Polyethylenimine-Functionalized Nanofiber Nonwovens Electrospun from Cotton Cellulose for Wound Dressing with High Drug Loading and Sustained Release Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cellulose Solution
2.3. Preparation of Electrospun Cellulose Nonwoven
2.4. Preparation of Cellulose-NH2 Membrane
2.5. Preparation of Cellulose-PEI Membrane
2.6. Material Characterization
2.7. Standard Curve Measurement
2.8. Drug Adsorption
2.9. Drug Release Study
3. Results and Discussion
3.1. Fabrication of Cellulose-PEI Nonwoven Membranes
3.2. Morphological and Structural Characterization of Cellulose-PEI
3.3. Drug Adsorption Studies
3.3.1. The Effect of pH on the Drug Adsorption Capacity
3.3.2. The Effect of Drug Concentration on Adsorption Capacity
3.4. Drug Release Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ao, C.; Yuan, W.; Zhao, J.; He, X.; Zhang, X.; Li, Q.; Xia, T.; Zhang, W.; Lu, C. Superhydrophilic Graphene Oxide @ electrospun Cellulose Nanofiber Hybrid Membrane for High-Efficiency Oil/Water Separation. Carbohydr. Polym. 2017, 175, 216–222. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Yu, D.-G.; Wang, G.; Williams, G.R.; Zhang, Z. Tunable Drug Release from Nanofibers Coated with Blank Cellulose Acetate Layers Fabricated Using Tri-Axial Electrospinning. Carbohydr. Polym. 2019, 203, 228–237. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Wang, J.; Zhang, L. Drugs Adsorption and Release Behavior of Collagen/Bacterial Cellulose Porous Microspheres. Int. J. Biol. Macromol. 2019, 140, 196–205. [Google Scholar] [CrossRef]
- Esmaeili, A.; Haseli, M. Electrospinning of Thermoplastic Carboxymethyl Cellulose/Poly(Ethylene Oxide) Nanofibers for Use in Drug-Release Systems. Mater. Sci. Eng. C 2017, 77, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Beni, A.A. A Novel Fixed-Bed Reactor Design Incorporating an Electrospun PVA/Chitosan Nanofiber Membrane. J. Hazard. Mater. 2014, 280, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Ao, C.; Niu, Y.; Zhang, X.; He, X.; Zhang, W.; Lu, C. Fabrication and Characterization of Electrospun Cellulose/Nano-Hydroxyapatite Nanofibers for Bone Tissue Engineering. Int. J. Biol. Macromol. 2017, 97, 568–573. [Google Scholar] [CrossRef]
- Sagitha, P.; Reshmi, C.R.; Sundaran, S.P.; Binoy, A.; Mishra, N.; Sujith, A. In-Vitro Evaluation on Drug Release Kinetics and Antibacterial Activity of Dextran Modified Polyurethane Fibrous Membrane. Int. J. Biol. Macromol. 2019, 126, 717–730. [Google Scholar]
- MacArthur, D.E. Beyond Plastic Waste. Science 2017, 358, 843. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable Polymers from Renewable Resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, F.; Muhamad, I.; Pa’e, N.; Hashim, Z. Strategies in Improving Properties of Cellulose-Based Hydrogels for Smart Applications. In Cellulose-Based Superabsorbent Hydrogels; Springer: Cham, Switzerland, 2018; pp. 1–22. [Google Scholar]
- Wang, Q.; Xia, T.; Wu, W.; Zhao, J.; Xue, X.; Ao, C.; Zhang, J.; Deng, X.; Zhang, X.; Zhang, W.; et al. Flexible, All-Solid-State Supercapacitors Derived from Waste Polyurethane Foams. Chem. Eng. J. 2022, 431, 133228. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Z.; Zhao, J.; Li, Q.; Zhang, W.; Lu, C. Exfoliation/Dispersion of Low-Temperature Expandable Graphite in Nanocellulose Matrix by Wet Co-Milling. Carbohydr. Polym. 2017, 157, 1434–1441. [Google Scholar] [CrossRef]
