3D Natural Mesoporous Biosilica-Embedded Polysulfone Made Ultrafiltration Membranes for Application in Separation Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diatom Cultivation and Biomass Harvest
2.2. Biosilica Generation and Physicochemical Characterization
2.3. Incorporation of Diatomite in Polysulfone (PSF): Preparation and Characterization of the Diatomite Composite Membrane
2.4. Membrane Performance Test
3. Results and Discussion
3.1. Cell Growth, and Production of Biomass, Lipids Productions
3.2. Morphology and Physiological Features of Diatomaceous Earth
3.3. Thermal Gravimetric Analysis (TGA) and ATR-IR Spectra of the Composite Membranes
3.4. Membrane Hydrophilicity
3.5. Membrane Morphology
3.5.1. Surface Roughness and Topography by Atomic Force Microscopy (AFM)
3.5.2. Surface and Cross-Sectional Morphology by Scanning Electron Microscopy (SEM)
3.6. Membrane Performance
Pure Water Flux and Protein Rejection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajasekhar, T.; Trinadh, M.; Veera Babu, P.; Sainath, A.V.S.; Reddy, A.V.R. Oil-Water Emulsion Separation Using Ultrafiltration Membranes Based on Novel Blends of Poly(Vinylidene Fluoride) and Amphiphilic Tri-Block Copolymer Containing Carboxylic Acid Functional Group. J. Memb. Sci. 2015, 481, 82–93. [Google Scholar] [CrossRef]
- Polisetti, V.; Ray, P. PAN-PVDF blend ultrafiltration membranes: Preparation, characterization and performance evaluation. Int. J. Adv. Res. Eng. 2017, 4, 2394–2444. [Google Scholar]
- Veerababu, P.; Vyas, B.B.; Singh, P.S.; Ray, P. Limiting thickness of polyamide—Polysulfone thin-film-composite nano fi ltration membrane. Desalination 2014, 346, 19–29. [Google Scholar] [CrossRef]
- Polisetti, V.; Ray, P. Nanoparticles Modified Polyacrylonitrile/Polyacrylonitrile—Polyvinylidenefluoride Blends as Substrate of High Flux Anti-Fouling Nanofiltration Membranes. J. Appl. Polym. Sci. 2021, 138, 50228. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Wang, P.; Zheng, Q.; Li, J. The Influence of Nano-Sized TiO2 Fillers on the Morphologies and Properties of PSF UF Membrane. J. Memb. Sci. 2007, 288, 231–238. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Z.; Liu, Y.; Li, R.; Xu, Y.; Jakaj, G.; Lin, H. Polymeric Membranes Incorporated With ZnO Nanoparticles for Membrane Fouling Mitigation: A Brief Review. Front. Chem. 2020, 8, 224. [Google Scholar] [CrossRef]
- Santosh, V.; Babu, P.V.; Gopinath, J.; Rao, N.N.M.; Sainath, A.V.S.; Reddy, A.V.R. Development of Hydroxyl and Carboxylic Acid Functionalized CNTs–Polysulphone Nanocomposite Fouling-Resistant Ultrafiltration Membranes for Oil–Water Separation. Bull. Mater. Sci. 2020, 43, 125. [Google Scholar] [CrossRef]
- Ahsani, M.; Hazrati, H.; Javadi, M.; Ulbricht, M.; Yegani, R. Preparation of Antibiofouling Nanocomposite PVDF/Ag-SiO2 Membrane and Long-Term Performance Evaluation in the MBR System Fed by Real Pharmaceutical Wastewater. Sep. Purif. Technol. 2020, 249, 116938. [Google Scholar] [CrossRef]
- Zoppi, R.A.; Soares, C.G.A. Hybrids of Poly(Ethylene Oxide-b-Amide-6) and ZrO2 Sol-Gel: Preparation, Characterization, and Application in Processes of Membranes Separation. Adv. Polym. Technol. 2002, 21, 2–16. [Google Scholar] [CrossRef]
- Yan, L.; Hong, S.; Li, M.L.; Li, Y.S. Application of the Al2O3-PVDF Nanocomposite Tubular Ultrafiltration (UF) Membrane for Oily Wastewater Treatment and Its Antifouling Research. Sep. Purif. Technol. 2009, 66, 347–352. [Google Scholar] [CrossRef]
