is predominant in the mechanism of Co(II) biosorption. | |
Predicting of biosorption process nature by means of thermodynamic parameters evaluation | Biosorptive removal of Co(II) has been frequently reported as being endothermic and spontaneous. | |
Fixed-bed column studies (Co(II) solution continuously flows through a biomass bed at a constant rate) | Analysis of fixed-bed biosorption variables by means of breakthrough curves | Most researchers have worked on the effect of flow rate, bed height, and metal solution initial concentration on the fixed-bed column biosorption of Co(II) from synthetic solutions. |
Modeling of breakthrough curves (Thomas, Yoon–Nelson, Bohart–Adams, bed depth service time models) | The large majority of experimental breakthrough data have been very well described by the Thomas model. |
Biosorbent; Reference | Biosorption Operation Mode; Working Conditions | Biosorption Capacity | Recyclability | ||
---|---|---|---|---|---|
Desorbing Agent | Desorption Efficiency (%) | Number of Cycles | |||
Brown alga Sargassum wightii; [74] | Batch mode: pH = 4.5, 0.2 g of biomass, contact time: 12 h Fixed bed column: flow rate of 5 mL/min, bed height of 25 cm | 20.63 mg/g 46.08–50.69 mg/g | 0.1 M CaCl2 (in HCl) | 99.39–98.42 98.4–99.2 | 5 5 |
Corn silk modified by diluted nitric acid; [82] | Batch mode: pH = 6; 20 mg of biomass, contact time: 20 min | 90.09 mg/g | 0.5 M HNO3 | 98.33 ± 0.4 | at least 11 |
Bark of eucalyptus grafted with acrylic acid; [87] | Batch mode: pH = 6; 0.2 g of biosorbent, 100 mL of sample | 55.55 mg/g | 0.1 M HNO3 | 71.6–69.91 | 3 |
Chemically modified Sargassum glaucescens; [111] | Fixed bed column: flow rate of 7 mL/min, pH = 4, bed height: 30 cm | 27.6 mg/g | 0.1 M CaCl2; pH = 3 | 4 | |
Green alga Ulva reticulata; [112] | Fixed bed column: flow rate: 5 mL/min; pH = 4; bed height: 25 cm | 46.1 ± 0.07 mg/g | 0.1 M CaCl2 at pH 3 adjusted with HCl | 99.9–99.2 | 3 |
Chrysanthenum indicum flower; [114] | Fixed bed column: 1 mL/min flow rate, pH = 5, 1 cm bed height | 14.84 mg/g | 0.1 M HCl | 76.1–66.7 | 4 |
Tectona grandis leaves; [115] | Fixed bed column: 1 mL/min flow rate, 1 cm bed height | 23.48 mg/g | 0.1 M HCl | 79.8–65.5 | 4 |
Sugarcane bagasse | Batch: biosorbent dose: 2 g/L, pH = 5.5, contact time: 4 h Fixed bed column: 5 mL/min flow rate; 1.679 mmol/L initial concentration | 0.37 mmol/g 0.782 mmol/g | 0.5 M HNO3 0.01 M HNO3 | 98.1–85.3 95 | 2 3 |
K2HPO4-pretreated duckweed Lemma gibba; [120] | Batch: pH = 7, biosorbent dose: 1 g/L, contact time: 30 min | 46.17 ± 0.41 mg/g | 0.1 M HCl | 100 | 3 |
Biosorbent; Reference | Composition of Multi-Metal Solution | Working Conditions | Maximum Capacity of Co(II) Biosorption (mg/g) in | Comments | |||
---|---|---|---|---|---|---|---|
pH | Biomass Dose (g/L) | Contact Time (Min) | Tested Multi-metal Solution | Single- Metal Solution | |||
Formaldehyde treated 2-Hypnea Valentiae alga; [76] | Co(II) + Ni(II) Co(II) + Zn(II) | 6 | 2 | 120 | ~23.72 ~46.49 | 47.44 | Internal competition with H3O+ and the other ions for surface active sites |
Cyanobacteria Oscillatoria Angustissima; [127] | Co(II) + Cu(II) Co(II) + Zn(II) Co(II) + Cu(II) + Zn(II) | 4 | 1 | 60 | 15.91 14.14 5.30 | 24.75 | Trend of affinity series: Cu > Co >Zn |
Aerobic granules; [128] | Co(II) + Zn(II) | 7 | 0.1 | 150 | 54.05 | 55.25 | Order of initial biosorption rate: Co > Zn |
