Significant Electromechanical Characteristic Enhancement of Coaxial Electrospinning Core–Shell Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication Method
3. Results
3.1. Characterization Methods
3.1.1. Morphology Characterization
3.1.2. Molecular Orientation Characterization
3.1.3. Piezoelectric Characterization
3.1.4. Electromechanical Response
4. Discussion
4.1. Morphology and the Fabrication Condition of Core–Shell PVDF/PBLG Fibers
4.2. Molecular Orientation
4.3. Piezoelectric and Electromechanical Response Measurement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bucci, R.; Georgilis, E.; Bittner, A.; Gelmi, M.; Clerici, F. Peptide-Based Electrospun Fibers: Current Status and Emerging Developments. Nanomaterials 2021, 11, 1262. [Google Scholar] [CrossRef] [PubMed]
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2020, 80, 105567. [Google Scholar] [CrossRef]
- Han, D.; Steckl, A.J. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. ChemPlusChem 2019, 84, 1453–1497. [Google Scholar] [CrossRef] [PubMed]
- Filippin, A.N.; Sanchez-Valencia, J.R.; Garcia-Casas, X.; Lopez-Flores, V.; Macias-Montero, M.; Frutos, F.; Barranco, A.; Borras, A. 3D core-multishell piezoelectric nanogenerators. Nano Energy 2019, 58, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Yang, B.; Zhai, Y.; Liu, J. Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 2020, 76, 104966. [Google Scholar] [CrossRef]
- Yan, X.; Li, G.; Wang, Z.; Yu, Z.; Wang, K.; Wu, Y. Recent progress on piezoelectric materials for renewable energy conversion. Nano Energy 2020, 77, 105180. [Google Scholar] [CrossRef]
- Zheng, Y.; Tang, N.; Omar, R.; Hu, Z.; Duong, T.; Wang, J.; Wu, W.; Haick, H. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Adv. Funct. Mater. 2021, 31, 2105482. [Google Scholar] [CrossRef]
- Yang, S.Y.; Sencadas, V.; You, S.S.; Jia, N.Z.; Srinivasan, S.S.; Huang, H.; Ahmed, A.E.; Liang, J.Y.; Traverso, G. Powering Implantable and Ingestible Electronics. Adv. Funct. Mater. 2021, 31, 2009289. [Google Scholar] [CrossRef]
- Karan, S.K.; Maiti, S.; Lee, J.H.; Mishra, Y.K.; Khatua, B.B.; Kim, J.K. Recent Advances in Self-Powered Tribo-/Piezoelectric Energy Harvesters: All-In-One Package for Future Smart Technologies. Adv. Funct. Mater. 2020, 30, 2004446. [Google Scholar] [CrossRef]
- Mamidi, N.; Zuníga, A.E.; Villela-Castrejón, J. Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110928. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Zeng, Q.; He, L.; Yin, P.; Sun, Y.; Hu, W.; Yang, R. Fabrication and application of biocompatible nanogenerators. iScience 2021, 24, 102274. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Yu, L.; Zheng, G.; Wang, L.; Wu, D.; Sun, D. Electrospinning-induced preferred dipole orientation in PVDF fibers. J. Mater. Sci. 2015, 50, 4342–4347. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Zhu, J.; Mi, L.; Zheng, G. Fabrication of beta-Phase-Enriched PVDF Sheets for Self-Powered Piezoelectric Sensing. ACS Appl. Mater. Interfaces 2022, 14, 11854–11863. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.; Naik, S.; Langevine, J.; Gill, B.S.; Zhang, J.X.J. Aligned PVDF-TrFE Nanofibers With High-Density PVDF Nanofibers and PVDF Core–Shell Structures for Endovascular Pressure Sensing. IEEE Trans. Biomed. Eng. 2014, 62, 188–195. [Google Scholar] [CrossRef]