- Chung, Y.T.; Mahmoudi, E.; Mohammad, A.W.; Benamor, A.; Johnson, D.; Hilal, N. Development of Polysulfone-Nanohybrid Membranes Using ZnO-GO Composite for Enhanced Antifouling and Antibacterial Control. Desalination 2017, 402, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Reijnders, L. Hazards of TiO2 and Amorphous SiO2 Nanoparticles. Toxic Eff. Nanomater. 2012, 85–96. [Google Scholar] [CrossRef]
- Shah, S.N.A.; Shah, Z.; Hussain, M.; Khan, M. Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorg. Chem. Appl. 2017, 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Arthanareeswaran, G.; Sriyamuna Devi, T.K.; Raajenthiren, M. Effect of Silica Particles on Cellulose Acetate Blend Ultrafiltration Membranes: Part I. Sep. Purif. Technol. 2008, 64, 38–47. [Google Scholar] [CrossRef]
- Dmitrieva, E.S.; Anokhina, T.S.; Novitsky, E.G.; Volkov, V.V.; Borisov, I.L.; Volkov, A.V. Polymeric Membranes for Oil-Water Separation: A Review. Polymers 2022, 14, 980. [Google Scholar] [CrossRef]
- Pesant, S.; Not, F.; Picheral, M.; Kandels-Lewis, S.; Le Bescot, N.; Gorsky, G.; Iudicone, D.; Karsenti, E.; Speich, S.; Trouble, R.; et al. Open Science Resources for the Discovery and Analysis of Tara Oceans Data. Sci. Data 2015, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Malviya, S.; Scalco, E.; Audic, S.; Vincent, F.; Veluchamy, A.; Poulain, J.; Wincker, P.; Iudicone, D.; De Vargas, C.; Bittner, L.; et al. Insights into Global Diatom Distribution and Diversity in the World’s Ocean. Proc. Natl. Acad. Sci. USA 2016, 113, E1516–E1525. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.S.K.; Nienow, J.A.; Lochner, E. Thalassiosira Mala (Bacillariophyta), a Potentially Harmful, Marine Diatom from Chilka Lake and Other Coastal Localities of Odisha, India: Nomenclature, Frustule Morphology and Global Biogeography. J. Biosci. 2018, 43, 59–74. [Google Scholar] [CrossRef]
- Saxena, A.; Prakash, K.; Phogat, S.; Singh, P.K.; Tiwari, A. Inductively Coupled Plasma Nanosilica Based Growth Method for Enhanced Biomass Production in Marine Diatom Algae. Bioresour. Technol. 2020, 314, 123747. [Google Scholar] [CrossRef]
- Krishna, P.M.; Polisetti, V.; Damarla, K.; Mandal, S.K.; Kumar, A. Improved Biorefinery Pathways of Marine Diatoms Using a Water Miscible Ionic Liquid and Its Colloidal Solution: Efficient Lipid Extraction and in Situ Synthesis of Fluorescent Carbon Dots for Bio-Imaging Applications. RSC Adv. 2021, 11, 21207–21215. [Google Scholar] [CrossRef]
- Wetherbee, R. Biomineralization: The Diatom Glasshouse. Science 2002, 298, 547. [Google Scholar] [CrossRef]
- Desikachary, T.V. Diatoms from the Bay of Bengal. Atlas of Diatoms, 6th ed.; Madras Science Foundation: Madras, Indian, 1987; Volume 3, p. 222-400A. [Google Scholar]
- Bayer, M.; Pullan, M.; Mann, D.; Juggins, S.; Ciobanu, A.; Santos, L.; Shahbazkia, H.; du Buf, H.; Fischer, S.; Bunke, H.; et al. ADIAC: Using computer vision technology for automatic diatom identification. In Proceedings of the 16th International Diatom Symposium, Athens, Greece, 25 August–1 September 2000; pp. 537–562. [Google Scholar]
- Archibald, J.M.; Simpson, A.G.; Slamovits, C.H.; Margulis, L.; Melkonian, M.; Chapman, D.J.; Corliss, J.O. (Eds.) Handbook of the Protists; Springer: Cham, Switzerland, 2017; Volume 10, pp. 978–983. [Google Scholar]