Watermelon rind; [129] | Co(II) + Ni(II) Co(II) + Cu(II) Co(II) + Cd(II) Co(II) + Zn(II) Co(II) + Ni(II) + Cu(II) + Cd(II) + Zn(II) | 5 | 2 | 30 | 6.8 6.5 5.7 9.9 1.3 | 10.2 | Decrease of biosorption capacity by 35–40% Drop of biosorption capacity up to 90% |
Pretreated Saccharomyces cerevisiae immobilized with polysulfone polymer; [130] | Co(II) + Ni(II) + Cd(II) | 8 | 8 | 80 | 0.61 | 1.768 | Sequence of metal biosorption: Co > Ni > Cd |
Sugarcane bagasse - carboxylated; [131] - phatalate functionalized; [132] | Co(II) + Cu(II) Co(II) + Ni(II) Co(II) + Cu(II) Co(II) + Ni(II) | 5.5 | 0.2 | 180–250 | 14.496 21.686 8.957 10.607 | 67.180 33.059 | Order of maximum biosorption capacities: Cu > Ni > Co |
Arborvitae leaves; [133] | Co(II) + Pb(II) + Cu(II) | 5.5 | 0.1 | 300 | 1.54 | 6.78 | Biosorption affinity order: Pb > Cu > Co |
Sulfate reducing bacteria biomass; [135] | Cs(I) + Co(II) Sr(II) + Co(II) | 4 | 0.5 | 49.3 185.2 | 204.1 | Possible existence of specialized sites for Co binding | |
Biomass of moss Rhytidiadelphus squarrosus; [136] | Co(II) + Sr(II) | 6 | 2.5 | 240 | 5.84 | 7.25 | Larger affinity against Co(II) compared to Sr(II) |
Lemon peels -raw and -alkali treated; [137] | Co(II) + Ca(II) Co(II) + Mg(II) Co(II) + Ca(II) Co(II) + Mg(II) | 6 | 2 | 150 – 210 | 19.18 17.86 32.89 30.64 | 20.83 35.71 | Significant effect on the Co(II) biosorption capacity at 100 mg/L addition of cations |
Macroalgae: Ulpia fasciata Colpomenia sinuosa; [138] | Co(II) + Ca(II) Co(II) + Na(I) Co(II) + Mg(II) Co(II) + Na(I) | 6 7 | 10 | 60 | 1.24 1.91 0.97 2.82 | 3.12 3.08 | Foreign ions effect: Ca > Mg > Na Mg > Ca > Na |
Biosorbent | Capacity of Co(II) Biosorption | Foreign Ions without Major Interference effects on Co(II) Retention and the Reported Tolerance Limits | Number of Reused Cycles | Reference | |||
---|---|---|---|---|---|---|---|
Microorganism | Support for Biomass Immobilization | Optimum Amount of | |||||
Biomass | Support | ||||||
Aspergillus fumigatus Anoxybacillus gonensis | Diaion HP-2MG | 150 mg 125 mg | 1 g 1 g | 4.4 mg/g 6.16 ± 0.2 mg/g | Na+ (20 g/L); K+ (5 g/L); Ca2+, Mg2+, F–, NO3–, SO42– (2 g/L); Al3+, Cr3+ (10 mg/L); Mn2+, Cd2+ (25 mg/L) Na+ (10 g/L); Ca2+, Mg2+, SO42–, NO3– (1 g/L); Al3+, Mo6+, Cr3+, Hg2+ (10 mg/L) | >50 50 | [160] [164] |
Escherichia coli Saccharomyces carlsbergensis Agrobacterium tumefacients | Amberlite XAD-4 | 150 mg 200 mg 150 mg | 1 g 1 g 1 g | 28 µmol/g 24 µmol/g 29 µmol/g | Na+, K+ up to 500 µg/mL Na+, K+ up to 500 µg/mL Na+, K+, Al3+ up to 500 µg/mL | Up to 15 15 10 | [165,166,167] |
Escherichia coli | Multiwalled carbon nanotubes | 0.1 g | 0.1 g | 0.072 mmol/g | Na+ (1150 µg/mL); Mg2+ (253 µg/mL); K+ (523 µg/mL); NH4+ (336 µg/mL); SO42– (676 µg/mL) | 50 | [168] |
Type of Real Effluent; Reference | Co(II) Concentration (mg/L) | Other Elements Contained in Waste Solution (mg/L) | Biosorbent | Operating Conditions | Efficiency of the Process of Co(II) Biosorption | Remarks |
---|---|---|---|---|---|---|
2 samples of industrial wastewater; [109] | 0.0543 0.112 | Fe (2.954) Cu (1.564) Ni (0.1524) Cd (0.1201) Pb (0.0974) Fe (3.157) Cu (1.346) Ni (0.112) Cd (0.1674) Pb (0.1043) | Rice straw Modified rice straw | pH = 6.3; biomass dose: 0.4 g/50 mL; contact time: 1.5 h; temperature: 30 °C, 40 °C, 50 °C | 100% 100% | Efficiency of other metals removal: 100% Complete removal of other heavy metals |
