The 3D-Printing-Accelerated Design for a Biodegradable Respirator from Tree Leaves (TRespirator)
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials and Chemicals
2.2. Preparation of Plant Fibers
2.3. Fabrication of TRespirator
3. Results and Discussion
4. Conclusions
5. Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chua, M.H.; Cheng, W.; Goh, S.S.; Kong, J.; Li, B.; Lim, J.Y.C.; Mao, L.; Wang, S.; Xue, K.; Yang, L.; et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research 2020, 2020, 7286735. [Google Scholar] [CrossRef]
- Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.M.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.H.; et al. An evidence review of face masks against COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2014564118. [Google Scholar] [CrossRef]
- Xu, E.G.; Ren, Z.J. Preventing masks from becoming the next plastic problem. Front. Environ. Sci. Eng. 2021, 15, 125. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Akl, E.A.; Chou, R.; Chu, D.K.; Loeb, M.; Lotfi, T.; Mustafa, R.A.; Neumann, I.; Saxinger, L.; Sultan, S.; et al. Use of facemasks during the COVID-19 pandemic. Lancet Respir. Med. 2020, 8, 954–955. [Google Scholar] [CrossRef]
- Sangkham, S. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Stud. Chem. Environ. Eng. 2020, 2, 100052. [Google Scholar] [CrossRef]
- Fadare, O.O.; Okoffo, E.D. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Stubbins, A.; Law, K.L.; Munoz, S.E.; Bianchi, T.S.; Zhu, L. Plastics in the Earth system. Science 2021, 373, 51–55. [Google Scholar] [CrossRef]
- Han, C.; Sahle-Demessie, E.; Zhao, A.Q.; Richardson, T.; Wang, J. Environmental aging and degradation of multiwalled carbon nanotube reinforced polypropylene. Carbon 2018, 129, 137–151. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Kuang, P.Y.; Low, J.X.; Cheng, B.; Yu, J.G.; Fan, J.J. MXene-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 18–44. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Liu, R.L.; Zhu, X. Planstic: Biodegradable Plastic with High-Entropy Fibers Made from Waste Plastic and Plant Leaves. ACS Appl. Polym. Mater. 2021, 3, 5355–5360. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef]
- Santos, R.G.; Machovsky-Capuska, G.E.; Andrades, R. Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science 2021, 373, 56–60. [Google Scholar] [CrossRef]
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65. [Google Scholar] [CrossRef]
- Schwabl, P.; Koppel, S.; Konigshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Choi, S.; Jeon, H.; Jang, M.; Kim, H.; Shin, G.; Koo, J.M.; Lee, M.; Sung, H.K.; Eom, Y.; Yang, H.S.; et al. Biodegradable, Efficient, and Breathable Multi-Use Face Mask Filter. Adv. Sci. 2021, 8, 2003155. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, Z.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.Y.; Li, G. Reusable and Recyclable Graphene Masks with Outstanding Superhydrophobic and Photothermal Performances. ACS Nano 2020, 14, 6213–6221. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Perdiguero, M.; Fiori, S.; Kenny, J.M.; Peponi, L. Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polym. Degrad. Stab. 2020, 179, 109226. [Google Scholar] [CrossRef]
- Zhang, C.W.; Li, F.Y.; Li, J.F.; Wang, L.M.; Xie, Q.; Xu, J.; Chen, S. A new biodegradable composite with open cell by combining modified starch and plant fibers. Mater. Des. 2017, 120, 222–229. [Google Scholar] [CrossRef]
- Wang, X.; Chang, L.; Shi, X.; Wang, L. Effect of Hot-Alkali Treatment on the Structure Composition of Jute Fabrics and Mechanical Properties of Laminated Composites. Materials 2019, 12, 1386. [Google Scholar] [CrossRef] [Green Version]
- Nanoscribe, Facts and Figures on Photonic Professional GT2. Available online: https://www.nanoscribe.com/en/products/photonic-professional-gt2#tab-384 (accessed on 9 April 2022).