- Yousry, Y.M.; Yao, K.; Mohamed, A.M.; Liew, W.H.; Chen, S.; Ramakrishna, S. Theoretical Model and Outstanding Performance from Constructive Piezoelectric and Triboelectric Mechanism in Electrospun PVDF Fiber Film. Adv. Funct. Mater. 2020, 30, 1910592. [Google Scholar] [CrossRef]
- Mokhtari, F.; Shamshirsaz, M.; Latifi, M.; Foroughi, J. Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies. Polymers 2020, 12, 2697. [Google Scholar] [CrossRef]
- Kapat, K.; Shubhra, Q.T.H.; Zhou, M.; Leeuwenburgh, S. Piezoelectric Nano-Biomaterials for Biomedicine and Tissue Regeneration. Adv. Funct. Mater. 2020, 30, 1909045. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Bowen, C.R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A 2017, 5, 3091–3128. [Google Scholar] [CrossRef] [Green Version]
- Duc-Nam Nguyen, W.M. Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices. J. Sens. Sci. Technol. 2019, 28, 205–215. [Google Scholar] [CrossRef]
- Ren, G.; Cai, F.; Li, B.; Zheng, J.; Xu, C. Flexible Pressure Sensor Based on a Poly(VDF-TrFE) Nanofiber Web. Macromol. Mater. Eng. 2012, 298, 541–546. [Google Scholar] [CrossRef]
- Pan, C.-T.; Yen, C.-K.; Wu, H.-C.; Lin, L.; Lu, Y.-S.; Huang, J.C.-C.; Kuo, S.-W. Significant piezoelectric and energy harvesting enhancement of poly(vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning. J. Mater. Chem. A 2015, 3, 6835–6843. [Google Scholar] [CrossRef]
- Liang, L.; He, W.; Cao, R.; Wei, X.; Uemura, S.; Kamata, T.; Nakamura, K.; Ding, C.; Liu, X.; Kobayashi, N. Non-Volatile Transistor Memory with a Polypeptide Dielectric. Molecules 2020, 25, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Qian, J.; Liu, T.; Xu, W.; Zhao, N.; Suo, A. Electrospun PBLG/PLA nanofiber membrane for constructing in vitro 3D model of melanoma. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.; Ren, K.; Cheng, D.; Kim, S.; Moon, W.; Wilson, W.L.; West, J.E.; Yu, S.M. Permanent Polarity and Piezoelectricity of Electrospun α-Helical Poly(α-Amino Acid) Fibers. Adv. Mater. 2011, 23, 3954–3958. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.-N.; Yu, S.M.; Moon, W. Electrospinning of poly(γ-benzyl-α,L-glutamate) microfibers for piezoelectric polymer applications. J. Appl. Polym. Sci. 2018, 135, 46440. [Google Scholar] [CrossRef]
- Lin, M.-F.; Xiong, J.; Wang, J.; Parida, K.; Lee, P.S. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 2017, 44, 248–255. [Google Scholar] [CrossRef]
- Nguyen, D.-N.; Moon, W. Piezoelectric polymer microfiber-based composite for the flexible ultra-sensitive pressure sensor. J. Appl. Polym. Sci. 2019, 137, 48884. [Google Scholar] [CrossRef]
- Nakiri, T.; Imoto, K.; Ishizuka, M.; Okamoto, S.; Date, M.; Uematsu, Y.; Fukada, E.; Tajitsu, Y. Piezoelectric Characteristics of Polymer Film Oriented under a Strong Magnetic Field. Jpn. J. Appl. Phys. 2004, 43, 6769–6774. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; McCann, J.T.; Formo, E.; Scalia, G.; Xia, Y. Coaxial electrospinning of microfibres with liquid crystal in the core. Chem. Commun. 2008, 14, 5420–5422. [Google Scholar] [CrossRef]
- Pan, C.-T.; Yen, C.-K.; Liu, Z.-H.; Kuo, S.-W.; Lu, Y.-S.; Li, H.-W.; Lai, Y.-C. Poly(γ-benzyl α, l-glutamate) in Cylindrical Near-Field Electrospinning Fabrication and Analysis of Piezoelectric Fibers. Sens. Mater. 2014, 26, 63–73. [Google Scholar]