- Li, Q.; Xue, Z.; Zhao, J.; Ao, C.; Jia, X.; Xia, T.; Wang, Q.; Deng, X.; Zhang, W.; Lu, C. Mass Production of High Thermal Conductive Boron Nitride/Nanofibrillated Cellulose Composite Membranes. Chem. Eng. J. 2020, 383, 123101. [Google Scholar] [CrossRef]
- Wang, Q.; Xia, T.; Jia, X.; Zhao, J.; Li, Q.; Ao, C.; Deng, X.; Zhang, X.; Zhang, W.; Lu, C. Honeycomb-Structured Carbon Aerogels from Nanocellulose and Skin Secretion of Andrias Davidianus for Highly Compressible Binder-Free Supercapacitors. Carbohydr. Polym. 2020, 245, 116554. [Google Scholar] [CrossRef]
- Deng, X.; Huang, B.; Wang, Q.; Wu, W.; Coates, P.; Sefat, F.; Lu, C.; Zhang, W.; Zhang, X. A Mussel-Inspired Antibacterial Hydrogel with High Cell Affinity, Toughness, Self-Healing, and Recycling Properties for Wound Healing. ACS Sustain. Chem. Eng. 2021, 9, 3070–3082. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Z.; He, X.; Zhang, X.; Li, Q.; Xia, T.; Zhang, W.; Lu, C. Fabrication and Characterization of Highly Porous Fe(OH)3@Cellulose Hybrid Fibers for Effective Removal of Congo Red from Contaminated Water. ACS Sustain. Chem. Eng. 2017, 5, 7723–7732. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, A.; Allen, A.; Zoldan, J.; Huang, Y.; Chen, J.Y. Regenerated Cellulose Micro-Nano Fiber Matrices for Transdermal Drug Release. Mater. Sci. Eng. C 2017, 74, 485–492. [Google Scholar] [CrossRef]
- Samadian, H.; Zamiri, S.; Ehterami, A.; Farzamfar, S.; Vaez, A.; Khastar, H.; Alam, M.; Ai, A.; Derakhshankhah, H.; Allahyari, Z.; et al. Electrospun Cellulose Acetate/Gelatin Nanofibrous Wound Dressing Containing Berberine for Diabetic Foot Ulcer Healing: In Vitro and in Vivo Studies. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pavaloiu, R.D.; Stoica-Guzun, A.; Stroescu, M.; Jinga, S.I.; Dobre, T. Composite Films of Poly(Vinyl Alcohol)-Chitosan-Bacterial Cellulose for Drug Controlled Release. Int. J. Biol. Macromol. 2014, 68, 117–124. [Google Scholar] [CrossRef]
- Andrade-Melecio, H.A.; Antolín-Cerón, V.H.; Alvarado-Mendoza, A.G.; Vázquez-Lepe, M.; Barrera-Rivera, K.A.; Martínez-Richa, A.; Nuño-Donlucas, S.M. Semi-Continuous Heterophase Polymerization to Synthesize Poly(Methacrylic Acid)-Based Nanocomposites for Drug Delivery. Polymer 2022, 14, 1195. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.; Alvarez-Lorenzo, C.; Concheiro, A. Cationic Cellulose Hydrogels: Kinetics of the Cross-Linking Process and Characterization as PH-/Ion-Sensitive Drug Delivery Systems. J. Control. Release 2003, 86, 253–265. [Google Scholar] [CrossRef]
- Butun, S.; Ince, F.G.; Erdugan, H.; Sahiner, N. One-Step Fabrication of Biocompatible Carboxymethyl Cellulose Polymeric Particles for Drug Delivery Systems. Carbohydr. Polym. 2011, 86, 636–643. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, H.; Zhang, C.; Cheng, M.; He, H. PEI-Grafted Magnetic Cellulose for Cr(VI) Removal from Aqueous Solution. Cellulose 2018, 25, 4757–4769. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Y. Polyethyleneimine Modified Eggshell Membrane as a Novel Biosorbent for Adsorption and Detoxification of Cr(VI) from Water. J. Mater. Chem. 2011, 21, 17413–17418. [Google Scholar] [CrossRef]