Steel and electroplating industry effluents; [173] | 0.58 | Cr(III) (20.22) Cu (9.24) Fe(III) (1.08) Cd (0.73) Pb (2.06) Zn (5.8) Ag (1.02) | Dead biomass of Geobacillus thermodenitrificans | pH = 6.5; 25 mL of sample; 120 min contact time; 50 mg of biomass | Up to 11.43% reduction of Co(II) concentration | Order of biosorbent preference: Fe > Cr > Cd > Pb > Cu > Co > Zn > Ag |
Effluent from chemical production; [174] | 1.34 | Cd (1.21) Cr (0.72) Pb (0.68) | Corralina mediterranea Galaxaura oblongata Jania rubens Ptredocladia papillacea | pH = 5; 60 min contact time; biomass dose: 10 g/L | 86.2% 87.6% 90.6% 95.3% | Mean biosorption efficiency 84% |
Industrial wastewater collected from a metal industry; [175] | 20 | Pb (0.26) Zn (11.61) Cu (11.55) Fe(III) (2.13) Ni (30.76) Cd (46) Mn (52) Cr (44.60) | Peanut husk powder | pH ~ 6.6 biosorbent dose: 5 g/L 1 h contact time | 30% | Removal efficiency of other metals ranging from 24% for Ni to 100% for Pb |
Wastewater samples from sewage treatment plant; [176] | 0.342 ± 0.0023 | Ni (0.271) | Vinegar-treated eggshell waste biomass | pH = 7.49; 77.41 mg of biomass; 50 mL of sample; 64.81 min contact time | 76.53 ± 1.21% | 78.7 ± 1.02 percentage of Ni(II) removal |
Acidic and alkaline effluents from battery industry; [177] | 0.16 0.05 | Ni (0.43) Zn (0.82) Cd (84.32) Fe (1.83) Pb (2.05) Sb (0.23) Cu (0.1) Ni (1.132) Zn (17.78) Cd (0.02) Pb (5.37) Sb (0.16) Cu (0.03) | Dried activated tannery sludge | pH = 5.3; 0.2 g of biomass; 24 h contact time | 75% 80% | % biosorption of other metals: 8.69 (Sb)- 96.74 (Ni) % biosorption of other metals: 33.33 (Cu)- 97.3 (Zn) |
Wastewater collected from plating plant; [178] | 8 ± 3 | Ni (19 ± 4) Cr(VI) (14.5 ± 3) Zn (12 ± 3) | Aspergillus flavus modified by calcium chloride | pH = 5.5; 150 mL of sample; biomass dose: 4 g/L; contact time: 60 min | Non-detectable concentration of Co(II) after treatment | Significant decrease of Ni and Cr content after biosorption; Zn–non-detectable |
Industrial wastewater; [179] | 0.005 0.015 | Pb (0.01) Cu (0.02) | Calcified Solamnen Vailanti snail shell | pH = 6; biomass dose: 2 g/L; contact time: 60 min; temperature: 25 °C | 74% 84% | Removal efficiency of 85% and 91% for Pb and Cu, respectively |
Industrial effluent; [180] | 1.621 | Ni (1.17) Cu (0.663) Zn (1.988) Cr (0.55) Al (1.611) Fe (1.666) Sn (0.23) Cd (<0.002) Mn (10.1) Ti (0.026) | Hemp felt Modified hemp felt | pH = 7.5; 15 g of felt; 15 L of wastewater; contact time: 30 min; 20 ± 1 °C temperature | Co concentration after treatment: 0.36 mg/L 0.003 mg/L | Ability of modified hemp felt to remove 80–100% of the total metal load |
Processed Sample; Reference | Biosorbent; Maximum Capacity of Biosorption | Working Conditions | Desorption Agent; Detection | Analytical Performances of the Proposed Method | ||
---|---|---|---|---|---|---|
Flow Rate (mL/ min) | Applicable Volume of Sample Solution (mL) | pH | ||||
Spiked water and food samples and 2 certified reference materials; [169] | Boletus edulis immobilized γ-Fe2O3 magnetized nanoparticles; 35.8 mg/g | 3 | 50–500 | 6 | 1 M HCl; inductively coupled plasma optical emission spectrometry | Detection limit: 0.021 ng/mL Preconcentration factor: 100 Linear range: 0.2–10 ng/mL Relative standard deviation: 4.9% |
Water and food samples and 4 certified reference materials; [170] | Coprinus micaceus loaded with γ-Fe2O3 magnetized nanoparticles; 24.7 mg/g | 3 | Up to 400 | 5 | 1 M HCl; inductively coupled plasma optical emission spectrometry | Detection limit: 0.017 ng/mL Preconcentration factor: 80 Linear range: 0.25–12.5 ng/mL |