- Salimon, A.I.; Sapozhnikov, P.V.; Everaerts, J.; Kalinina, O.Y.; Besnard, C.; Papadaki, C.; Cvjetinovic, J.; Statnik, E.S.; Kan, Y.; Aggrey, P.; et al. A Mini-Atlas of Diatom Frustule Electron Microscopy Images at Different Magnifications. Mater. Today Proc. 2020, 33, 1924–1933. [Google Scholar] [CrossRef]
- Pytlik, N.; Brunner, E. Diatoms as Potential Green Nanocomposite and Nanoparticle Synthesizers: Challenges, Prospects, and Future Materials Applications. MRS Commun. 2018, 8, 322–331. [Google Scholar] [CrossRef]
- Rabiee, N.; Khatami, M.; Jamalipour Soufi, G.; Fatahi, Y.; Iravani, S.; Varma, R.S. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater. Sci. Eng. 2021, 7, 3053–3068. [Google Scholar] [CrossRef]
- Brannum, D.J.; Price, E.J.; Villamil, D.; Kozawa, S.; Brannum, M.; Berry, C.; Semco, R.; Wnek, G.E. Flame-Retardant Polyurethane Foams: One-Pot, Bioinspired Silica Nanoparticle Coating. ACS Appl. Polym. Mater. 2019, 1, 2015–2022. [Google Scholar] [CrossRef]
- Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. The Potential of Diatom Nanobiotechnology for Applications in Solar Cells, Batteries, and Electroluminescent Devices. Energy Environ. Sci. 2011, 4, 3930–3941. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Wu, Y.; Wang, T.; Qiu, J. Preparation and Characterization of a Diatomite Hybrid Microfiltration Carbon Membrane for Oily Wastewater Treatment. J. Taiwan Inst. Chem. Eng. 2018, 89, 39–48. [Google Scholar] [CrossRef]
- Yang, X.L.; Song, H.L.; Lu, J.L.; Fu, D.F.; Cheng, B. Influence of Diatomite Addition on Membrane Fouling and Performance in a Submerged Membrane Bioreactor. Bioresour. Technol. 2010, 101, 9178–9184. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Ryther, J.H. Studies of Marine Planktonic Diatoms. I. Cyclotella Nana Hustedt and Detonula Confervacea Cleve. Can. J. Microbiol 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Trobajo, R.; Mann, D.G. A Rapid Cleaning Method for Diatoms. Diatom Res. 2019, 34, 115–124. [Google Scholar] [CrossRef]
- Makwana, D.; Polisetti, V.; Castaño, J.; Ray, P.; Bajaj, H.C. Mg-Fe Layered Double Hydroxide Modified Montmorillonite as Hydrophilic Nanofiller in Polysulfone- Polyvinylpyrrolidone Blend Ultrafiltration Membranes: Separation of Oil-Water Mixture. Appl. Clay Sci. 2020, 192, 105636. [Google Scholar] [CrossRef]
- Bromke, M.A.; Sabir, J.S.; Alfassi, F.A.; Hajarah, N.H.; Kabli, S.A.; Al-Malki, A.L.; Ashworth, M.P.; Méret, M.; Jansen, R.K.; Willmitzer, L. Metabolomic Profiling of 13 Diatom Cultures and Their Adaptation to Nitrate-Limited Growth Conditions. PLoS ONE 2015, 10, e0138965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Liang, J.R.; Huang, Q.Q.; Luo, C.S.; Anderson, D.M.; Bowler, C.; Chen, C.P.; Li, X.S.; Gao, Y.H. Differential Cellular Responses Associated with Oxidative Stress and Cell Fate Decision under Nitrate and Phosphate Limitations in Thalassiosira Pseudonana: Comparative Proteomics. PLoS ONE 2017, 12, e0184849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manimaran, K.; Karthikeyan, P.; Ashokkumar, S.; Ashok Prabu, V.; Sampathkumar, P. Effect of Copper on Growth and Enzyme Activities of Marine Diatom, Odontella Mobiliensis. Bull. Environ. Contam. Toxicol. 2012, 88, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Berges, J.A.; Varela, D.E.; Harrison, P.J. Effects of Temperature on Growth Rate, Cell Composition and Nitrogen Metabolism in the Marine Diatom Thalassiosira Pseudonana (Bacillariophyceae). Mar. Ecol. Prog. Ser. 2002, 225, 139–146. [Google Scholar] [CrossRef]