- Chertok, B.; David, A.E.; Yang, V.C. Polyethyleneimine-Modified Iron Oxide Nanoparticles for Brain Tumor Drug Delivery Using Magnetic Targeting and Intra-Carotid Administration. Biomaterials 2010, 31, 6317–6324. [Google Scholar] [CrossRef] [Green Version]
- Gerner, E.; Almqvist, S.; Werthén, M.; Trobos, M. Sodium Salicylate Interferes with Quorum-Sensing-Regulated Virulence in Chronic Wound Isolates of Pseudomonas Aeruginosa in Simulated Wound Fluid. J. Med. Microbiol. 2020, 69, 767–780. [Google Scholar] [CrossRef]
- Ouimet, M.A.; Snyder, S.S.; Uhrich, K.E. Tunable Drug Release Profiles from Salicylate-Based Poly(Anhydride-Ester) Matrices Using Small Molecule Admixtures. J. Bioact. Compat. Polym. 2012, 27, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Li, W.; Liu, J.; Lu, J.; Feng, J. Autophagy: Novel Applications of Nonsteroidal Anti-Inflammatory Drugs for Primary Cancer. Cancer Med. 2018, 7, 471–484. [Google Scholar] [CrossRef]
- He, X.; Xiao, Q.; Lu, C.; Wang, Y.; Zhang, X.; Zhao, J.; Zhang, W.; Zhang, X.; Deng, Y. Uniaxially Aligned Electrospun All-Cellulose Nanocomposite Nanofibers Reinforced with Cellulose Nanocrystals: Scaffold for Tissue Engineering. Biomacromolecules 2014, 15, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, C.; He, X.; Zhang, X.; Zhang, W.; Zhang, X. Polyethylenimine-Grafted Cellulose Nanofibril Aerogels as Versatile Vehicles for Drug Delivery. ACS Appl. Mater. Interfaces 2015, 7, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, N.; Xu, T.; Cheng, Y. Poly(Amidoamine) Dendronized Hollow Fiber Membranes: Synthesis, Characterization, and Preliminary Applications as Drug Delivery Devices. Acta Biomater. 2012, 8, 1316–1322. [Google Scholar] [CrossRef]
- Wang, W.; Bai, Q.; Liang, T.; Bai, H.; Liu, X. Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal. Polymers 2017, 9, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhao, L.; Duan, W.; Han, L.; Chen, Y. Adsorption of Aqueous Cr(VI) by Novel Fibrous Adsorbent with Amino and Quaternary Ammonium Groups. Ind. Eng. Chem. Res. 2012, 51, 13655–13662. [Google Scholar] [CrossRef]
- Han, K.N.; Yu, B.Y.; Kwak, S.-Y. Hyperbranched Poly(Amidoamine)/Polysulfone Composite Membranes for Cd(II) Removal from Water. J. Membr. Sci. 2012, 396, 83–91. [Google Scholar] [CrossRef]
- Zhang, N.; Zang, G.L.; Shi, C.; Yu, H.Q.; Sheng, G.P. A Novel Adsorbent TEMPO-Mediated Oxidized Cellulose Nanofibrils Modified with PEI: Preparation, Characterization, and Application for Cu(II) Removal. J. Hazard. Mater. 2016, 316, 11–18. [Google Scholar] [CrossRef]
- Xue, X.; Yuan, W.; Zheng, Z.; Zhang, J.; Ao, C.; Zhao, J.; Wang, Q.; Zhang, W.; Lu, C. Iron-Loaded Carbon Aerogels Derived from Bamboo Cellulose Fibers as Efficient Adsorbents for Cr(Vi) Removal. Polymers 2021, 13, 4338. [Google Scholar] [CrossRef]
- García-González, C.A.; Alnaief, M.; Smirnova, I. Polysaccharide-Based Aerogels—Promising Biodegradable Carriers for Drug Delivery Systems. Carbohydr. Polym. 2011, 86, 1425–1438. [Google Scholar] [CrossRef]