Sample of Ontario lake water and reference standard material; [184] | Ostracod carapace of Herpetocypris brevicaudata loaded on Amberlite XAD-4 resin; 13.55 mg/g | 5 | Up to 1000 | 10 ± 0.1 | 1 M HCl; UV-VIS spectrophotometry | Detection limit: 1.4 µg/L Relative standard deviation: <5% Preconcentration factor: 111.1 |
Boiled wheat, canned fish, black tea, and lichen and sample of certified reference materials; [186] | Pseudomonas aeruginosa immobilized on multiwalled carbon nanotubes; 6.06 mg/g | 5 | 25–500 | 9 | 1 M HNO3; flame atomic absorption spectrometry | Detection limit: 0.74 µg/L Preconcentration factor: 50 |
Natural water samples and 4 certified reference materials; [187] | Pleurotus eryngii loaded Fe2O3 magnetic nanoparticles; 25.4 mg/g | 2 | 400 | 5 | 1 M HCl; inductively coupled plasma optical emission spectrometry | Detection limit: 0.014 ng/mL Linear range: 0.25–12.5 ng/mL Preconcentration factor: 80 |
Tap, sea, and dam water samples and sample of a certified reference material; [188] | Resting eggs of aquatic creatures living in freshwater; 46.0 ± 2.7 mg/g | 4 | 25–2000 | 9 | 1 M HNO3; flame atomic absorption spectrometry | Detection limit: 41.4 µg/L Preconcentration factor: 67 Relative standard deviation: <4.1% |
Water and food samples and certified reference material sample; [189] | Bacillus altitudinis immoblilized on nanodiamond; 26.4 mg/g | 3 | 25–400 | 5 | 1 M HCl; inductively coupled plasma optical emission spectrometry | Detection limit: 0.023 ng/mL Preconcentration factor: 80 Linear range: 0.25–12.5 ng/mL Relative standard deviation: 4.4% |
Food and environmental samples and 2 certified reference materials; [190] | Geobacillus stearothermophilus SO-20 loaded with Amberlite XAD-4; 21.6 mg/g | 3 | 25–400 | 6 | 1 M HCl; inductively coupled plasma optical emission spectrometry | Detection limit: 0.022 ng/mL Preconcentration factor: 80 Linear range: 0.25–12.5 ng/mL |
Tap, river, and mineral water samples, food samples; samples of 3 certified reference materials; [191] | Anoxybacillus kestanboliensis loaded Amberlite XAD-4 resin; 24.3 mg/g | 2 | 400 | 5 | 1 M HCl; inductively coupled plasma optical emission spectrometry | Detection limit: 0.04 ng/mL Preconcentration factor: 80 Linear range: 0.25–12.5 ng/mL Relative standard deviation: <6.8% |
Food and water samples and 4 certified reference materials; [192] | Tricholoma populinum loaded on Amberlite XAD-4 resin; 30.3 mg/kg | 3 | 25–500 | 5 | 1 M HCl; inductively coupled plasma optical emission spectrometry | Detection limit: 0.2–15 ng/mL Preconcentration factor: 100 Relative standard deviation: <3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofan, L. Polymeric Biomass Derived Adsorbents for Co(II) Remediation, Recycling and Analysis. Polymers 2022, 14, 1647. https://doi.org/10.3390/polym14091647
Tofan L. Polymeric Biomass Derived Adsorbents for Co(II) Remediation, Recycling and Analysis. Polymers. 2022; 14(9):1647. https://doi.org/10.3390/polym14091647
Chicago/Turabian StyleTofan, Lavinia. 2022. "Polymeric Biomass Derived Adsorbents for Co(II) Remediation, Recycling and Analysis" Polymers 14, no. 9: 1647. https://doi.org/10.3390/polym14091647
APA StyleTofan, L. (2022). Polymeric Biomass Derived Adsorbents for Co(II) Remediation, Recycling and Analysis. Polymers, 14(9), 1647. https://doi.org/10.3390/polym14091647