- Costa, A. Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 2006, 33, L02318. [Google Scholar] [CrossRef]
- Zangmeister, C.D.; Radney, J.G.; Vicenzi, E.P.; Weaver, J.L. Filtration Efficiencies of Nanoscale Aerosol by Cloth Mask Materials Used to Slow the Spread of SARS-CoV-2. ACS Nano 2020, 14, 9188–9200. [Google Scholar] [CrossRef]
- Olmedo, C.G.; Aragón, E.Q.; Garcia, J.; Torrent, L.M.P.; Ramón, C.F. Study of porosity and permeability of air filter material in respiratory protection filters. Int. Multidiscip. Sci. Geo Conf. SGEM Surv. Geol. Min. Ecol. Manag. 2008, 1, 231. [Google Scholar]
- Tang, J.W.; Nicolle, A.D.; Klettner, C.A.; Pantelic, J.; Wang, L.; Suhaimi, A.B.; Tan, A.Y.; Ong, G.W.; Su, R.; Sekhar, C.; et al. Airflow dynamics of human jets: Sneezing and breathing-potential sources of infectious aerosols. PLoS ONE 2013, 8, e59970. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Dimzon, I.K.; Eubeler, J.; Knepper, T.P. Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment, Freshwater Microplastics; Springer: Cham, Germany, 2018; pp. 51–67. [Google Scholar]
- Sun, T.; Hobbie, S.E.; Berg, B.; Zhang, H.; Wang, Q.; Wang, Z.; Hattenschwiler, S. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl. Acad. Sci. USA 2018, 115, 10392–10397. [Google Scholar] [CrossRef] [Green Version]
- Chamas, A.; Moon, H.; Zheng, J.J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Sang, T.; Wallis, C.J.; Hill, G.; Britovsek, G.J.P. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. Eur. Polym. J. 2020, 136, 109873. [Google Scholar] [CrossRef]
- Carr, C.M.; Clarke, D.J.; Dobson, A.D.W. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Front. Microbiol. 2020, 11, 571265. [Google Scholar] [CrossRef]
- Gigault, J.; El Hadri, H.; Nguyen, B.; Grassl, B.; Rowenczyk, L.; Tufenkji, N.; Feng, S.; Wiesner, M. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021, 16, 501–507. [Google Scholar] [CrossRef]
- Kendall, K. The impossibility of comminuting small particles by compression. Nature 1978, 272, 710–711. [Google Scholar] [CrossRef]
- DelRe, C.; Jiang, Y.; Kang, P.; Kwon, J.; Hall, A.; Jayapurna, I.; Ruan, Z.; Ma, L.; Zolkin, K.; Li, T.; et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 2021, 592, 558–563. [Google Scholar] [CrossRef]
- Chen, C.C.; Dai, L.H.; Ma, L.X.; Guo, R.T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 2020, 4, 114–126. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Chen, C.C.; Han, X.; Li, X.; Jiang, P.C.; Niu, D.; Ma, L.X.; Liu, W.D.; Li, S.Y.; Qu, Y.Y.; Hu, H.B.; et al. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat. Catal. 2021, 4, 425–430. [Google Scholar] [CrossRef]
- Cornwall, W. The plastic eaters. Science 2021, 373, 36–39. [Google Scholar] [CrossRef]
- Feng, Y.; Cheng, H.; Lei, B.; Liang, Y.; Yang, Z.; He, H. Towards sustainable thermoplastic woody materials prepared from continuous steam explosion followed by oxidation-reduction. Carbohydr. Polym. 2019, 216, 322–330. [Google Scholar] [CrossRef]
- Henniges, B.; Childers, R.W.; Miller, M.; Moaiery, A.; Dudycha, A.; Purrenhage, B.J.; Chemlar, E.V. Sterilization Container Capable of Providing an Indication Regarding Whether or Not Surgical Instruments Sterilized in the Container Were Properly Sterilized. US20150374868A1, 3 July 2018. [Google Scholar]
- Dunda, S. Changzhou Shuanggu Dunda Mechanical & Electrical Technology Co., Ltd. Available online: http://tex79641.ctsti.cn (accessed on 9 April 2022).
- Germany, E. 2020 Eagle Technology, Inc. Available online: https://www.eaglecmms.com (accessed on 9 April 2022).
- Tu, T.T.N.; Egasse, C.; Anquetil, C.; Zanetti, F.; Zeller, B.; Huon, S.; Derenne, S. Leaf lipid degradation in soils and surface sediments: A litterbag experiment. Org. Geochem. 2017, 104, 35–41. [Google Scholar]
- Hafez, S.S.; Abdel-Ghani, A.E.; El-Shazly, A.M. Pharmacognostical and anti-bacterial studies of Chorisia speciosa St. Hill flowers (Bombaceae). Mans. J. Pharm. Sci. 2003, 19, 40–43. [Google Scholar]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8, e1800465. [Google Scholar] [CrossRef] [Green Version]
- Hoorman, J.J. Role of Soil Bacteria: Update and Revision. Available online: https://mccc.msu.edu/wp-content/uploads/2016/10/OH_2016_Role-of-soil-bacteria_Update-and-revision-May12_2016.pdf (accessed on 9 April 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xu, Y.; Liu, R.; Zhu, X. The 3D-Printing-Accelerated Design for a Biodegradable Respirator from Tree Leaves (TRespirator). Polymers 2022, 14, 1681. https://doi.org/10.3390/polym14091681
Wang Z, Xu Y, Liu R, Zhu X. The 3D-Printing-Accelerated Design for a Biodegradable Respirator from Tree Leaves (TRespirator). Polymers. 2022; 14(9):1681. https://doi.org/10.3390/polym14091681
Chicago/Turabian StyleWang, Ziao, Yao Xu, Rulin Liu, and Xi Zhu. 2022. "The 3D-Printing-Accelerated Design for a Biodegradable Respirator from Tree Leaves (TRespirator)" Polymers 14, no. 9: 1681. https://doi.org/10.3390/polym14091681
APA StyleWang, Z., Xu, Y., Liu, R., & Zhu, X. (2022). The 3D-Printing-Accelerated Design for a Biodegradable Respirator from Tree Leaves (TRespirator). Polymers, 14(9), 1681. https://doi.org/10.3390/polym14091681