- Ponnamma, D.; Chamakh, M.M.; Alahzm, A.M.; Salim, N.; Hameed, N.; Almaadeed, M.A.A. Core-Shell Nanofibers of Polyvinylidene Fluoride-based Nanocomposites as Piezoelectric Nanogenerators. Polymers 2020, 12, 2344. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, J.; Yang, L.; Zhang, Y.; Wu, Y.; Zheng, H. Enhanced Output Performance of Piezoelectric Nanogenerators by Tb-Modified (BaCa)(ZrTi)O3 and 3D Core/shell Structure Design with PVDF Composite Spinning for Microenergy Harvesting. ACS Appl. Mater. Interfaces 2022, 14, 12243–12256. [Google Scholar] [CrossRef] [PubMed]
- Mamidi, N.; Delgadillo, R.M.V.; González-Ortiz, A. Engineering of carbon nano-onion bioconjugates for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 120, 111698. [Google Scholar] [CrossRef]
- Chang, Y.C.; Frank, C.W.; Forstmann, G.G.; Johannsmann, D. Quadrupolar and polar anisotropy in end-grafted α-helical poly(γ-benzyl-L-glutamate) on solid substrates. J. Chem. Phys. 1999, 111, 6136–6143. [Google Scholar] [CrossRef]
- Block, H.; Shaw, C. Second-harmonic generation in poly(α-amino acid) and poly(isocyanate) films. Polymer 1992, 33, 2459–2462. [Google Scholar] [CrossRef]
- Nguyen, D.-N.; Hwang, Y.; Moon, W. Electrospinning of well-aligned fiber bundles using an End-point Control Assembly method. Eur. Polym. J. 2016, 77, 54–64. [Google Scholar] [CrossRef]
- Liu, X.; Xu, S.; Kuang, X.; Tan, D.; Wang, X. Nanoscale investigations on β-phase orientation, piezoelectric response, and polarization direction of electrospun PVDF nanofibers. RSC Adv. 2016, 6, 109061–109066. [Google Scholar] [CrossRef]
- Pan, C.-T.; Yen, C.-K.; Lin, L.; Lu, Y.-S.; Li, H.-W.; Huang, J.C.-C.; Kuo, S.-W. Energy harvesting with piezoelectric poly(γ-benzyl-l-glutamate) fibers prepared through cylindrical near-field electrospinning. RSC Adv. 2014, 4, 21563–21570. [Google Scholar] [CrossRef]
- Pan, C.-T.; Yen, C.-K.; Wang, S.-Y.; Lai, Y.-C.; Lin, L.; Huang, J.C.; Kuo, S.-W. Near-field electrospinning enhances the energy harvesting of hollow PVDF piezoelectric fibers. RSC Adv. 2015, 5, 85073–85081. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
PBLG/DCM concentration | wt% | 10 |
PVDF/DMF–acetone (4:1) concentration | wt% | 30 |
Feeding rate of core solution | μL/min | 0.15 |
Feeding rate of shell solution | μL/min | 0.05 |
Tip-to-collector distance | cm | 5–7 |
Collector rotation speed | rpm | 3000 |
Voltage | kV | 16–20 |
Material | Piezoelectricity (pC N−1) | Maximum Voltage Output (mV) |
---|---|---|
PVDF | d31 = 8–22 d33 = −24 to −34 | 85 |
P(VDF-TrFE) | d31 = 12 | 1500 |
Poly-L-lactide | d14 = −1.83 | - |
Liquid crystal elastomers | d33 = −70 | - |
PBLG | d33 = 27 d31 = 0.1 | 65 |
PVDF/PDMS composite | d33 = 34 d31 = 19 | 190 |
PBLG/PDMS composite | d33 = 54 d31 = 10.2 | 200 |
PBLG/PVDF coaxial fibers | d33 = 68 d31 = 7 | 400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.-N.; Moon, W. Significant Electromechanical Characteristic Enhancement of Coaxial Electrospinning Core–Shell Fibers. Polymers 2022, 14, 1739. https://doi.org/10.3390/polym14091739
Nguyen D-N, Moon W. Significant Electromechanical Characteristic Enhancement of Coaxial Electrospinning Core–Shell Fibers. Polymers. 2022; 14(9):1739. https://doi.org/10.3390/polym14091739
Chicago/Turabian StyleNguyen, Duc-Nam, and Wonkyu Moon. 2022. "Significant Electromechanical Characteristic Enhancement of Coaxial Electrospinning Core–Shell Fibers" Polymers 14, no. 9: 1739. https://doi.org/10.3390/polym14091739
APA StyleNguyen, D. -N., & Moon, W. (2022). Significant Electromechanical Characteristic Enhancement of Coaxial Electrospinning Core–Shell Fibers. Polymers, 14(9), 1739. https://doi.org/10.3390/polym14091739