- Park, J.S.; Jung, S.W.; Lee, S.D.; Yun, S.M.; Lee, J.H. Species Diversity of the Genus Thalassiosira (Thalassiosirales, Bacillariophyta) in South Korea and Its Biogeographical Distribution in the World. Phycologia 2016, 55, 403–423. [Google Scholar] [CrossRef]
- Yu, L.Y.; Xu, Z.L.; Shen, H.M.; Yang, H. Preparation and Characterization of PVDF-SiO2 Composite Hollow Fiber UF Membrane by Sol-Gel Method. J. Memb. Sci. 2009, 337, 257–265. [Google Scholar] [CrossRef]
- Tamburaci, S.; Tihminlioglu, F. Diatomite Reinforced Chitosan Composite Membrane as Potential Scaffold for Guided Bone Regeneration. Mater. Sci. Eng. C 2017, 80, 222–231. [Google Scholar] [CrossRef]
- Yu, Y.; Addai-Mensah, J.; Losic, D. Functionalized Diatom Silica Microparticles for Removal of Mercury Ions. Sci. Technol. Adv. Mater. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Koyuncu, M.; Kul, A.R. Thermodynamics and Adsorption Studies of Dye (Rhodamine-B) onto Natural Diatomite. Physicochem. Probl. Miner. Process. 2014, 50, 631–643. [Google Scholar]
Composite Membrane | PSF wt.% | PVP wt.% | Diatomite wt.% | DMF wt.% |
---|---|---|---|---|
PSF/Dia0.0 | 18 | 5 | 0.0 | 77.02 |
PSF/Dia0.05 | 18 | 5 | 0.05 | 76.95 |
PSF/Dia0.1 | 18 | 5 | 0.1 | 76.94 |
PSF/Dia0.2 | 18 | 5 | 0.2 | 76.81 |
PSF/Dia0.5 | 18 | 5 | 0.5 | 76.53 |
Membrane | Contact Angle (°) | Roughness (nm) | |
---|---|---|---|
Average Roughness (Sa) | Root Mean Square Roughness (RMS) (Sq) | ||
PSF/Dia0.0 | 86.1 ± 1.51 | 5.73 | 9.60 |
PSF/Dia0.05 | 78.5 ± 1.53 | 4.81 | 6.44 |
PSF/Dia0.1 | 73.8 ± 0.50 | 4.79 | 6.04 |
PSF/Dia0.2 | 65.7 ± 0.54 | 4.19 | 5.30 |
PSF/Dia0.5 | 59.5 ± 0.51 | 3.62 | 4.32 |
Membrane | Water Holding (%) | % R of BSA | % R of Rhodamine 6G |
---|---|---|---|
PSF/Dia0.0 | 33.50 ± 0.50 | 66.02 ± 0.50 | 45.19 ± 1.02 |
PSF/Dia0.05 | 35.52 ± 0.05 | 70.06 ± 1.01 | 51.30 ± 1.51 |
PSF/Dia0.1 | 36.51 ± 0.05 | 80.04 ± 0.50 | 60.40 ± 1.50 |
PSF/Dia0.2 | 37.59 ± 0.07 | 94.03 ± 0.52 | 70.61 ± 1.54 |
PSF/Dia0.5 | 42.53 ± 0.05 | 98.52 ± 0.07 | 94.84 ± 1.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paidi, M.K.; Polisetti, V.; Damarla, K.; Singh, P.S.; Mandal, S.K.; Ray, P. 3D Natural Mesoporous Biosilica-Embedded Polysulfone Made Ultrafiltration Membranes for Application in Separation Technology. Polymers 2022, 14, 1750. https://doi.org/10.3390/polym14091750
Paidi MK, Polisetti V, Damarla K, Singh PS, Mandal SK, Ray P. 3D Natural Mesoporous Biosilica-Embedded Polysulfone Made Ultrafiltration Membranes for Application in Separation Technology. Polymers. 2022; 14(9):1750. https://doi.org/10.3390/polym14091750
Chicago/Turabian StylePaidi, Murali Krishna, Veerababu Polisetti, Krishnaiah Damarla, Puyam Sobhindro Singh, Subir Kumar Mandal, and Paramita Ray. 2022. "3D Natural Mesoporous Biosilica-Embedded Polysulfone Made Ultrafiltration Membranes for Application in Separation Technology" Polymers 14, no. 9: 1750. https://doi.org/10.3390/polym14091750
APA StylePaidi, M. K., Polisetti, V., Damarla, K., Singh, P. S., Mandal, S. K., & Ray, P. (2022). 3D Natural Mesoporous Biosilica-Embedded Polysulfone Made Ultrafiltration Membranes for Application in Separation Technology. Polymers, 14(9), 1750. https://doi.org/10.3390/polym14091750