- Shapira, A.; Assaraf, Y.G.; Epstein, D.; Livney, Y.D. Beta-Casein Nanoparticles as an Oral Delivery System for Chemotherapeutic Drugs: Impact of Drug Structure and Properties on Co-Assembly. Pharm. Res. 2010, 27, 2175–2186. [Google Scholar] [CrossRef]
- Ungell, A.-L.; Nylander, S.; Bergstrand, S.; Sjöberg, Å.; Lennernäs, H. Membrane Transport of Drugs in Different Regions of the Intestinal Tract of the Rat. J. Pharm. Sci. 1998, 87, 360–366. [Google Scholar] [CrossRef]
- Amara, M.; Kerdjoudj, H. Modification of Cation-Exchange Membrane Properties by Electro-Adsorption of Polyethyleneimine. Desalination 2003, 155, 79–87. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Adepu, S.; Khandelwal, M. Ex-Situ Modification of Bacterial Cellulose for Immediate and Sustained Drug Release with Insights into Release Mechanism. Carbohydr. Polym. 2020, 249, 116816. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.C.I.M.; Ahmad, N.; Halib, N.; Ahmad, I. Synthesis and Characterization of Thermo- and PH-Responsive Bacterial Cellulose/Acrylic Acid Hydrogels for Drug Delivery. Carbohydr. Polym. 2012, 88, 465–473. [Google Scholar] [CrossRef]
- Maver, T.; Maver, U.; Mostegel, F.; Griesser, T.; Spirk, S.; Smrke, D.M.; Stana-Kleinschek, K. Cellulose Based Thin Films as a Platform for Drug Release Studies to Mimick Wound Dressing Materials. Cellulose 2015, 22, 749–761. [Google Scholar] [CrossRef]
- Xu, Q.; Ji, Y.; Sun, Q.; Fu, Y.; Xu, Y.; Jin, L. Fabrication of Cellulose Nanocrystal/Chitosan Hydrogel for Controlled Drug Release. Nanomaterials 2019, 9, 253. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. Drug Res. 2010, 67, 217–223. [Google Scholar]
Langmuir Model | Freundlich Model | |
---|---|---|
qm (mg/g) | 265.25 | -- |
KL (L/mg) | 0.015 | -- |
n | -- | 2.39 |
KF (L/mg) | -- | 13.47 |
R2 | 0.8580 | 0.9681 |
Zero-Order Model | First-Order Model | Higuchi Model | |
---|---|---|---|
k R2 | 0.1223 0.7233 | 1.7861 0.9656 | 0.3635 0.2228 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, M.; Zheng, Z.; Niu, Y.; Xue, X.; Ao, C.; Zhang, W.; Lu, C. Polyethylenimine-Functionalized Nanofiber Nonwovens Electrospun from Cotton Cellulose for Wound Dressing with High Drug Loading and Sustained Release Properties. Polymers 2022, 14, 1748. https://doi.org/10.3390/polym14091748
Wang Q, Li M, Zheng Z, Niu Y, Xue X, Ao C, Zhang W, Lu C. Polyethylenimine-Functionalized Nanofiber Nonwovens Electrospun from Cotton Cellulose for Wound Dressing with High Drug Loading and Sustained Release Properties. Polymers. 2022; 14(9):1748. https://doi.org/10.3390/polym14091748
Chicago/Turabian StyleWang, Qunhao, Mei Li, Zhuo Zheng, Yan Niu, Xiaolin Xue, Chenghong Ao, Wei Zhang, and Canhui Lu. 2022. "Polyethylenimine-Functionalized Nanofiber Nonwovens Electrospun from Cotton Cellulose for Wound Dressing with High Drug Loading and Sustained Release Properties" Polymers 14, no. 9: 1748. https://doi.org/10.3390/polym14091748
APA StyleWang, Q., Li, M., Zheng, Z., Niu, Y., Xue, X., Ao, C., Zhang, W., & Lu, C. (2022). Polyethylenimine-Functionalized Nanofiber Nonwovens Electrospun from Cotton Cellulose for Wound Dressing with High Drug Loading and Sustained Release Properties. Polymers, 14(9), 1748. https://doi.org/10.3390/polym14091748